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Abstract

Communication over interference channels poses challenges not present for the more tra-
ditional additive white Gaussian noise (AWGN) channels. In order to approach the in-
formation limits of an interference channel, interference mitigation techniques need to be
integrated with channel coding and decoding techniques. This thesis develops such practical
schemes when the transmitter has no knowledge of the channel.

The interference channel model we use is described by r = Hx + w, where r is the
received vector, H is an interference matrix, x is the transmitted vector of data symbols
chosen from a finite set, and w is a noise vector. The objective at the receiver is to
detect the most likely vector x that was transmitted based on knowledge of r, H, and
the statistics of w. Communication contexts in which this general integer programming
problem appears include the equalization of intersymbol interference (ISI) channels, the
cancellation of multiple-access interference (MAI) in code-division multiple-access (CDMA)
systems, and the decoding of multiple-input multiple-output (MIMO) systems in fading
environments.

We begin by introducing mode-interleaved precoding, a transmitter precoding technique
that conditions an interference channel so that the pairwise error probability of any two
transmit vectors becomes asymptotically equal to the pairwise error probability of the same
vectors over an AWGN channel at the same signal-to-noise ratio (SNR).

While mode-interleaved precoding dramatically increases the complexity of exact ML de-
tection, we develop iterated-decision detection to mitigate this complexity problem. Iterated-
decision detectors use optimized multipass algorithms to successively cancel interference
from r and generate symbol decisions whose reliability increases monotonically with each it-
eration. When used in uncoded systems with mode-interleaved precoding, iterated-decision
detectors asymptotically achieve the performance of ML detection (and thus the interference-
free lower bound) with considerably lower complexity. We interpret these detectors as
low-complexity approximations to message-passing algorithms.

The integration of iterated-decision detectors into communication systems with coding
is also developed to approach information rates close to theoretical limits. We present
joint detection and decoding algorithms based on the iterated-decision detector with mode-
interleaved precoding, and also develop analytic tools to predict the behavior of such sys-
tems. We discuss the use of binary codes for channels that support low information rates,
and multilevel codes and lattice codes for channels that support higher information rates.
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Chapter 1

Introduction

In a digital communication system, channel interference limits the ability of the receiver to

detect the discrete symbols sent by the transmitter. The channel is a part of the communi-

cation system we typically cannot change, so techniques to detect the transmitted symbols

that take into account the channel interference are important.

In this thesis, we develop practical schemes to mitigate the effects of channel interfer-

ence to make digital communication more reliable. We focus on the scenario in which the

transmitter has no knowledge of the channel interference as is often the case in, for exam-

ple, wireless communication over radio waves. Furthermore, we assume that the receiver is

aware of the nature of the channel interference via, for example, channel probing or channel

tracking. These schemes apply to a wide range of communication channels, and are thus

presented in a common signal space framework.

In this introductory chapter, we present some relevant background material. In Sec-

tion 1.1, we describe a discrete-time baseband model for digital communication systems and

define the associated detection problem. We also establish notation that is used through-

out this thesis. We present a broader perspective in Section 1.2, where we explain how

detection can be combined with channel coding and decoding in different communication

scenarios to reliably transmit information at rates close to the theoretical maximum. Sec-

tion 1.3 reviews the maximum-likelihood (ML) detector, which minimizes the probability of

vector detection error, as well some classical suboptimal detectors that are low-complexity

alternatives to ML detection. In Section 1.4, by means of a comparison of the performance

of the various detectors, we gain some insight into the challenges posed by communication
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over interference channels. We present the outline for the rest of the thesis in Section 1.5.

1.1 Interference Channel Model

In this thesis, we focus on discrete-time baseband channel models, which abstract the chan-

nel impairments and hide the specific implementational details of the digital communication

system. In doing so, we can talk about different digital communication systems with differ-

ent kinds of channel interference in one common signal space framework.

Let us now describe the channel model that we use in this thesis. The N × 1 vector x
contains the data to be transported over the channel, and is chosen from a finite equiprob-

able set. Depending on the underlying communication system, the components of x may

correspond either to distinct time instants, distinct carrier frequencies, distinct physical lo-

cations, etc. The channel interference is modelled as linear interference, which is represented

by multiplication of x with a Q×N matrix H. With channel noise being composed of the

superposition of many independent actions, the central limit theorem suggests that we can

model the noise as a zero-mean, complex-valued, additive white Gaussian noise (AWGN)

vector w with circularly symmetric components of variance N0. The Q× 1 vector r that is
obtained at the receiver is thus

r = Hx+w, (1.1)

as illustrated in Fig. 1.1.

In this thesis, we are primarily concerned with detection at the receiver of the transmit

vector x based on knowledge of r, H, and the statistics of w. The parameters of H can be

learned at the receiver via techniques collectively known as training, in whichH is estimated

by sending vectors jointly known to the transmitter and receiver across the channel. If the

channel changes with time, then the estimate of H can be updated using the detection

Hx

w

r

Figure 1.1: The vector model.
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decisions. Sometimes it is also useful to periodically perform training in case tracking

becomes unsuccessful. In any event, we assume in most of the thesis that H and the

statistics of w are explicitly known at the receiver.

Though we focus specifically on applications of the vector detection model (1.1) to digital

communication systems, the detection schemes we develop in this thesis are applicable to

any scenario in which (1.1) applies. We now complete this section with a few applications

in digital communication.

One example of a communication system in which the channel model (1.1) applies is

the uplink scenario of a N -user discrete-time synchronous code-division multiple-access

(CDMA) system, shown in Fig. 1.2. In this system, the ith user modulates a complex

symbol xi onto a signature sequence hi[k] of length Q assigned to that user. The modulated

signature sequence is sent across the channel, where it encounters channel attenuation by

a factor of Ai. The base station receives the superposition of all the users’ signals in noise

as described by (1.1), where the columns of H are the users’ signatures scaled by the

corresponding channel attenuation factors; i.e.,




r[0]

r[1]
...

r[Q−1]




︸ ︷︷ ︸
r

=




A0h0[0] A1h1[0] · · · AN−1hN−1[0]

A0h0[1] A1h1[1] · · · AN−1hN−1[1]
...

. . .
...

A0h0[Q−1] A1h1[Q−1] . . . AN−1hN−1[Q−1]




︸ ︷︷ ︸
H




x0

x1

...

xN−1




︸ ︷︷ ︸
x

+




w[0]

w[1]
...

w[Q−1]




︸ ︷︷ ︸
w

.

(1.2)

Another example in which (1.1) applies is a discrete-time synchronous multiple antenna

system with N transmit antennas and Q receive antennas. As shown in Fig. 1.3, each

transmit antenna sends a different complex symbol xi over the channel. For narrowband

transmission, the path from the ith transmit antenna to the jth receive antenna is described

by a single flat fading coefficient, hji, the set of which can be assembled into the matrix H.

Each receive antenna receives a superposition of signals from all transmit antennas in white
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noise, so again we encounter the model in (1.1):




r0

r1
...

rQ−1




︸ ︷︷ ︸
r

=




h00 h01 · · · h0,N−1

h10 h11 · · · h1,N−1
...

. . .
...

hQ−1,0 hQ−1,1 . . . hQ−1,N−1




︸ ︷︷ ︸
H




x0

x1
...

xN−1




︸ ︷︷ ︸
x

+




w0

w1

...

wQ−1




︸ ︷︷ ︸
w

. (1.3)

A discrete-time point-to-point channel with intersymbol interference (ISI), depicted in

Fig. 1.4, can also be modelled using (1.1). The transmitted data is a stream of complex

symbols x[n], which are corrupted by a convolution with the impulse response of the ISI

channel, h[n], and by additive noise, w[n], to produce the received symbols

r[n] =
∑
k

h[n− k]x[k] + w[n]. (1.4)

If r[n], x[n], and w[n] are each arranged in vector format, and H = [h1| · · · |hP ] with hi

being a time-delayed version of h[n] arranged in vector format, then we again obtain the

model (1.1). An example with an impulse response of length two is




r[0]

r[1]
...

r[N − 1]




︸ ︷︷ ︸
r

=




h[0] 0 0 . . . 0

h[1] h[0] 0 0

0 h[1]
. . . . . .

...
...

. . . h[0] 0

0 0 . . . h[1] h[0]




︸ ︷︷ ︸
H




x[0]

x[1]
...

x[N − 1]




︸ ︷︷ ︸
x

+




w[0]

w[1]
...

w[N − 1]




︸ ︷︷ ︸
w

. (1.5)

Note that the H matrix in this case is square and Toeplitz.

1.1.1 Notation

Before we proceed, let us review some matrix terminology and establish some notation.

The superscripts T and † denote transpose and conjugate transpose respectively. The

singular value decomposition of a Q×N matrix H is UΣV†, where U is a Q×Q unitary

matrix, Σ is a Q × N matrix with singular values on the main diagonal, and V is an

N × N unitary matrix. The matrix U is often called the left singular matrix, and V is
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Figure 1.2: Uplink scenario of a CDMA system.
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Figure 1.3: Multiple antenna system.
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Figure 1.4: ISI channel.
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often called the right singular matrix. Since premultiplication of the received vector r by

the matched filter H† at the receiver forms a sufficient statistic, and since the cascade of

H and a matched filter H† is sometimes more convenient to work with, we shall often refer

to H†H. The eigenvalue decomposition of the N × N matrix H†H is then VΛV†, where

Λ = Σ†Σ = diag(λ1, . . . , λN ). When N ≤ Q, the N eigenvalues of H†H are equal to the

N squared singular values of H. When N > Q, the N eigenvalues of H†H consist of the

Q squared singular values of H and N −Q zeros. The eigenvalues in this context are often

called modes, and the matrix V is often called the modal matrix.

The received SNR is defined as

1
ζ

�
=
Es
N0

· ‖H‖
2
F

N
(1.6)

where Es is the average energy of the components in x, N0 is the variance of the noise

components in w, ‖ · ‖2F is the squared Frobenius norm of a matrix, and N is the length of

x. The squared Frobenius norm of a matrix is simply the sum of the squared magnitudes

of all the components of the matrix [46].

1.2 Information Limits of Communication Channels

In the early 1940s, the general consensus was that increasing the rate of information trans-

mitted over a communication channel increased the probability of error. However, in his

1948 paper “A Mathematical Theory of Communication,” Shannon quantified the maxi-

mum rate of information that can be sent error-free over a communication channel [56].

Shannon’s proof involved using random codes with exponentially small error probability

for long block lengths, coupled with a nearest neighbor decoding rule. Unfortunately, such

structureless codes are extremely difficult to decode in practice, generally requiring an expo-

nentially large lookup table and/or computation. Ever since then, researchers have sought

structured codes whose rates are close to theoretical limits and yet can be decoded simply.

There are different information limits for different communication scenarios, and in this

section we review the maximum possible information rates for various scenarios and how

researchers have tried to achieve those rates with practical modulation schemes. In partic-

ular, we look at interference-free channels, interference channels when the transmitter has

knowledge of the interference (also known as channel state information), and interference
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channels when the transmitter does not have such knowledge.

1.2.1 AWGN Channels

Additive white Gaussian noise (AWGN) channels can be thought of as interference-free

channels, because they correspond to the case of (1.1) in which H is the identity matrix

I. The maximum information rate that can be sent over an AWGN channel or, more

commonly, the capacity of the AWGN channel in bits per two dimensions is well known to

be

CAWGN = log2

(
1 +

Es
N0

)
. (1.7)

A communication system for an AWGN channel is shown in Fig. 1.5. Code design and

practical decoding techniques for rates close to AWGN channel capacity are well understood

today. In low SNR regimes where low-rate codes suffice, turbo codes [9] and low-density

parity-check (LDPC) codes [30, 31] approach theoretical limits and are practically decod-

able with “message-passing” algorithms like those discussed in Chapter 4. In [17], it was

demonstrated that an LDPC code can operate at an SNR that is 0.0045 dB away from the

minimum SNR necessary for codes of that rate. In high SNR regimes where high-rate codes

are required, multilevel codes with multistage decoding [41, 44] can be used to approach

capacity, as discussed in Section 5.2.

1.2.2 Interference Channels with Water Pouring

In communication systems where the interference matrix H is non-trivial and known at the

transmitter, to support the maximum information rate it is necessary to optimally allocate

transmit power amongst the various components of x so that the power transmitted over

ReceiverChannelTransmitter

EncoderData
Data

Estimate
Decoder

Additive
Noise

Figure 1.5: A communication system for an AWGN channel.
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the kth mode of the channel is given by the “water-pouring” formula [43]

Es,k = max
(
L − N0

λk
, 0
)

(1.8)

where L is chosen such that the average transmit energy is

Es = 1
N

N−1∑
k=0

Es,k. (1.9)

The idea of water pouring is to transmit more power over large modes, and to transmit less

power over small modes. In fact, modes that are too small are allocated no transmit power.

If K is the set of modes allotted transmit power via water pouring, then the capacity of the

interference channel in bits per two dimensions is

Cint =
K

N
log2




Es
N0
· NK +

〈
1
λk

〉
A,K〈

1
λk

〉
G,K


 (1.10)

where 〈1/λk〉A,K and 〈1/λk〉G,K are, respectively, the arithmetic and geometric means of

1/λk over K, given by

〈
1
λk

〉
A,K

=
1
|K|
∑
k∈K

1
λk

(1.11)

log
〈
1
λk

〉
G,K

=
1
|K|
∑
k∈K

log
1
λk

. (1.12)

Techniques are known today to approach the capacity of interference channels as closely

as the capacity of interference-free channels, provided the transmitter is aware of the inter-

ference. A communication system that incorporates such techniques is shown in Fig. 1.6.

At the transmitter, knowledge of channel state information is used in an interference “pre-

canceller” that optimally allocates transmit power to the channel modes. The cascade of

the transmitter pre-canceller and the channel appears interference-free, so the coding and

decoding techniques for AWGN channels can be exploited to approach capacity. There

are two main classes of such techniques. One class treats all the modes as belonging to

a single channel [14, 38, 59], while the other class partitions the underlying channel into

parallel independent subchannels, over which symbols are transmitted according to the
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Figure 1.6: A communication system that pre-cancels channel interference.

water-pouring power allocation [55]. For ISI channels, an example in the former class is

Tomlinson-Harashima precoding, and an example in the latter is discrete multi-tone (DMT).

1.2.3 Interference Channels without Water Pouring

When the transmitter has no channel state information, water pouring cannot be done

to achieve the capacity of the interference channel. Rather, the transmit power is evenly

distributed across all the modes of the system, leading to a maximum rate of

Iint =
1
N

N−1∑
k=0

log2

(
1 +

Esλk
N0

)
(1.13)

bits per two dimensions. We call this quantity the mutual information of the channel rather

than the capacity because the information rate is not optimized at the transmitter via water

pouring.

In this scenario, the communication system depicted in Fig. 1.6 can no longer be used,

and creating parallel; rather, interference must be dealt with at the receiver. The optimal

receiver in a probability of error sense uses a maximum-likelihood (ML) or maximum a

posteriori (MAP) algorithm that treats the encoder and the interference channel as a single

product code and performs joint detection and decoding, shown in Fig. 1.7. Though jointly

optimal, the complexity of such a system is usually determined by the product of the

complexities of the optimal detector for the corresponding uncoded system and the optimal

decoder for the corresponding AWGN channel. Thus, the complexity of such a system is

prohibitive.

A classical suboptimal solution is to separate the problems of detection and decoding as

shown in Fig. 1.8. The detector should be designed so that the cascade of the interference

channel and the detector appears like an AWGN channel, so the complexity of the detector
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Figure 1.7: Optimal joint detection and decoding.
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Figure 1.8: Classic suboptimal separation of detection and decoding.

is no different than for uncoded data. However, it is more difficult to make the cascade of

the channel and the detector look like an AWGN channel than it is for the cascade of a

transmitter pre-canceller and the channel to look like one, because noise from the channel

can be amplified or enhanced by the detector. Nevertheless, assuming that the detector

is designed well, coding and decoding schemes for AWGN channels can be used, so the

complexity of the decoder is the same as if there were no interference in the channel. The

result is that the overall complexity is the sum, rather than the product, of the complexities

of the individual components.

It is this scenario of the three for which techniques to approach the theoretical limits

are least developed. This thesis presents practical schemes with low complexity to approach

the mutual information of an interference channel without channel knowledge at the trans-

mitter. Before we review some classical detectors, let us gain some insight by comparing

the theoretical information limits of the three communication scenarios presented.

1.2.4 A Comparison of Maximum Information Rates

We now compare the maximum achievable rates of different communication scenarios at

the same received SNR 1/ζ, as defined in (1.6). To facilitate the comparison, we assume

that ‖H‖2F =
∑N

k=1 λk is normalized to N , the number of columns in H, so that the symbol

energy Es and the noise variance N0 are also fixed.
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When the transmit power is equally distributed amongst the modes, the interference

channel cannot have a mutual information greater than the corresponding AWGN channel

with equivalent SNR. We can see this from the concavity of the log function:

Iint =
1
N

N∑
k=1

log2

(
1 +

Esλk
N0

)
≤ log2

(
1 +

Es
N0

)
= CAWGN (1.14)

where we have used the normalization of ‖H‖2F , and the rates are per two dimensions. At
low SNR, however, we can show that Iint ≈ CAWGN using the approximation ln(1+α) ≈ α:

Iint =
1
N

N∑
k=1

log2

(
1 +

Esλk
N0

)
≈ 1

N

N∑
k=1

Esλk
N0 ln 2

=
Es

N0 ln 2
≈ log2

(
1 +

Es
N0

)
= CAWGN.

(1.15)

At high SNR, the rate loss from Cint to Iint due to the absence of water pouring is

negligible because the capacity-achieving allotment of transmit power to the various modes

is asymptotically equal. The term “high SNR” is relative in this context, because not only

does the total transmit power need to be high, but the amount allocated to each mode

must be high as well. Thus, for Cint and Iint to be approximately equal, a channel with

a few small modes requires a higher SNR than a channel with no small modes. At low

SNR, however, the capacity Cint of an interference channel can substantially exceed both

the mutual information without water pouring Iint and the capacity of the AWGN channel

CAWGN even with the normalization of ‖H‖2F . Intuitively, transmit power is selectively

loaded onto channel modes that can support the highest rates.

Figure 1.9 compares Cint and Iint for the three-tap ISI channel with impulse response

h[n] = 0.5δ[n] + 0.707δ[n− 1] + 0.5δ[n− 2] (1.16)

to CAWGN. As noted earlier, the capacity of an ISI channel exceeds that of the corresponding

AWGN channel at low SNR, since transmit power can be loaded onto favorable frequencies.

If water pouring is not available, then at low SNR the mutual information of the random

ISI channel approaches the capacity of the corresponding AWGN channel. At high SNR,

the capacity of the ISI channel becomes less than the AWGN channel capacity, and also the

effect of water pouring becomes negligible. The asymptotic slopes of all three curves are

equal, implying that the penalty of an interference channel is only a fixed rate loss.
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Figure 1.9: Information rates for the three-tap ISI channel of (1.16).

1.3 Classical Detection Schemes

There are a variety of detectors that can be used in the scenario of Fig. 1.8, and in this

section we discuss some of the most common. We begin with the maximum-likelihood (ML)

detector, which minimizes the probability of vector detection error and can be considered

optimal. The rest of the detectors presented in this section are designed to offer an approx-

imate solution to ML detection with lower complexity. While the extent to which these

suboptimal detectors trade off accuracy with complexity varies, they all share the idea that

the effect of H should be explicitly “cancelled” or “undone” so that the decision device

can treat the channel as an AWGN channel. In the special case of an uncoded system, the

detection problem can be decoupled and processed by a simple symbol-by-symbol decision

device.

Before we review these classical detectors, it is useful to establish a way by which we

can compare detector performance. Although practical communication systems typically

use coded transmission, we will compare detectors based on their performance for uncoded

transmission, i.e., each component of x contains independent data and is equiprobably

chosen from a finite set X , and so x ∈ XN . Since detectors typically treat coded data as if
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it were uncoded, focusing on uncoded systems allows us to isolate the quality of the detector

from the quality of the decoder.

The symbol-error rate for an uncoded system, defined as the probability that a compo-

nent of x̂ is not equal to the corresponding component of x ∈ XN , is the measure that we use

in this thesis when specifically talking about detector performance. We use this metric for

several reasons. First, the ML detector, which minimizes the probability of vector detection

error, has a symbol-error rate that is almost identical at high signal-to-noise ratio (SNR)

to the detector that minimizes symbol-error probability [27]. Thus asymptotically, the ML

detector provides a useful lower bound to the symbol-error rate of any detector. Second,

looking at symbol errors is equivalent to computing the Hamming distance between x and x̂,

which gives a measure of closeness of the detected vector to the transmitted vector. Since

the ML vector is closest to x on average, we can infer how close the solutions provided

by other detectors are to the optimal solution. Third, since suboptimal detectors typi-

cally attempt to decouple the detection of uncoded symbols by using a symbol-by-symbol

minimum-distance decision device or slicer, using the symbol-error rate is intuitive. Fourth,

codes are often characterized by the number of symbol errors in a codeword that can be

corrected. In a system that performs detection followed by decoding, a low symbol-error

rate after detection is desirable for good overall performance of the system.

1.3.1 ML Detection

Since all vectors x are equally likely, the detector that minimizes the probability of vector

detection error is the ML detector:

x̂ = argmax
x∈XN

f(r|x). (1.17)

Since the noise is independent of x, uncorrelated and Gaussian, (1.17) simplifies to the

minimum-distance rule

x̂ = argmin
x∈XN

‖r−Hx‖, (1.18)

depicted in Fig. 1.10. Thus, the detector computes the most likely vector x based on

knowledge of r, H, and the distribution of w. The set of all possible uncoded vectors XN

can be represented in N -dimensional Euclidean space as the points of a (shifted) orthogonal

lattice bounded within an N -dimensional cube. The set of possible vectors is depicted in
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Figure 1.10: Maximum-likelihood (ML) detection.
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Figure 1.11: (a) Bounded lattice representing the uncoded set of vectors X 2. (b) Corre-
sponding decision regions for the AWGN channel.

Fig. 1.11(a) for N = 2.

In the special case of an AWGN channel, our model becomes r = x +w, and so r is a

noise-perturbed version of x. The minimum-distance rule (1.18) simplifies to

x̂ = argmin
x∈XN

‖r− x‖. (1.19)

Since each component of the uncoded vector x affects only the corresponding component of

r, and since the noise vector is uncorrelated, the ML detector can be decoupled into a set

of symbol-by-symbol optimizations; i.e.,

x̂i = argmin
xi∈X

‖ri − xi‖ for i = 0, 1, . . . , N − 1, (1.20)

which can be solved using a symbol-by-symbol minimum-distance decision device or slicer.

The decision regions, corresponding to the values of r for which each of the possible deci-

sions is made, are depicted in Fig. 1.11(b). The ability to decouple the ML detector into

componentwise minimizations is indicated by the fact that the boundaries of the decision

regions form an orthogonal grid. The minimization for each of the N components of x

30



(b)(a)

Figure 1.12: (a) Bounded lattice representing all possible vectors Hx for an interference
channel. (b) Corresponding decision regions.

requires the comparison of |X | differences, so complexity is linear in N .

In the general case in which linear interference is present, we have that r = Hx+w, and

the ML vector detector of (1.18) generally cannot be decomposed into N smaller problems.

We can see this by first recognizing that the action of H on the set of all possible uncoded

vectors x ∈ XN is to map the points of the bounded orthogonal lattice in Fig. 1.11(a) to

the points of a bounded lattice with generators along the directions of the columns of H,

like the bounded lattice in Fig. 1.12(a). The decision regions of (1.18) are now generally

polytopes as shown in Fig. 1.12(b), and decoupling of the problem is no longer possible.

The minimization of (1.18) requires the comparison of |X |N differences, so complexity is

exponential in N . In fact, the least-squares integer program in (1.18) for generalH matrices

has been shown to be nondeterministic polynomial-time hard (NP-hard) [65]. In the ISI

channel case, ML detection can be performed using a dynamic programming algorithm

known as the Viterbi algorithm [27], which has complexity proportional to |X |L where L

is length of the channel impulse response. If L or |X | is large, then ML detection is still
complex.

The high complexity of the ML detector has invariably precluded its use in practice, so

lower-complexity detectors that provide approximate solutions to (1.18) are used, which we

review in the next section.

1.3.2 Linear Detection

As depicted in Fig. 1.13, linear detectors take the received vector r and premultiply it

by a matrix B†. The resulting product, x̃, is passed to a minimum-distance symbol-by-

symbol slicer to produce x̂. The matrix B can be optimized using different criteria, but
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Figure 1.13: Linear detection.

two of the most popular are the zero-forcing (ZF) criterion and the minimum mean-squared

error (MMSE) criterion. The ZF criterion, also known as the interference-nulling criterion,

chooses B to completely eliminate interference in x̃, while the MMSE criterion chooses B

to minimize the variance of x̃− x.

The main disadvantage of this low-complexity class of detectors is that they perform

quite poorly in a symbol-error rate sense because the matrix B† enhances the variance of

the noise components in w and also makes the difference vector x̃ − x correlated. These

problems are more severe when the ZF criterion is used, but are present nevertheless for

the entire class of detectors.

Shnidman [57] considered the problem of eliminating interference in a multiuser context

very early on. The MMSE linear detector for CDMA systems was first described by Xie et

al. [70] and Madhow and Honig [47]. Tufts [61] derived the ZF and MMSE linear detectors

for the ISI channel case, known in that context as linear equalizers.

1.3.3 Decision-Feedback Detection

The decision-feedback detector builds upon the linear detector by combining it with a non-

linear feedback loop, pictured in Fig. 1.14. As before, the received vector r is premultiplied

by B†, but rather than making minimum-distance symbol-by-symbol slicer decisions on the

entire output vector, decisions are made sequentially, one component at a time. To begin,

the first component of B†r, denoted x̃1, is processed by the slicer to produce the detected

symbol x̂1. Assuming that x̂1 is equal to x1, the feedback loop is used to subtract off the

interference caused by x1 from the remaining components of B†r. The second component

of the resulting interference-reduced vector, denoted x̃2, is then processed by the slicer to

produce x̂2. Assuming that x̂2 is a correct decision, the interference caused by x2 is sub-

tracted from the remaining components of B†r, and the process continues until decisions all
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Figure 1.14: Decision-feedback detection.

the components have been made. As with the linear detector, the ZF and MMSE criteria

are popular.

Though decision-feedback detectors usually perform better than linear detectors, they

still have some serious shortcomings. First, noise enhancement is still an issue, though the

situation is not as bad as with linear detection. Second, decisions are made sequentially

at the slicer and so are used to improve only future decisions, not past ones. Third, the

sequential nature of the decision device means that in practice, incorrect decisions can lead

to further incorrect decisions, a phenomenon known as error propagation. Moreover, since

the matrices B and D used in decision-feedback detection are often optimized under the

faulty assumption of no error propagation, there may be some mismatch between the desired

optimization criterion and the matrices that are used. Fourth, the sequential structure of

the decision-feedback detector makes it essentially incompatible for use with ISI channels

in conjunction with channel coding (on channels not known at the transmitter, as is the

case of interest in this thesis). As a result, use of the decision-feedback equalizer has been

largely restricted to uncoded systems.

The idea of feeding back decisions to mitigate the effects of interference for future sym-

bols was first used by Austin [3] in the context of ISI channels. Duel-Hallen [21] introduced

the idea to CDMA systems, while Foschini [29] brought the idea to multiple antenna systems

via the Bell Labs Layered Space-Time (BLAST) detection algorithm.

1.3.4 Multistage Detection

In an attempt to symmetrize the problem of being able to cancel only future symbols

in decision-feedback detectors, multistage detectors process the received vector in block
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iterations. In some sense, multistage detectors can be thought of as parallel processors,

whereas decision-feedback detectors are sequential processors.

An example of a multistage detector is shown in Fig. 1.15. During the first iteration,

the vector r is premultiplied by the matched filter H† to produce x̃1, which is then sent to

the slicer to generate a first set of tentative decisions x̂1 on all the symbols. During the

second iteration, the vector r is again premultiplied by the matched filter H†, but before

the result is sent to the slicer, an exact replica of the interference is created and subtracted

off assuming x̂1 is a correct set of decisions. The slicer then takes the resulting vector x̃2,

and generates a second set of tentative decisions x̂2. Further sets of tentative decisions x̃l

are generated in the same manner, using the tentative decisions of the previous iteration

x̃l−1 to subtract off interference. After a sufficient number of iterations, the most recent

tentative decisions are taken as the final decisions. The two matrices in this example are

fixed during each iteration, and are optimized to maximize the signal-to-interference+noise

ratio (SINR) at the slicer input assuming correct tentative decisions. In general, the class

of multistage detectors includes detectors with the same structure as in Fig. 1.15 but with

alternative pairs of matrices that may change with each iteration.

The problem with multistage detectors is that the decisions typically do not converge

to the optimum ones, and limit cycles and divergence are possible. The reason for the poor

performance of the multistage detector in Fig. 1.15 is that, like decision-feedback detectors,

the two matrices are optimized assuming correct decisions are made at each iteration. Using

this faulty assumption causes the incorrect quantities to be subtracted off as interference,

which leads to the propagation of errors from iteration to iteration.

Gersho and Lim [32] developed multistage detectors for the ISI channel case, and

Varanasi and Aazhang [64] later introduced them for the CDMA system case.

H

w

x

ChannelTransmitter

r
H† x̃l

x̂l

x̂l−1

Multistage Detector

H†H− diag{H†H}

Figure 1.15: A multistage detector.
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1.4 Two Challenges with Interference Channels

In this section, we present an example that compares the symbol-error rate performance of

the detectors discussed thus far. In doing so, we highlight two difficulties in communication

over interference channels that are not present over AWGN channels.

We consider the transmission of an uncoded 2× 1 vector x of binary (2-PAM) symbols
over the 2× 2 channel

H =


 √3/2 −1/2
−1/2 √

3/2


 . (1.21)

The bit-error rate performance of ML detection for this channel is depicted in Fig. 1.16 as

a function of received SNR.

The first difficulty is that ML detection at the receiving end of an interference channel

does not achieve as low a bit-error rate as does ML detection at the receiving end of the

corresponding AWGN (interference-free) channel at the same SNR. The bit-error rate of

the AWGN channel is also plotted in Fig. 1.16 as the dashed line. Since an AWGN channel

has no interference, the corresponding bit-error rate curve is considered a lower bound
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Figure 1.16: Bit-error probability of various detection schemes as a function of SNR for the
interference channel of (1.21). The AWGN channel bound is also pictured, corresponding
to the interference-free case.
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to the bit-error rate curves of all detectors for interference channels. We generically call

this bound the AWGN channel bound, but it is more commonly known as the matched

filter bound in the context of ISI channels and the single-user matched-filter bound in the

context of CDMA systems. Comparing the curves for ML detection in the interference and

interference-free cases, we can see that they diverge at increasingly higher SNRs.

The second difficulty is that, given an interference channel, the probability of bit error

achieved using suboptimal detectors does not approach that of ML detection. The bit-error

rate curves for linear MMSE detection, MMSE decision-feedback detection, and multistage

detection are plotted in Fig. 1.16. The curves for linear MMSE detection and MMSE

decision-feedback detection are similar and appear to diverge from the corresponding curve

for ML detection at high SNR. The multistage detector performs even worse than the linear

and decision-feedback detectors.

This example highlights not only the potentially huge gap between the bit-error rates

of the ML solution for interference and interference-free channels, but also the need for

effective low-complexity detectors that can approximate the ML solution for interference

channels well.

1.5 Thesis Outline

In this thesis, we develop practical schemes to approach the maximum information rates

achievable over interference channels when the transmitter does not know the channel. In

light of Section 1.2.4, our results also apply to the scenario in which the transmitter knows

the channel but chooses not to do water pouring because the SNR is high enough that

Iint ≈ Cint.

The next two chapters of this thesis to dealing explicitly with the two difficulties iden-

tified in Section 1.4 for communication over interference channels.

In Chapter 2, we introduce a transmitter precoding technique that conditions the in-

terference matrix H so that the interference becomes as benign as possible. This method,

which we callmode-interleaved precoding, relies on large-dimensional unitary matrices. Even

though the precoding takes place at the transmitter, the transmitter does not need knowl-

edge of the channel. We prove that the pairwise error probability of two (possibly coded)

vectors sent over an interference channel is asymptotically equal to the pairwise error prob-
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ability of the same vectors over the AWGN channel with the same SNR. Furthermore, it is

conjectured (and later demonstrated in Chapter 3) that ML detection in combination with

mode-interleaved precoding asymptotically achieves the AWGN channel bound for uncoded

systems.

While the use of large-dimensional matrices in mode interleaving renders ML detection

intractably complex, the complexity problem is mitigated in Chapter 3. We introduce

the iterated-decision detector, which is particularly effective for large systems and thus

well-suited for use with mode-interleaved precoding. Iterated-decision detectors belong to

the class of multistage detectors, but unlike the multistage detector in Fig. 1.15, iterated-

decision detectors are designed to maximize the SINR at the slicer input taking into account

the reliability of tentative decisions. When combined with mode-interleaved precoding in

uncoded systems, iterated-decision detectors asymptotically achieve the AWGN channel

bound (and hence the symbol-error rate performance of ML detection) with considerably

lower complexity than ML detection. In fact, the complexity is on the order of linear

detection and decision-feedback detection schemes.

In Chapter 4, we interpret iterated-decision detectors in the context of message-passing

algorithms [42] when mode-interleaved precoding is used. We develop an interpretation

of iterated-decision detection as a low-complexity variant of the max-sum message-passing

algorithm, a relative of the sum-product algorithm that implements ML detection.

With this new insight, we discuss in Chapter 5 ways in which mode-interleaved precod-

ing and iterated-decision detection can be integrated into coded communication systems

so that information rates close to the theoretical maximum can be achieved, and we also

develop analytic tools to predict the behavior of such systems. A class of iterative detector

and decoder algorithms for binary codes is first proposed, inspired by the message-passing

interpretation of the iterated-decision detector in Chapter 4. We also investigate iterative

detector and decoder algorithms for multilevel codes, whose decoding strategy has simi-

larities to iterated-decision detection. Finally, we briefly discuss how the iterated-decision

detector can also be generalized in a natural way to be compatible with lattice codes.

In Chapter 6, we summarize the contributions of this thesis and discuss future research

directions.
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Chapter 2

Mode-Interleaved Precoding

In Section 1.4, we considered the symbol-error rate performance of ML detection for the

transmission of uncoded symbols over the 2× 2 channel

H =


 √3/2 −1/2
−1/2 √

3/2


 (2.1)

and showed that there is an unbounded SNR loss compared to the performance of ML

detection over the corresponding AWGN channel

H =


 1 0

0 1


 . (2.2)

This observation is indicative of the fact that for communication systems without transmit-

ter water pouring, any H matrix with off-diagonal elements is intrinsically worse in terms

of ML detection error probability than an H that is the identity matrix scaled to have the

same Frobenius norm. The channel is a part of the communication system that we usually

have no control over, so we instead have to find ways to work with it effectively.

For example, we can use special processing at the receiver in an attempt to make the

channel appear differently, which may perhaps reduce the probability or error of the corre-

sponding ML detector. However, any processing performed at the receiver can always be

considered as part of the detector. As we have already discussed in Section 1.3, the ML

detector for the given channel provides a lower bound to the probability of error of any

detector, and so any additional processing at the receiver cannot reduce the gap between

39



H

Channel

r

Receiver

DetectorPrecoder

(a)

(b)

Effective Channel

w

r

Receiver

Detector

w

x̂

x̂

x

x

Transmitter

Transmitter

HPrecoder

Figure 2.1: (a) A communication system with transmitter precoding. (b) The effective
channel created by transmitter precoding.

the error probability of ML detection and the AWGN channel bound.

We can alternatively consider adding some special processing at the transmitter or

precoding to make the channel appear differently, as shown in Fig. 2.1(a). The challenge

here is that the transmitter is assumed to have no knowledge of the channel interference

matrix H. The precoder, then, must be universal in the sense that the ML detector for the

effective channel created by the cascade of the precoder and virtually any given channel

interference matrix H has a lower error probability than the ML detector for the given

channel H without precoding. The effective channel, shown in Fig. 2.1(b), is assumed to

be known at the receiver.

In this chapter, we introduce a universal precoding technique called mode-interleaved

precoding that effectively transforms a channel matrix such as (2.1) so that the pairwise error

probability between two vectors x and y, defined as the probability that x is transmitted

but the received vector r = Hx + w is closer to Hy than it is to Hx, is asymptotically

equal to the pairwise error probability for the corresponding AWGN channel (2.2). More

generally, almost any Q × N channel matrix H can be manipulated so that the pairwise
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error probability is asymptotically as if the channel H were the N ×N matrix




‖ H ‖F /
√

N 0 · · · 0

0 ‖ H ‖F /
√

N · · · 0
...

...
. . .

...

0 0 · · · ‖ H ‖F /
√

N


 , (2.3)

which is the AWGN channel at the same received SNR, defined in (1.6). Thus, with mode-

interleaved precoding, it is the Frobenius norm ‖H‖2F or equivalently the sum of the eigen-

values of H†H [46] that asymptotically determines pairwise error performance, regardless

of the given H matrix.

In Section 2.1 we present mode-interleaved precoding, which is so named because the

precoder is a special unitary matrix that spreads transmit symbols across all modes of the

channel. In Section 2.2 we consider a specialized version of mode-interleaved precoding for

ISI channels called frequency-interleaved precoding, in which the set of possible precoders is

restricted to those that maintain the Toeplitz structure of H. Frequency-interleaved pre-

coding permits the use of low-complexity detectors at the receiver that exploit the Toeplitz

structure, and in doing so also reduces the implementational complexity of the general mode-

interleaved precoder. Finally, in Section 2.3 we discuss possible detection methods that can

be used at the receiver in conjunction with mode- and frequency-interleaved precoding.

2.1 Mode-Interleaved Precoding

In this section, we develop of class of universal transmitter precoders under a set of reason-

able design constraints. First, we restrict our attention to linear precoders, which can be

represented by a matrix multiplication. As we shall demonstrate later in this section, simple

linear precoders are sufficient to make ML detection for interference channels behave in a

pairwise sense like ML detection for an AWGN channel with equal Frobenius norm. Second,

we focus on linear precoders that correspond to multiplications by square matrices, so as

not to change the required physical resources such as bandwidth, transmission duration,

number of antennas, etc. Third, we concentrate on unitary matrix precoders, which do not

change the statistics of the vector x, which is typically uncorrelated with equal-variance

components for both coded and uncoded cases [11]. In the absence of channel knowledge
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Figure 2.2: A spectrum for 2 × 2 H matrices of Frobenius norm 2. At the left end, the
two eigenvalues are equal; at the right end, the two eigenvalues are as unequal as possible.
Matrices located near the left end tend to be more desirable in the sense that the distance
between two vectors does not change as dramatically after being transmitted over the chan-
nel. The H matrix in (2.1), which has eigenvalues of 1.866 and 0.134, is located near the
right end of the spectrum.

at the transmitter, it makes sense to keep the statistics of the transmit vector the same.

To develop intuition about how to choose appropriate linear unitary precoders, let us

consider a family of 2 × 2 H matrices with constant Frobenius norm ‖H‖F . Since the

squared Frobenius norm of H is equal to the sum of the eigenvalues of H†H = VΛV† [46],

it is also a family of 2× 2 H matrices in which Tr(Λ), the trace of Λ, is constant.

We can think of these 2×2H matrices as lying on a spectrum, as depicted in Fig. 2.2 for

matrices with a Frobenius norm of 2. At one end of the spectrum we have equal eigenvalues,

and at the other we have the most unequal pair of eigenvalues possible. The matrix in (2.1)

is a member of this family and has eigenvalues that are 1.866 and and 0.134, making it

closer to the right end of the spectrum. Note that the corresponding AWGN channel, in

which H = I, lies on the leftmost part of the spectrum.

The matrices on the right end of the spectrum tend not to be desirable because of the

presence of near-zero modes. The action of a near-zero mode can be viewed as a projection

of the signal space onto a lower dimensional subspace. In some cases, the rotation caused

by the cascade of the unitary precoder and the unitary right singular matrix V of the

channel may be such that the projection due to near-zero modes keeps the x vectors in

the signal constellation distinguishable at the receiver, as shown in Fig. 2.3(a). In other

cases, however, the rotation caused by the cascade of the unitary precoder and the unitary

matrix V of the channel may be such that near-zero modes make some x vectors in the

signal constellation virtually indistinguishable at the receiver even in the absence of noise,
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Figure 2.3: A two-dimensional signal constellation after a linear transformation by the
precoder in cascade with a matrix H with a zero mode. The black dots are constellation
points after the possible x vectors are rotated by the precoder and V, and the white
dots are the points after the two-dimensional space is scaled by the modes λ1 = 0 and
λ2 = 1. (a) The combined rotation of the precoder and V is such that all points remain
distinguishable. (b) The combined rotation of the precoder and V is such that some points
become indistinguishable. The difference in rotation angle between the two examples is
approximately 45◦.

as shown in Fig. 2.3(b).

A pair of vectors becomes virtually indistinguishable at the receiver when, by the com-

bined rotation of the precoder and V, their difference vector becomes aligned with the

eigenvector of H†H corresponding to a near-zero mode. Therefore, to reduce the error

probability of ML detection, it is desirable to somehow ensure that the difference vectors

between all vector pairs are spread across many modes, so that an unfavorable mode does

not significantly degrade the performance of ML detection. In the special case of uncoded

vectors, this goal is equivalent to spreading each uncoded symbol in x across many modes,

so that information about any symbol is not blocked by a few near-zero modes from reaching

the receiver.

Since the H matrix is not known at the transmitter, it is not obvious how to choose a

precoder so that the difference vectors of an arbitrary N -dimensional signal constellation

are well-spread across all modes. When N is large, however, there is a method of choosing

a precoder that works well, which further inspires a strategy for small values of N .
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2.1.1 Large H Matrices

Before we detail our precoder selection strategy for large N , let us introduce a couple of

concepts.

We introduce a random ensemble of N × N unitary matrices that is isotropically dis-

tributed, meaning that an orthonormal column of a unitary matrix belonging to the en-

semble has a marginal distribution corresponding to a uniformly distributed point on the

surface of an N -dimensional sphere. Further concepts on isotropically distributed vectors

and matrices, which prove useful in the sequel, are reviewed in Appendix A.

We also introduce the notion of pairwise error probability Pr(x → y|H) between two
vectors x and y, which is defined as the probability that x is transmitted but the received

vector r = Hx +w is closer to Hy than it is to Hx. For AWGN vectors w in which the

one-dimensional noise variance is σ2, the pairwise error probability is

Pr(x→ y|H) = Q
(√

‖H(y − x)‖2
4σ2

)
, (2.4)

where

Q(v) = 1√
2π

∫ ∞

v
e−t

2/2dt. (2.5)

Note that (2.4) is also equal to Pr(y→ x|H), the probability that y is transmitted but the
received vector r = Hy +w is closer to Hx than it is to Hy, because of the symmetry in

the distribution of w.

When N is large, fixing the precoder to be a matrix chosen from the random ensemble of

isotropically distributed N×N unitary matrices works well with high probability. We make

this notion precise with the following theorem, which states that as N → ∞, the pairwise
error probability for two vectors transmitted over an interference channel is asymptotically

equivalent to the pairwise error probability over the corresponding AWGN channel.

Theorem 2.1 Let {HN} for N = 1, 2, 3, . . . be a sequence of matrices, where HN has

N columns and the spectral radius of the eigenvalue matrices {ΛN} of {H†
NHN} is uni-

formly bounded and (1/N)Tr(ΛN ) → λ̄ as N → ∞. Let {ΥN} be a sequence of unitary

matrices drawn from statistically independent, isotropically distributed random ensembles.

Let {xN} and {yN} for N = 1, 2, 3, . . . be two sequences of vectors where N denotes the

vector dimension, and let {σ2N} be a sequence of noise variances such that ‖∆N‖2/σ2N tends
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to a limit, where ∆N
�
= yN − xN . Then, as N →∞, the pairwise error probability is

Pr(xN → yN |HNΥN ) = Q
(√

‖HNΥN∆N‖2
4σ2N

)
a.s.−→Q

(√
λ̄ lim
N→∞

‖∆N‖2
4σ2N

)
. (2.6)

Before we proceed to the proof, let us make a few remarks. The theorem states that the

asymptotic pairwise error probability of any two N -dimensional vectors transmitted over an

interference channel is equal to the pairwise error probability over the corresponding AWGN

channel. The requirement that (1/N)Tr(ΛN )→ λ̄ as N →∞ is a normalization condition

that is not critical to the essence of the theorem. It allows us, for example, to consider a

sequence {HN} for which the eigenvalues in {ΛN} have a limiting cumulative distribution
function and, thus, a limiting (1/N)Tr(ΛN ). Similarly, the normalization condition that

{‖∆N‖2/σ2N} converge to a limit is also not critical to the essence of the theorem. What

is important, however, is the condition that the spectral radius of the eigenvalue matrices

{ΛN} of {H†
NHN} be uniformly bounded. In combination with the normalization condition

that (1/N)Tr(ΛN ) → λ̄ as N → ∞, uniformly bounded spectral radii ensure that the

number of nonzero eigenvalues available in ΛN over which to “spread” difference vectors

goes to infinity as N →∞, allowing the limiting result of the theorem. Note that a growing
number of nonzero eigenvalues implies that Q, the number of rows in HN , must grow with

N .

Proof: The pairwise probability of error is given by

Pr(xN → yN |HNΥN ) = Q
(√

‖HNΥN∆N‖2
4σ2N

)
= Q



√
∆†

NΥ
†
NH

†
NHNΥN∆N

4σ2N


 .

(2.7)

Since the eigenvalue decomposition of H†
NHN is VNΛNV

†
N ,

Pr(xN → yN |HNΥN ) = Q


√
∆†

NΥ
†
NVNΛNV

†
NΥN∆N

4σ2N


 . (2.8)

Given that VN is unitary and that ΥN is an independent, isotropically distributed unitary

matrix, it follows from Appendix A that the product V†
NΥN∆N is an isotropically dis-

tributed vector of norm ‖∆N‖. Such vectors have the same distribution as (zN/
√
z†NzN )‖∆N‖,

where zN is a N -dimensional vector of independent CN (0, 1) random variables. Thus
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∆†
NΥ

†
NVNΛNV

†
NΥN∆N has the same distribution as

1
N z

†
NΛNzN
1
N z

†
NzN

‖∆N‖2. (2.9)

To evaluate the limit of (2.9) when N →∞, we rely on the following lemmas.

Lemma 2.1 ([5]) Let zN denote a Gaussian vector with independent, identically dis-

tributed (i.i.d.) zero-mean, unit-variance, complex elements, and let ΦN be a deterministic

N ×N diagonal matrix. Then,

E[|z†NΦNzN − Tr(ΦN )|4] ≤ K · Tr2(ΦNΦ
†
N ), (2.10)

where K is a constant that does not depend on ΦN or N .

If the eigenvalues of H†
NHN are bounded by some constant η, then Tr2(ΛNΛ

†
N ) ≤ η4N2,

so that from Lemma 2.1 we have that

E

[∣∣∣∣ 1N z†NΛNzN − 1
N
Tr(ΛN )

∣∣∣∣4
]
≤ Kη4

N2
. (2.11)

We therefore have the following lemma.

Lemma 2.2 ([24]) Let {ΦN} be a sequence of diagonal matrices such that 1
N Tr(ΦN )→

φ̄ as N →∞ and the spectral radius of {ΦN} is uniformly bounded. Then, with {zN} denot-

ing a sequence of Gaussian vectors with i.i.d., zero-mean, unit-variance complex elements,

we have that (1/N)z†NΦNzN
a.s.−→λ̄ as N →∞.

Proof: From Markov’s inequality and Lemma 2.1,

Pr
(∣∣∣∣ 1N z†NΦNzN − 1

N
Tr(ΦN )

∣∣∣∣ > ε

)
≤

E

[∣∣∣ 1N z†NΦNzN − 1
NTr(ΦN )

∣∣∣4]
ε4

≤ C

N2
, (2.12)

for some constant C that does not depend on ΦN or N . Therefore,

∞∑
N=1

Pr
(∣∣∣∣ 1N z†NΦNzN − 1

N
Tr(ΦN )

∣∣∣∣ > ε

)
<∞, (2.13)

and from the first Borel-Cantelli lemma [25], 1
N z

†
NΦNzN

a.s.−→φ̄. �
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Applying Lemma 2.2 to the numerator of (2.9) and the strong law of large numbers to

the denominator gives

Pr(xN → yN |HNΥN )
a.s.−→Q

(√
λ̄ lim
P→∞

‖∆N‖2
4σ2N

)
. (2.14)

�

We have defined a class of transmitter precoders for large N that are drawn from a

random unitary ensemble. In practice, one chooses a particular precoder from the random

ensemble which may be used for many transmissions and perhaps for changing channel

conditions. When N is large, we can see from the proof of the theorem that with high

probability, the selected precoder spreads any difference vector evenly over all modes of

virtually any channel. Hence, the name we give this kind of transmitter precoding is mode-

interleaved precoding. Mode-interleaved precoding does not change the unequal modes of

the interference channel and does not require knowledge of the channel at the transmitter.

Yet under mild conditions, the resulting effective channel has properties which make the

pairwise error probability asymptotically the same as for an AWGN channel at the same

SNR.

Figure 2.4 shows simulated plots of the pairwise error probability averaged over the

ensemble of isotropically distributed unitary precoders,

EzN


Q


√√√√z†NΛNzN/N

z†NzN/N
α2




 , (2.15)

as a function of α2 = ‖∆N‖2/4σ2N for the case in which half of the N eigenvalues of

H†H have the value 0.5 and the other half have the value 1.5. For a fixed value of

α2 = ‖∆N‖2/4σ2N , the plot shows that the average pairwise error probability over this
class of interference channels approaches the pairwise error probability of the corresponding

interference-free channel as N →∞.
Theorem 2.1 shows that with a unitary precoding matrix Υ selected from the ensemble

of independent, isotropically distributed unitary matrices, the ability at the receiver to select

the more likely of two vectors is not hindered by a transformation by the matrix H. What

the theorem does not show, however, is whether the total probability of ML detection error

given that x is transmitted, Pr(error|x), is asymptotically made worse by the transformation
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Figure 2.4: Average pairwise error probability as a function of α2 = ‖∆N‖2/4σ2N when
half of the eigenvalues of H†H are 0.5 and half are 1.5, and the eigenvector matrix is an
independent and isotropically distributed unitary matrix.

by the matrix H when precoding is present. For fixed N , we can lower bound Pr(error|xN )
using the pairwise error probability between xN and the minimum distance vector yN :

Pr(error|xN ) ≥ max
yN

Pr(xN → yN |HNΥN ). (2.16)

From Theorem 2.1, we know that as N → ∞ this lower bound converges to the pairwise

error probability of the corresponding AWGN channel, provided that the conditions of the

theorem are satisfied. For fixed N , we can also obtain an upper bound by applying the

union bound:

Pr(error|xN ) ≤
∑

yN �=xN

Pr(xN → yN |HNΥN ). (2.17)

If the rate per dimension is kept constant as N grows, then the number of signal vec-

tors in the constellation grows exponentially in N . It is not clear whether the limit

z†NΛNzN/z†NzN
a.s.−→λ̄ converges fast enough so that the summation of an exponentially

growing number of terms in (2.17) approaches the corresponding error probability on an

AWGN channel. It is also not clear if it is sufficient to consider only the terms corresponding
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to minimum-distance vectors, the so-called “union-bound estimate.” We do know, however,

that simulations in Chapter 3 show that the symbol-error rate for ML detection of uncoded

symbols asymptotically reaches the AWGN channel bound with mode-interleaved precoding

at high SNR. In the case of ML detection of coded vectors with mode-interleaved precod-

ing, we know at least that the probability of ML detection error for an interference channel

cannot approach that for the corresponding AWGN channel when transmitting at a rate

higher than the mutual information of the interference channel but lower than the capacity

of the AWGN channel. We speculate that at high SNR, the probability of ML detection

error for an interference channel may be able to approach that for the corresponding AWGN

channel at rates up to, say, the cut-off rate for the interference channel, but at this point

any formal statements are premature without further analysis.

There are some special cases in which using an isotropically distributed unitary precoder

is redundant. The proof of the Theorem 2.1 depends on the fact that the cascadeV†Υ of the

right singular matrix V and the independent, isotropically distributed unitary precoder Υ

is also an isotropically distributed unitary matrix independent of the modes. This property

of V†Υ ensures that any difference vector is spread across all modes, preventing it from

encountering only a few small modes. However, we sometimes deal with systems with a

large H matrix whose right singular vector matrix V can be modelled as independent and

isotropically distributed. In such cases, the addition of a precoder at the transmitter is

unnecessary. For example, i.i.d. Gaussian matrices, which are often used to model rich-

scattering multiple-input multiple-output (MIMO) channels and CDMA systems, have this

property, as shown by the following theorem.

Theorem 2.2 Let H be a Q × N matrix whose elements are i.i.d. Gaussian, and let

VΛV† be the eigenvalue decomposition of the associated Wishart matrix H†H. Then V is

an isotropically distributed unitary matrix independent of Λ.

This theorem holds for H matrices of any dimension, not just when N and Q grow to

infinity. Although this result can be found in the statistical literature (see, for example,

[49]), we provide a straightforward proof.

Proof: Let Ψ be an independent, isotropically distributed unitary matrix. By premul-
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tiplying and postmultiplying H†H by Ψ and Ψ† respectively, we have that

(HΨ†)†(HΨ†) = (ΨV)Λ(ΨV)†. (2.18)

Let us examine the left-hand side of (2.18). Since the elements of H are i.i.d. Gaussian,

H is an isotropically distributed matrix. WithH being isotropically distributed andΨ being

a unitary matrix, HΨ† has the same distribution as H, and consequently (HΨ†)†(HΨ†)

has the same distribution as H†H.

We now focus on the right-hand side of (2.18). Note that ΨV is a unitary matrix and Λ

is a diagonal matrix, so the right-hand side of (2.18) is an eigenvalue decomposition. Now,

since Ψ is an isotropically distributed unitary matrix and V is unitary, the matrix ΨV is

also an isotropically distributed unitary matrix. Furthermore, ΨV and Λ are independent

sinceΨ is independent of Λ. Thus we conclude thatV is an isotropically distributed unitary

matrix independent of Λ. �

In this i.i.d. Gaussian case and others in which the right singular matrix V can be mod-

elled as an independent, isotropically distributed unitary matrix, mode-interleaved precod-

ing is redundant and thus unnecessary.

2.1.2 Small H Matrices

Theorem 2.1 suggests a precoding strategy only for large channel matrices, not small ones.

However, when the dimensions Q and N of H are relatively small, a reasonable strategy is

to effectively transform the small system into a large system with new dimensions Q′ and

N ′, and then to apply the precoding strategy already established for large matrices.

We can convert a small channel matrix into a large channel matrix by aggregating

consecutive channels uses into one big channel use. The channel matrix may be constant

during these consecutive channel uses (e.g. block fading), or the channel matrix may vary

from use to use (e.g. fast fading). In this section, for notational convenience we assume the

channel is constant, but these techniques are easily extendable to varying channel matrices.

Suppose we wish to aggregate four consecutive uses of a 2 × 3 channel. The resulting
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matrix equation is


 r0 r2 r4 r6

r1 r3 r5 r7




︸ ︷︷ ︸
R

=


 h11 h12 h13

h21 h22 h23




︸ ︷︷ ︸
H




x0 x3 x6 x9

x1 x4 x7 x10

x2 x5 x8 x11




︸ ︷︷ ︸
X

+


 w0 w2 w4 w6

w1 w3 w5 w7




︸ ︷︷ ︸
W

.

(2.19)

A simple way to create a large channel matrix is to “stack” channel uses so that within

the large matrix, each use of the matrix H is shifted N components to the right and Q

components down from the previous one. The resulting matrix equation is




r0

r1

r2

r3
...

r6

r7




=




h11 h12 h13

h21 h22 h23

h11 h12 h13

h21 h22 h23
. . .

h11 h12 h13

h21 h22 h23







x0

x1

x2

x3

x4

x5
...

x9

x10

x11




+




w0

w1

w2

w3

...

w6

w7




,

(2.20)

where the new channel matrix is a 4Q×4N matrix. Once the large, block diagonal effective

channel matrix has been created, mode-interleaved precoding can be used to randomly

rotate the effective transmit vector at the transmitter.

Although users in the uplink scenario of a CDMA system cannot cooperate to implement

mode-interleaved precoding, when Q and N are relatively small the CDMA system can

still be transformed into a large system with N ′ = τN effective users and i.i.d. Gaussian

signature sequences of effective length Q′ = τQ. In conventional CDMA systems, each user

modulates a single data symbol onto a signature sequence each symbol period and continues

to modulate different data symbols onto the same signature sequence for subsequent symbol

periods. In our proposed random “multiple-signature” CDMA system, each user modulates

τ data symbols onto τ i.i.d. Gaussian signature sequences during a symbol period and
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continues to modulate the same τ data symbols during τ − 1 subsequent symbol periods,
but with different i.i.d. Gaussian signature sequences. The received vector during the ith

symbol period is thus

ri =
τ−1∑
k=0

Hikxk (2.21)

where each of the τ xk’s is an N × 1 vector containing one data symbol for each of the N

users, andHik is the correspondingQ×N matrix of signatures scaled by channel amplitudes.

For each k, there is a new set of data symbols and a new set of signatures. Stacking up τ

consecutive received vectors, we get




r0

r1

r2
...

rτ−1



=




H00 H01 H02 . . . H0,τ−1

H10 H11 H12 H1,τ−1

H20 H21 H22 H2,τ−1
...

. . .
...

Hτ−1,0 Hτ−1,1 Hτ−1,2 . . . Hτ−1,τ−1







x0

x1

x2
...

xτ−1



+




w0

w1

w2

...

wτ−1




. (2.22)

The effective channel matrix is thus i.i.d. Gaussian (assuming the CDMA system employs

power control), and according to Theorem 2.2 mode-interleaved precoding is redundant and

thus unnecessary at the transmitter.

In short, no matter the size of the given channel matrix, mode-interleaved precoding

uses a large matrix drawn independently from the ensemble of isotropically distributed

unitary matrices in order to condition the channel so that the pairwise error probability at

the receiver is asymptotically the same as for an AWGN channel.

2.1.3 Properties of the Effective Channel

To give some further intuition as to why the new effective channel asymptotically leads to

the same pairwise error probability as the corresponding AWGN channel, let us compare

the properties ofΥ†
NH

†
NHNΥN withH†

NHN andG†
NGN , whereGN is the AWGN channel

of equal SNR, GN = 1√
N
‖HN‖F IN .

Using the fact that the Frobenius norm is unitarily invariant, the matrix G†
NGN corre-
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sponding to AWGN channel can be expressed as

G†
NGN =

1
N
‖HN‖2F IN

=
1
N
‖ΣN‖2F IN

=
1
N
Tr(ΛN )IN . (2.23)

Thus, under the assumption that (1/N)Tr(ΛN )→ λ̄ for the sequence of interference chan-

nels, the diagonal components of G†
NGN approach λ̄ and the off diagonal components are

equal to zero.

In the matrix H†
NHN , the components have no particular structure other than a Her-

mitian constraint:

H†
NHN =




α00 α01 · · · α0,N−1

α∗
01 α11 · · · α1,N−1
...

. . .
...

α∗
0,N−1 α∗

1,N−1 . . . αN−1,N−1


 . (2.24)

Specifically, some of the diagonal components αii can be much smaller than λ̄, and some of

the off-diagonal components αij can be quite significant.

Using the unitary invariance of the Frobenius norm, we have that

‖Υ†
NH

†
NHNΥN‖F = ‖H†

NHN‖F . (2.25)

Thus, the sums of the squared components of each matrix are equal, but the components

are distributed differently in each matrix. The matrix Υ†
NH

†
NHNΥN can be written as

Υ†
NH

†
NHNΥN =




ω00 ω01 · · · ω0,N−1

ω∗
01 ω11 · · · ω1,N−1
...

. . .
...

ω∗
0,N−1 ω∗

1,N−1 . . . ωN−1,N−1


 . (2.26)

Since Υ†
NH

†
NHNΥN = Υ†

NVNΛNV
†
NΥN and each column of V†

NΥN is marginally an

isotropically distributed unit vector, we know that each diagonal component ofΥ†
NH

†
NHNΥN
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has the same marginal distribution as

1
N z

†
NΛNzN
1
N z

†
NzN

, (2.27)

where zN is a N -dimensional vector of independent CN (0, 1) random variables. Then, un-

der the assumptions that (1/N)Tr(ΛN )→ λ̄ and the spectral radius of {ΛN} is uniformly
bounded, we can apply Lemma 2.2 to the numerator of (2.27) and the strong law of large

numbers to the denominator to show that each diagonal component approaches λ̄ with prob-

ability 1, i.e., ωii
a.s.−→λ̄. We can also do a similar analysis for the off-diagonal components of

Υ†
NH

†
NHNΥN to show that each off-diagonal component approaches zero with probabil-

ity 1. Since each off-diagonal component involves two distinct columns of the isotropically

distributed unitary matrix V†
NΥN , it follows that any two distinct eigenvectors have a

joint distribution identical to that obtained by Gram-Schmidt orthogonalizing two inde-

pendent Gaussian vectors. Specifically, if yN and zN are two independent N -dimensional

vectors of independent CN (0, 1) random variables, then one column of V†
NΥN has the same

distribution as zN/
√
z†NzN and the other has the same distribution as

yN −
(

z†NyN√
z†NzN

)
· zN√

z†NzN√√√√(yN −
(

z†NyN√
z†NzN

)
· zN√

z†NzN

)†(
yN −

(
z†NyN√
z†NzN

)
· zN√

z†NzN

) , (2.28)

which can be simplified to

yN −
(

z†NyN

z†NzN

)
zN√

y†
NyN −

|z†NyN |2
z†NzN

. (2.29)

Thus each off-diagonal component of Υ†
NH

†
NHNΥN = Υ†

NVNΛNV
†
NΥN has the same

distribution as

1
N z

†
NΛN

(
yN −

(
z†NyN

z†NzN

)
zN

)
√

1
N z

†
NzN

√
1
N

(
y†
NyN −

|z†NyN |2
z†NzN

) =

1
N z

†
NΛNyN − 1

N z
†
NΛNzN

(
z†NyN

z†NzN

)
√

1
N z

†
NzN

√
1
N y

†
NyN −

1
N
|z†NyN |2
1
N

z†NzN

. (2.30)

To evaluate the limit of (2.30) when N →∞, we rely on the following lemmas.
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Lemma 2.3 ([24]) Let yN and zN denote independent Gaussian vectors with i.i.d.,

zero mean, unit variance, complex elements, and let ΦN be a deterministic N ×N diagonal

matrix. Then,

E[|z†NΦNyN |4] ≤ KTr2(ΦNΦ
†
N ), (2.31)

where K is a constant that does not depend on ΦN or N .

If the eigenvalues of H†
NHN are bounded by some constant γ, then Tr2(ΛNΛ

†
N ) ≤ γ4N2,

so that from Lemma 2.3 we have that

E

[∣∣∣∣ 1N z†NΛNyN

∣∣∣∣4
]
≤ Kγ4

N2
. (2.32)

We therefore have the following lemma.

Lemma 2.4 ([24]) Let {ΦN} be a sequence of diagonal matrices such that the spectral

radius of {ΦN} is uniformly bounded. Then, with {yN} and {zN} denoting two independent

sequences of Gaussian vectors with i.i.d., zero mean, unit variance complex elements, we

have that (1/N)z†NΦNyN
a.s.−→0 as N →∞.

Proof: From Markov’s inequality and Lemma 2.3,

Pr
(∣∣∣∣ 1N z†NΦNyN

∣∣∣∣ > ε

)
≤

E

[∣∣∣ 1N z†NΦNyN
∣∣∣4]

ε4
≤ C

N2
, (2.33)

for some constant C that does not depend on ΦN or N . Therefore,

∞∑
N=1

Pr
(∣∣∣∣ 1N z†NΦNyN

∣∣∣∣ > ε

)
<∞, (2.34)

and from the first Borel-Cantelli lemma [25], 1
N z

†
NΦNyN

a.s.−→0. �

Then, under the assumptions that (1/N)Tr(ΛN ) → λ̄ and the spectral radius of {ΛN} is
uniformly bounded, we can apply Lemmas 2.2 and 2.4 to (2.30) and conclude that each

off-diagonal component approaches zero with probability 1, i.e., αij
a.s.−→0.

In summary, the effect of the mode-interleaved precoder Υ is to take the interference

components ofH†
NHN and redistribute the same amount of interference so thatΥ†H†

NHNΥ

approaches G†G for the AWGN channel in a componentwise manner. In particular, large

off-diagonal interference components in H†
NHN are spread over the other components so
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Figure 2.5: ISI channel model with a cyclic prefix.

that the energy becomes more benign. We emphasize that ‖Υ†H†
NHNΥ‖F = ‖H†

NHN‖F ,
which means that interference is not eliminated by mode-interleaved precoding, but rather

spread out more evenly amongst all the matrix components.

2.2 Frequency-Interleaved Precoding

If we interpret the ISI channel as the matrix equation (1.5), then we may use a mode-

interleaved precoder Υ at the transmitter to randomly rotate the data sequence. However,

the effective channel matrix HΥ would no longer be Toeplitz, and any low-complexity

detection methods at the receiver that take advantage of the Toeplitz structure of the

channel would no longer be useful. In this section, we resolve this issue by restricting the

class of random unitary precoders so that the effective channel matrix remains Toeplitz.

The first step in defining an appropriate restricted class of unitary matrices is to slightly

modify the ISI model of Fig. 1.4 by transmitting the last L − 1 symbols in data sequence
before the entire sequence of length N is sent, where L greater than or equal to the length of

the channel impulse response. This redundancy, depicted in Fig. 2.5, is commonly referred

to as a cyclic prefix. Thus, if the original matrix equation for a two-tap ISI channel is




r[0]

r[1]

r[2]

r[3]




︸ ︷︷ ︸
r

=




h[0] 0 0 0

h[1] h[0] 0 0

0 h[1] h[0] 0

0 0 h[1] h[0]




︸ ︷︷ ︸
H




x[0]

x[1]

x[2]

x[3]




︸ ︷︷ ︸
x

+




w[0]

w[1]

w[2]

w[3]


 ,

︸ ︷︷ ︸
w

(2.35)
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then with a cyclic prefix the resulting matrix equation is




r[0]

r[1]

r[2]

r[3]




︸ ︷︷ ︸
r

=




h[0] 0 0 h[1]

h[1] h[0] 0 0

0 h[1] h[0] 0

0 0 h[1] h[0]




︸ ︷︷ ︸
H̃




x[0]

x[1]

x[2]

x[3]




︸ ︷︷ ︸
x

+




w[0]

w[1]

w[2]

w[3]


 .

︸ ︷︷ ︸
w

(2.36)

In addition to being Toeplitz, the modified channel matrix H̃ is now also circulant, so the ISI

channel model now uses a circular convolution as opposed to a linear convolution. A useful

property of circulant matrices that we shall exploit is that the eigenvalues of a circulant

matrix are exactly the discrete Fourier transform (DFT) coefficients of the first column of

the matrix, and the eigenvector matrix is the DFT matrix. This makes H̃ decomposable as

H̃ = F†Λ1/2F (2.37)

where F is the DFT matrix and Λ1/2 �
= diag(H[0], H[1], H[2], H[3]).

We constrain Υ to belong to the subset of all unitary matrices that can be expressed as

Υ = F†PF where P is a permutation matrix, defined as a square matrix containing exactly

a single one in each row and column and zeros elsewhere. A precoder is chosen from this

restricted set with all permutation matrices P being equally likely, which means that all

unitary matrices in the set are equally likely.

Figure 2.6 shows the entire precoded system. At the transmitter, the data sequence

is processed by a DFT, a random permutation, and an inverse DFT. A cyclic prefix is

appended, and the resulting sequence is sent through the ISI channel. At the receiver front

end, the cyclic prefix is removed and the remaining sequence is processed by a DFT, the

inverse of the permutation, and an inverse DFT. Note that the operations performed at

the receiver front end are the inverse operations of the transmitter in reverse order. It is

important to emphasize that the transmitter has no information about the channel impulse

response other than an upper bound L on its length. However, the transmitter and receiver

must agree on which random permutation to use a priori. Using (2.37), the received vector
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r[n]

x[n]

r[N−1]R[N−1]

w[n]

h[n]
rp[n] xp[n]

R[1]

...

R[0]

r[1]

...

r[0]

Rp[1]

...

Rp[0]

Rp[N−1]

rp[N−L+1]

...

Xp[N−1]

...

Xp[1]

Xp[0]

X[N−1]

P

P/S

S/P

IDFT

IDFTDFT

DFT P/S

S/P

x[N−1]

...

x[1]

x[0]

P−1

rp[N−1]

...

rp[1]

rp[N−1]
rp[0]

xp[N−L+1]

xp[N−1]

...

xp[1]

xp[N−1]

...

xp[0]

...

X[1]

X[0]

Figure 2.6: Frequency-interleaved precoded system.

is

r = (F†P−1F)(F†Λ1/2F)(F†PF)x+ (F†P−1F)w (2.38)

= F†(P−1Λ1/2P)Fx+wp,

where wp has the same statistics as w because F†P−1F is a unitary matrix. The effective

channel matrix H̃p
�
= F†(P−1Λ1/2P)F has F as its eigenvector matrix, so H̃p is circulant.

Furthermore, since the eigenvalue matrix of H̃p is P−1Λ1/2P, the DFT of the effective ISI

channel is the randomly permuted DFT of the original channel. Hence, we give this kind of

precoding the name frequency-interleaved precoding. So the effect of this restricted class of

unitary precoders is to shuffle the modes of H†H so that their order is independent of the

modal (DFT) matrix. Since these precoders preserve the Toeplitz structure of the channel
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matrix (provided there is a cyclic prefix), low-complexity detectors that exploit the Toeplitz

structure can be used at the receiver.

We can alternatively view the effect of frequency-interleaved precoding in the time and

DFT domains. At the transmitter in Fig. 2.6, a sequence of N data symbols x[n] is in-

terleaved in the frequency domain, so that the time sequence xp[n] corresponding to the

N -point DFT Xp[k] is obtained, where Xp[k]
�
= X[p(k)], p(·) is a random permutation of

the set S = {0, 1, 2, . . . , N − 1}, and X[k] is the DFT of x[n]. Appended to the time se-

quence is a cyclic prefix of length L− 1. The resulting signal xp[n] is transmitted over the
ISI channel. The symbols xp[n] are corrupted by a convolution with the impulse response

of the channel, h[n], and by additive noise, w[n], to produce the received symbols

rp[n] =
∑
m

h[m]xp[n−m] + w[n]. (2.39)

At the receiver front end, the cyclic prefix is removed from the sequence rp[n], and the

remaining sequence is deinterleaved in the frequency domain, so that the N -point DFT

R[k] is obtained. The relationship between R[k] and X[k] is then

R[k] = Hp−1 [k]X[k] +Wp−1 [k], (2.40)

where Hp−1 [k]
�
= H[p−1(k)] and Wp−1 [k]

�
= W [p−1(k)], p−1(·) is the inverse permutation of

p(·), and H[k] and W [k] are the DFTs of h[n] and w[n] respectively. Note that the use of a

cyclic prefix causes X[k] to be pointwise multiplied by Hp−1 [k], corresponding to a circular

convolution in the time domain. We again come to the conclusion that frequency-interleaved

precoding shuffles the DFT coefficients of the original channel.

For general mode-interleaved precoding, Theorem 2.1 states that the pairwise error prob-

ability of any two transmit vectors over an interference channel is asymptotically the same

as over the corresponding AWGN channel. However, for frequency-interleaved precoding a

similar result can be shown only for most, not all, pairs of transmit vectors. The transmit

pairs for which the result is not true have error vectors whose DFTs contains many zeros.

Such error vectors cannot be spread across the different frequencies, and may lead to indis-

tinguishable transmit vectors at the receiver. This problem is due to the use of a restricted

subset of mode-interleaved precoders defined using DFT matrices. Nevertheless, we shall
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see in Section 3.2 that in practice, such error events seem rare and do not have a noticeable

impact on overall performance.

Note that this class of precoders are defined using DFTs, they can be implemented

using fast Fourier transforms (FFTs) with the low complexity of N logN rather than N3

for general rotations. This observation also motivates the use of this restricted subset as

a low-complexity alternative to isotropically distributed unitary matrices even for general

channel matrices that do not have Toeplitz structure.

2.2.1 Properties of the Effective Channel

As was similarly done for mode-interleaved precoding in Section 2.1.3, we now compare the

properties of H̃†
pH̃p with the corresponding H†H for frequency-interleaved precoding.

The original channel matrix associated with a two-tap unit-energy channel impulse

response is of the form

H =




h[0] 0 0 . . . 0

h[1] h[0] 0 0

0 h[1]
. . . 0

...
. . . h[0]

...

0 0 . . . h[1] h[0]




. (2.41)

The cascade of the channel matrix with its matched filter is thus the tridiagonal matrix

H†H =




1 α 0 . . . 0

α∗ 1 α 0

0 α∗ . . . . . .
...

...
. . . 1 α

0 0 . . . α∗ 1




(2.42)

where α = h[0]h∗[1]. As N increases, the constants on the two non-zero off-diagonals do

not change.
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In contrast, the effective channel matrix has the form

H̃p =




hp−1 [0] hp−1 [N−1] hp−1 [N−2] . . . hp−1 [1]

hp−1 [1] hp−1 [0] hp−1 [N−1] hp−1 [2]

hp−1 [2] hp−1 [1]
. . . hp−1 [3]

...
. . . hp−1 [0]

...

hp−1 [N−1] hp−1 [N−2] . . . hp−1 [1] hp−1 [0]




(2.43)

where the effective channel impulse response can be expressed as

hp−1 [n] =
1
N

N−1∑
k=0

Hp−1 [k]ej
2πk
N

n =
1
N

N−1∑
k=0

H[k]ej
2πp(k)

N
n (2.44)

for 0 ≤ n ≤ N − 1. The second-order statistics of hp−1 [n] are given by

E[hp−1 [n]] =
1
N

N−1∑
k=0

H[k]E
[
ej

2πp(k)
N

n
]

=

(
1
N

N−1∑
k=0

H[k]

)
δ[n] (2.45)

= h[0]δ[n]

and

E[hp−1 [n]h∗
p−1 [m]] =

1
N2

N−1∑
k=0

N−1∑
i=0

H[k]H∗[i]E
[
e

2π
N
(p(k)n−p(i)m)

]

=




|h[0]|2 n = m = 0
1

N−1
∑N−1

i=1 |h[i]|2 n = m 	= 0

0 otherwise

(2.46)

where the expectation is with respect to all permutations. Thus, the coefficients of the

resulting effective channel hp−1 [n] are uncorrelated, with the energy in all but the zeroth

tap of the channel impulse response statistically spread out evenly. Using the second-order

statistics along with tools similar to those developed in Appendix B, the cascade of a filter
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matched to the frequency-interleaved precoded ISI channel can be shown to have the form

H̃†
pH̃p =




1 ε1 ε2 . . . εN−1

ε∗1 1 ε1 εN−2

ε∗2 ε∗1
. . . . . .

...
...

. . . 1 ε1

ε∗N−1 ε∗N−2 . . . ε∗1 1




(2.47)

where E[εi = 0] and limN→∞ var(εi) = 0. It is important to note that the Frobenius norms

(sum of the off-diagonal energies) of both H†H and H̃†
pH̃p are always equal for the same

N . In other words, large off-diagonal components in H∗H are spread out more evenly by

frequency-interleaved precoding and thus made more benign.

2.3 Detection for Mode- and Frequency-Interleaved Precoded

Systems

Mode- and frequency-interleaved precoding can potentially be used in conjunction with any

detection scheme, and in this section we examine some of the possibilities.

ML detection by brute force methods can deal arbitrary channels, but with a data

vector of length N , the complexity is exponential in N , making ML detection generally

intractable. For ISI channels, maximum-likelihood sequence detection (MLSD) can usually

be efficiently implemented using the Viterbi algorithm (linear in the data vector length

and exponential in the channel impulse response length), but the Viterbi algorithm would

need to be modified somehow to account for the circular rather than linear convolution

of the effective channel. Even if the circular convolution could be taken into account, the

length of the effective channel would be equal to the length N of the data sequence, and

the complexity would still be exponential in N . Because of this extreme complexity, we

have not attempted simulations of mode-interleaved precoding with ML detection. Rather,

we will show in the next chapter that such a system would theoretically achieve AWGN

channel performance.

Suboptimal detection schemes such as linear detection can still be used. In the ISI

case, the filters can be easily modified to deal with a channel corresponding to a circular

convolution by simply implementing the filters in the DFT domain. Essentially, the input
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signal to the filter is transformed to the DFT domain and then multiplied by the DFT

of the filter to generate the DFT of the output signal. However, mode- and frequency-

interleaved precoding do not change the mean-square error (MSE) for either ZF or MMSE

linear detection. The MSE for ZF linear detection is

εZF−LE =
1
N
Tr
(N0Λ−1

N

)
, (2.48)

and that for MMSE linear detection is

εMMSE−LE =
1
N
Tr
(
N0

(N0

Es I+ΛN

)
)−1
)

. (2.49)

Mode and frequency interleaving leave the set of eigenvalues of H†H unchanged, so (2.48)

and (2.49) remain unchanged.

While decision-feedback detectors are hard to analyze in the general case, we can gain

some insight regarding their effectiveness by examining decision-feedback equalizers in the

ISI case. The feedforward filter of a decision-feedback equalizer can also be implemented

in the DFT domain to deal with the circular convolution of the effective channel, but the

situation for the feedback filter is not so straightforward. Processing in the DFT domain

requires the entire input block to be available before any output information is determined,

but part of the feedback filter output is required while the input to the feedback filter

is still arriving sequentially. While some additional modification to the decision-feedback

equalizer may make it compatible with frequency-interleaved precoding, there may not be

any motivation to do so. Like the MSE of its linear equalization counterparts, the MSE

of the ZF-DFE and the MMSE-DFE remain unchanged with frequency interleaving. From

the MSE expressions

εZF−DFE = exp

{
1
N

N−1∑
k=0

ln
N0

|H[k]|2
}

(2.50)

and

εMMSE−DFE = exp

{
1
N

N−1∑
k=0

ln
N0

N0/Es + |H[k]|2
}

, (2.51)

it is clear that frequency interleaving has no effect on the MSE.
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Chapter 3

The Iterated-Decision Detector

In this chapter, we introduce iterated-decision detection, which is designed to exploit

the kind of large-system randomness created by mode-interleaved precoding. The iterated-

decision detector uses the large-system randomness to make convenient Gaussian assump-

tions (central limit theorem) and to predict certain key parameters (law of large numbers).

Figure 3.1 shows that the iterated-decision detector achieves the AWGN channel bound for

uncoded transmission at high SNR when mode-interleaved precoding is used. By implica-

tion, ML detection in combination with precoding must also achieve the AWGN channel

bound, since ML detection is asymptotically optimal in a symbol-error rate sense. There-

fore, for uncoded transmission, mode-interleaved precoding simultaneously ensures that ML

detection achieves the AWGN channel bound when given virtually any channel, and that

iterated-decision detection provides an excellent approximation in a symbol-error rate sense

to ML detection at high SNR.

In Sections 3.1 and 3.2, we focus on the basic theory and fundamental limits of the

iterated-decision detector for uncoded systems in which the receiver has accurate knowl-

edge of H. Specifically, in Section 3.1 we describe the structure of the iterated-decision

detector and optimize to maximize the signal-to-interference+noise ratio (SINR), taking

into account the reliability of tentative decisions. We also present an asymptotic perfor-

mance analysis of the iterated-decision detector when a mode-interleaved precoder is used

at the transmitter. The analysis shows that the AWGN channel bound can be reached

for uncoded transmission over a wide range of practical channels, and the validity of these

theoretical results are verified by simulations. Section 3.2 is the corresponding section for

the special case of iterated-decision equalization for ISI channels. Because of the special

Toeplitz structure of the ISI channel matrix, iterated-decision equalization can be imple-

65



0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR/bit (dB)

P
ro

ba
bi

lit
y 

of
 B

it 
E

rr
or

← MMSE Decision
     Feedback Detector

Iterated−Decision Detector
With Mode−Interleaved Precoding →

           ↑
ML Detection

Linear MMSE
    Detector
          ↓

Multistage Detector
               ↓

AWGN Channel Bound →

Figure 3.1: Bit-error probability of various detection schemes as a function of SNR for the
interference channel of (2.1). Except for the iterated-decision detector, the various detectors
are not used in conjunction with mode-interleaved precoding. Since the iterated-decision
detector with mode-interleaved precoding achieves the AWGN channel bound at high SNR,
we can infer that ML detection with mode-interleaved precoding (not pictured) would also
achieve the AWGN channel bound.

mented with lower complexity. In Section 3.3, we describe adaptive implementations of

both iterated-decision detection and iterated-decision equalization in which H is not known

a priori at the receiver. Examining the fixed and adaptive scenarios separately and compar-

ing their results allows us to isolate the effects of tracking H from overall detector behavior.

It turns out that only a modest amount of training symbols is required at high SNR for the

adaptive detector to perform as if H were known exactly at the receiver. We reemphasize

that in all these cases, we restrict our attention to transmitters that have no knowledge ofH.

3.1 Iterated-Decision Detection

Iterated-decision detectors are structurally related to the multistage detectors [64, 32] dis-

cussed in Section 1.3.4, in that they both generate tentative decisions for all symbols at each

iteration and subsequently use these to cancel interference at the next iteration. However,

unlike the multistage detector in Fig. 1.15, the iterated-decision detectors explored in this
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chapter are optimized to maximize the signal-to-interference+noise ratio (SINR) at each it-

eration while explicitly taking into account the reliability of tentative decisions. With each

successive iteration, increasingly refined hard decisions are generated using this strategy,

with no limit cycles or divergence.

3.1.1 Structure

The structure of the iterated-decision detector is depicted in Fig. 3.2. The parameters of

all systems and signals associated with the lth pass are denoted using the superscript l. On

the lth pass of the equalizer where l = 1, 2, 3, . . ., the received vector r is first premultiplied

by a N ×Q matrix Bl† = [bl1| · · · |blN ]†, producing the N × 1 vector

r̃l = Bl†r. (3.1)

The matrix Bl is constrained such that r̃l is an unbiased estimate of x, which means

that bl
†
i hi = 1 for i = 1, 2, . . . , N . Next, an appropriately constructed estimate ẑl of the

interference is constructed, where

ẑl = Dl† x̂l−1, (3.2)

with Dl = [dl1| · · · |dlN ] being a N ×N matrix. (In subsequent analysis, we will show that

x̂0 is never required for the first iteration, so the vector may remain undefined.) Since ẑl is

intended to be some kind of interference estimate, we restrict attention to the case in which

the diagonal of Dl is zero:

(Dl)11 = (Dl)22 = · · · = (Dl)NN = 0. (3.3)

H

w

x

ChannelTransmitter

r

Iterated-Decision Detector

Bl† x̃l

Dl†

x̂l

x̂l−1ẑl

r̃l

Figure 3.2: Iterated-decision detection.
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The estimate ẑl is subtracted from r̃l, i.e.,

x̃l = r̃l − ẑl, (3.4)

and a bank of slicers then generates the N × 1 vector of hard decisions x̂l from x̃l using a

symbol-wise minimum-distance rule.

3.1.2 Characterizing the Slicer Input

The composite system consisting of H in cascade with l iterations of the multipass detector

can be conveniently characterized when H is known at the receiver. Let x and x̂l−1 be vec-

tors of zero-mean uncorrelated symbols with energy Es, and let their normalized correlation
matrix be expressed in the form

E[x · x̂l−1† ]
Es = ρl−1 �

= diag{ρl−11 , ρl−12 , . . . , ρl−1N }, (3.5)

where ρl−1i can be interpreted as a measure of the reliability of x̂l−1i . Moreover, let Dl

satisfy the natural requirement (3.3). Then, the slicer input x̃li defined via (3.4) with (3.1),

(3.2) and (1.1) satisfies, for i = 1, 2, . . . , N ,

x̃li = xi + uli (3.6)

where uli is complex-valued, zero-mean, and uncorrelated with xi, having variance

var uli = N0bl
†
i b

l
i + Es

(
dli − ρl−1

†
(bl

†
i H− e†i )

†
)† (

dli − ρl−1
†
(bl

†
i H− e†i )

†
)

+Es(bl†i H− e†i )(I− ρl−1ρl−1
†
)(bl

†
i H− e†i )

†, (3.7)

with I being the identity matrix, and ei being the N × 1 column vector that is zero except
for the ith element, which is unity.

The variance in (3.7) is determined as follows. First, we write

uli = bl
†
i w + c̃l

†
i x− dl

†
i x̂

l−1 (3.8)

68



with

c̃li = cli − ei (3.9)

and

cl
†
i = bl

†
i H. (3.10)

We obtain the mean of uli as

E[uli] = bl
†
i E[w] + c̃l

†
i E[x]− dl

†
i E[x̂l−1] = 0. (3.11)

Since w is statistically independent of x and can be assumed to be independent of x̂l−1i ,

var uli = N0bl
†
i b

l
i + Es(dl

†
i d

l
i − c̃l

†
i ρl−1dli − dl

†
i ρl−1

†
c̃li + c̃l

†
i c̃

l
i)

= N0bl
†
i b

l
i + Es

(
dli − ρl−1

†
c̃li
)† (

dli − ρl−1
†
c̃li
)
+ Esc̃l†i (I− ρl−1ρl−1

†
)c̃li (3.12)

which, using (3.9) and (3.10), yields (3.7).

The second-order model of (3.6) and (3.7) turns out to be a useful one for analyzing

and optimizing the performance of the iterated-decision detector. Using (3.6), the signal-

to-interference+noise ratio (SINR) at the ith slicer input during each pass can be written

as

γli(b
l
i,d

l
i) =

Es
var uli

. (3.13)

Since the detector uses a symbol-by-symbol decision device, a natural detector design strat-

egy involves maximizing the SINR of the ith data symbol over all bli and dli.

3.1.3 Filter Optimization

For a given filter bli, it is straightforward to find the optimal filter d
l
i. In particular, note

that dli appears only in a non-negative denominator term of the SINR expression given by

(3.13) and (3.7), and that term can be made exactly zero by setting

dli = ρl−1
†
(bl

†
i H− e†i )

† for i = 1, 2, . . . , N (3.14)

or, equivalently,

Dl = ρl−1
† (

Bl†H− I
)†

. (3.15)
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Using (3.14), the SINR expression in (3.13) now simplifies to

γli(b
l
i) =

Es
N0bl

†
i b

l
i + Es(bl†i H− e†i )(I− ρl−1ρl−1†)(bl†i H− e†i )†

. (3.16)

This result for dli is intuitively satisfying. If x̂
l−1 = x so that ρl−1 = I, then the inner

product Dl† x̂l−1 exactly reproduces the interference component of r̃l. More generally, ρl−1

describes our confidence in the quality of the estimate x̂l−1. If x̂l−1 is a poor estimate of x,

then ρl−1 will in turn be close to zero, and consequently a smaller weighting is applied to

the interference estimate that is to be subtracted from r̃l. On the other hand, if x̂l−1 is an

excellent estimate of x, then ρl−1 ≈ I, and nearly all of the interference is subtracted from

r̃l. Note that the diagonal of Dl is indeed zero, as stipulated by (3.3).

Next, we optimize the vector bli. The identity

(bl
†
i H− e†i )(I− ρl−1ρl−1

†
)(bl

†
i H− e†i )

†

= (bl
†
i H)(I− ρl−1ρl−1

†
)(bl

†
i H)

† − (1− (ρl−1i )2) (3.17)

can be used to rewrite (3.16) as

γli(b
l
i) =

1
1

φl
i(b

l
i)
− (1− (ρl−1i )2)

, (3.18)

where

φli(b
l
i) =

Es
bl†i [N0I+ EsH(I− ρl−1ρl−1†)H†]bli

. (3.19)

Using the constraint that r̃l be an unbiased estimate of x, followed by the Schwarz inequality,

we have1

1 = |bl†i hi|2

=
∣∣∣bl†i [N0I+ EsH(I− ρl−1ρl−1

†
)H†]1/2

×[N0I+ EsH(I− ρl−1ρl−1
†
)H†]−1/2hi

∣∣∣2
≤ bl

†
i [N0I+ EsH(I− ρl−1ρl−1

†
)H†]bli

×h†
i [N0I+ EsH(I− ρl−1ρl−1

†
)H†]−1hi (3.20)

1J1/2, a square root matrix of the positive semidefinite matrix J, satisfies J = J1/2†J1/2.
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with equality if and only if

bli ∝ [N0I+ EsH(I− ρl−1ρl−1
†
)H†]−1hi for i = 1, 2, . . . , N. (3.21)

Substituting (3.20) into (3.19), we see that (3.21) maximizes (3.19) and, in turn, (3.18). To

ensure that bl
†
i hi = 1, we choose the constant of proportionality to be

µli =
1

h†
i [N0I+ EsH(I− ρl−1ρl−1†)H†]−1hi

. (3.22)

Thus, we may write 2

Bl = [N0I+ EsH(I− ρl−1ρl−1
†
)H†]−1H diag

{
µl1, µ

l
2, . . . , µ

l
N

}
. (3.23)

Some comments can be made about the special case when l = 1. During the first pass,

feedback is not used because ρ0 = 0, so the vector x̂0 does not need to be defined. Moreover,

the filter B1 takes the form

B1 ∝ [N0I+ EsHH†]−1H diag
{
µl1, µ

l
2, . . . , µ

l
N

}
, (3.24)

which is an expression for the unbiased linear MMSE detector. Thus the performance of

the iterated-decision detector, after just one iteration, is identical to the performance of

the linear MMSE detector. At the end of this section, we show that the iterated-decision

detector, when using multiple iterations, performs significantly better than the linear MMSE

detector.

The iterated-decision detector also has an interesting relationship with another detector.

If ρl−1 is set to I, then the matrices (3.23) and (3.15) for the iterated-decision detector

become the matrices used for the multistage detector [64]. In other words, the iterated-

decision detector explicitly takes into account the reliability of tentative decisions, while the

2Using the special case of the matrix inversion lemma

Y(I + XY)−1 = (I + YX)−1Y,

we may alternatively write

Bl ∝ H[N0I + Es(I − ρl−1ρl−1†)H†H]−1 diag
{

µl
1, µ

l
2, . . . , µ

l
N

}
,

which may be easier to evaluate depending on the relative sizes of N and Q.
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multistage detector assumes that all tentative decisions are correct. As we will see at the end

of this section, this difference is the reason that the decisions of the former asymptotically

converge to the optimum ones, while the decisions of the latter often diverge.

We now proceed to simplify the SINR expression that characterizes the resulting per-

formance for the ith user. With the optimum bli and dli, we have, substituting (3.20) into

(3.19),

φli = Esh†
i [N0I+ EsH(I− ρl−1ρl−1

†
)H†]−1hi. (3.25)

After some algebraic manipulation, the SINR from (3.18), with (3.25), then becomes

γli =
(

1
([I+αl]−1)ii

− 1
)
· 1
1− (ρl−1i )2

(3.26)

where

αl =
Es(I−ρl−1ρl−1

†
)H†H

N0
. (3.27)

3.1.4 Computing the Correlation Coefficient ρ

If x̃li is treated as the output of an additive white Gaussian noise (AWGN) channel with

input xi, then we have the following convenient iterative algorithm for computing the set of

correlation matrices ρl, and in turn predicting the sequence of symbol error probabilities:

1. Set ρ0i = 0 for i = 1, 2, . . . , N and let l = 1.

2. Compute the SINR γli for i = 1, 2, . . . , N at the slicer input on the lth decoding pass

from ρl−1 via (3.26) and (3.27).

3. Approximate the symbol error probability Pr(εli) at the slicer output from γli for

i = 1, 2, . . . , N using the appropriate high-SNR formula for the symbol error rate of a

symbol-by-symbol threshold detector for AWGN channels [51]. For M -PSK,

Pr(εli) ≈ 2Q
(
sin
( π

M

)√
2γli

)
, (3.28)

where Q(·) is defined in (2.5). For square M -QAM,

Pr(εli) ≈ 1−

1− 2(1− 1√

M

)
Q


√

3γli
M−1




2

. (3.29)
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4. Approximate ρli from Pr(εli) for i = 1, 2, . . . , N . For M -PSK [7]

ρli ≈ 1− 2 sin2
( π

M

)
Pr(εli), (3.30)

and for square M -QAM

ρli ≈ 1− 3
M − 1 Pr(ε

l
i). (3.31)

Both (3.30) and (3.31) can be expressed as

ρli ≈ 1− d2min
2Es Pr(ε

l
i), (3.32)

where dmin is the minimum distance between constellation points.3

5. Increment l and go to step 2.

3.1.5 Asymptotic Performance with Mode-Interleaved Precoding

The iterated-decision detector, when used with the mode-interleaved precoding of Chapter 2,

has some attractive properties. The following theorem characterizes the composite system

consisting of the cascade of a mode-interleaved precoderΥ, the channelH, and the iterated-

decision detector after l iterations.

Theorem 3.1 Let {HN} for N = 1, 2, 3, . . . be a sequence of Q×N channel matrices,

where the eigenvalue matrices {ΛN} of {H†
NHN} satisfy

K l
N

�
=

1
N

Tr

((
IN +

1
ξl
ΛN

)−1)
→ K l (3.33)

as N →∞, where
1
ξl

�
=
(1− (ρl−1)2)

ζ
(3.34)

with the received SNR 1/ζ defined in (1.6). Let {ΥN} be a sequence of unitary matrices

drawn from statistically independent, isotropically distributed random ensembles, used as

the corresponding mode-interleaved precoders. Let {xN} and {x̂l−1N } for N = 1, 2, 3, . . . be

two sequences of zero-mean uncorrelated symbols with energy Es, where N denotes the vector

dimension; and let the normalized correlation matrix of the two vectors be expressed in the
3In the special case of QPSK (4-PSK), it can be shown that the algorithm can be streamlined by elimi-

nating Step 3 and replacing the approximation (3.32) with the exact formula ρl
i = 1 − 2Q

(√
γl

i

)
.
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form
E[xN · x̂l−1†N ]

Es = ρl−1 �
= ρl−1I. (3.35)

Finally, let {Bl
N} and {Dl

N} be the matrices given in (3.23) and (3.15). From (3.6), the

corresponding slicer input can be expressed as

x̃lN = xN + ulN , (3.36)

where ulN is complex-valued, zero-mean, and uncorrelated with xN . Then, as N →∞, ulN

converges in distribution to a marginally Gaussian white noise vector, with each component

having variance

var uli
a.s.−→Es(1− (ρl−1)2)

(
1

1−K l
− 1
)

. (3.37)

Furthermore,

γli
a.s.−→
(
1
K l
− 1
)
· 1
1−(ρl−1)2 . (3.38)

Proof: Let us begin by considering µli as defined by (3.22), with HNΥN being the

effective channel. The eigenvector matrix ofΥ†
NH

†
N [N0IN+Es(1−(ρl−1)2)HNH

†
N ]

−1HNΥN

is V†
NΥN where VN is the right singular matrix of H, and the eigenvalue matrix is

1
Es(1− (ρl−1)2) ·

1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1
. (3.39)

Given that the eigenvector matrix V†
NΥN is an independent, isotropically distributed uni-

tary matrix, it follows that any eigenvector is an isotropically distributed unit vector. Such

vectors have the same distribution as zN/
√
z†NzN , where zN is a N -dimensional vector of

independent CN (0, 1) random variables. Thus µli has the same distribution as




1
Es(1− (ρl−1)2) ·

1
N z

†
N

[
1
ξlΛN

(
IN + 1

ξlΛN

)−1]
zN

1
N z

†
NzN


 . (3.40)

Since the spectral radius of the matrices
{

1
ξlΛN

(
IN + 1

ξlΛN

)−1}
is less than unity and

1
N
Tr

(
1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1)
= 1− 1

N
Tr

((
IN +

1
ξl
ΛN

)−1)
, (3.41)
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we can apply Lemma 2.2 to the numerator of (3.40) and the strong law of large numbers to

the denominator, giving

µli
a.s.−→Es(1− (ρ

l−1)2)
1−K l

. (3.42)

Next, let us consider any component uli as defined in (3.8). We obtain the mean and

variance, respectively, of uli given HNΥN as

E[uli|HNΥN ] = 0 (3.43)

and

E[uliu
l∗
i |HNΥN ] = N0bl

†
i b

l
i + Es(1− (ρl−1)2)c̃l

†
i c̃

l
i. (3.44)

From (3.23) with HNΥN being the effective channel, the eigenvector matrix of

N0 diag−1
{
µl1, µ

l
2, . . . , µ

l
N

}
Bl†
NB

l
N diag−1

{
µl1, µ

l
2, . . . , µ

l
N

}
(3.45)

is V†
NΥN , and the eigenvalue matrix is

1
Es(1− (ρl−1)2) ·

1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−2
. (3.46)

Similarly, from (3.9), (3.10), and (3.23) with HNΥN being the effective channel, the eigen-

vector matrix of

Es(1− (ρl−1)2) diag−1
{
µl1, µ

l
2, . . . , µ

l
N

}
C̃l†
NC̃

l
N diag−1

{
µl1, µ

l
2, . . . , µ

l
N

}
(3.47)

is V†
NΥN , and the eigenvalue matrix is

1
Es(1− (ρl−1)2)

[
1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1
− 1

N
Tr

(
1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1)
IN

]2
. (3.48)

Given that the eigenvector matrix V†
NΥN is an independent, isotropically distributed uni-

tary matrix, it follows that any eigenvector is an isotropically distributed unit vector. Such

vectors have the same distribution as zN/
√
z†NzN , where zN is a N -dimensional vector of

independent CN (0, 1) random variables. Thus E[uliu
l∗
i |HNΥN ] has the same distribution
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as
|µli|2

Es(1− (ρl−1)2) ·
1
N z

†
NGNzN
1
N z

†
NzN

(3.49)

where

GN
�
=

1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−2

+

[
1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1
− 1

N
Tr

(
1
ξl
ΛN

(
IN +

1
ξl
ΛN

)−1)
IN

]2

=
(
IN +

1
ξl
ΛN

)−1
−
(
IN +

1
ξl
ΛN

)−2

+

[
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)
IN −

(
IN +

1
ξl
ΛN

)−1]2

=
(
IN +

1
ξl
ΛN

)−1
+

[
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)
IN

]2

−2 · 1
N
Tr

((
IN +

1
ξl
ΛN

)−1)(
IN +

1
ξl
ΛN

)−1
. (3.50)

Since the spectral radius of the matrices
{(

IN + 1
ξlΛN

)−1}
is less than unity, we have that

the spectral radius of {GN} is less than 2. Furthermore, the average of the eigenvalues of
GN is

1
N
Tr(GN ) =

1
N
Tr

((
IN +

1
ξl
ΛN

)−1)
+

[
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)]2

−2
[
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)]2

=
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)
−
[
1
N
Tr

((
IN +

1
ξl
ΛN

)−1)]2
. (3.51)

Thus, we can apply Lemma 2.2 and (3.42) to the numerator of (3.49) and the strong law of

large numbers to the denominator, giving

E[uliu
l∗
i |HNΥN ]

a.s.−→Es(1− (ρl−1)2)
(

1
1−K l

− 1
)

. (3.52)

76



The limit of (3.13) is thus

γli
a.s.−→
(
1
K l
− 1
)
· 1
(1− (ρl−1)2) . (3.53)

The covariance of uli and ulj for any i 	= j given HNΥN is

E[uliu
l∗
j |HNΥN ] = N0bl

†
i b

l
j + Es(1− (ρl−1)2)c̃l

†
i c̃

l
j . (3.54)

Given that the eigenvector matrix of

diag−1
{
µl1, µ

l
2, . . . , µ

l
N

}(
N0Bl†

NB
l
N + Es(1− (ρl−1)2)C̃l†

NC̃
l
N

)
diag−1

{
µl1, µ

l
2, . . . , µ

l
N

}
(3.55)

is the independent, isotropically distributed unitary matrix V†
NΥN , it follows that any two

distinct eigenvectors have a joint distribution identical to that obtained by Gram-Schmidt

orthogonalizing two independent Gaussian vectors. Specifically, if yN and zN are two

independent N -dimensional vectors of independent CN (0, 1) random variables, then one

eigenvector of V†
NΥN has the same distribution as zN/

√
z†NzN and the other has the same

distribution as (2.29). Thus E[uliu
l∗
j |HNΥN ] has the same distribution as

µl
∗
i µlj

Es(1− (ρl−1)2) ·
1
N z

†
NGN

(
yN −

(
z†NyN

z†NzN

)
zN

)
√

1
N z

†
NzN

√
1
N

(
y†
NyN −

|z†NyN |2
z†NzN

)

=
µl

∗
i µlj

Es(1− (ρl−1)2) ·
1
N z

†
NGNyN − 1

N z
†
NGNzN

(
z†NyN

z†NzN

)
√

1
N z

†
NzN

√
1
N y

†
NyN −

1
N
|z†NyN |2
1
N

z†NzN

. (3.56)

Applying Lemmas 2.2 and 2.4 to (3.56), we conclude that

E[uliu
l∗
j |HNΥN ]

a.s.−→0. (3.57)

�

Unlike Theorem 2.1, there is no explicit requirement here that Q must go to infinity

with N . However, if Q does not go to infinity, then there are only a finite number of nonzero

eigenvalues, in which case K l
N → 1 and γli

a.s.−→0.
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The assumption in (3.35) that ρl−1 is a scaled identity matrix is valid for l = 1, 2, 3, . . .

for the following reason. For l = 1, ρ0 = 0, which is consistent with (3.35). Since the com-

ponents of the effective noise vector u1N are marginally Gaussian, have the same asymptotic

variance, and are asymptotically uncorrelated, ρ1 must asymptotically have the form ρ1I.

The same argument can be repeated for l = 2, 3, . . ..

Note that in Step 2 of the iterative algorithm for determining ρl, the SINRs γli are now

equal and can be alternatively computed for large N from ρl−1 via (3.38), (3.33), (3.34),

and (1.6). Moreover, the whiteness of ulN strongly suggests that treating x̃li as if it were

the output of an AWGN channel with input xi in Step 3 is a good approximation.

We can obtain a corollary for the special case in which the components ofH are mutually

independent, zero-mean, complex-valued, circularly symmetric Gaussian random variables

with variance 1/Q, i.e., H is an i.i.d. Gaussian matrix. (In CDMA systems this case cor-

responds to the use of random signatures, accurate power control, and normalized channel

gains, while for multiple antenna systems this case corresponds to a rich scattering environ-

ment.) As shown in Theorem 2.2, such an H matrix has an isotropically distributed right

singular vector matrix, which makes additional mode-interleaved precoding at the trans-

mitter unnecessary. The following corollary characterizes the composite system consisting

of this special H in cascade with the iterated-decision detector after l iterations.

Corollary 3.1 Let {HN} be a sequence of Q×N matrices whose components are mutu-

ally independent, zero-mean, complex-valued, circularly symmetric Gaussian random vari-

ables with variance 1/Q. Then, as N → ∞ with β
�
= N/Q converging to a constant, each

component of ulN has variance

var uli
a.s.−→Es(1− (ρl−1)2)


 1

ξl

4βF
(
1
ξl , β
) − 1


 (3.58)

and

γli
a.s.−→

 1

1− ξl

4βF
(
1
ξl , β
) − 1


· 1

1−(ρl−1)2 (3.59)

where

F(y, z) �
=
(√

y(1 +
√

z)2 + 1−
√

y(1−√z)2 + 1
)2

. (3.60)

Proof: The proof requires the following lemma.
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Lemma 3.1 ([6]) Let {HN} be a sequence of Q×N matrices whose elements are in-

dependent CN (0, 1/Q). If β = N/Q converges to a constant, then the percentage of the N

eigenvalues of H†
NHN that lie below x converges to the cumulative distribution function of

the probability density function

fβ(x) = [1− β−1]+δ(x) +

√
[x− η1]+[η2 − x]+

2πβx
(3.61)

where

η1 = (1−
√

β)2 (3.62)

η2 = (1 +
√

β)2, (3.63)

and the operator [·]+ is defined according to

[u]+
�
= max{0, u}. (3.64)

Using Lemma 3.1, we have that [34]

K l = lim
N→∞

K l
N

= lim
N→∞

1
N
Tr

((
IN +

1
ξl
ΛN

)−1)

=
∫ ∞

0

(
1

1 + λ/ξl

)
fβ(λ)dt

= 1− ξl

4β
F
(
1
ξl

, β

)
(3.65)

where F(·, ·) is given by (3.60). Substituting (3.65) into (3.37) and (3.38) we obtain the
desired result. �

We now present some results for the iterated-decision detector when the channel is a

Q × N H matrix whose components are i.i.d. Gaussian with variance 1/Q. Note that the

insights we gain are also applicable to other channels as long as iterated-decision detection

and mode-interleaved precoding are used.

From Steps 2 and 3 of the algorithm to compute ρ in Section 3.1.4, we see that Pr(εl)

can be expressed as
Pr(εl) = G(ζ, β, ρl−1), (3.66)
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where G(·, ·, ·) is a monotonically decreasing function in both SNR 1/ζ and correlation ρl−1,

but a monotonically increasing function in β. The monotonicity of G(·, ·, ·) is illustrated in
Fig. 3.3 where the successively lower solid curves plot G(ζ, β, ρ) as a function of 1/(1−ρ) for

various values of β, with an SNR per bit of 7 dB. Meanwhile, from Step 4 of the algorithm,

we see that we can also express Pr(εl) as

Pr(εl) = H(ρl), (3.67)

where H(·) is a monotonically decreasing function of ρl. The dashed line in Fig. 3.3 plots
H(ρ) as a function of 1/(1− ρ).

At a given 1/ζ and β, the sequence of error probabilities Pr(εl) and correlation coeffi-

cients ρl can be obtained by starting at the left end of the solid curve (corresponding to

ρ0 = 0) and then successively moving horizontally to the right from the solid curve to the

dashed line, and then moving downward from the dashed line to the solid curve. Each

“step” of the resulting descending staircase corresponds to one pass of the iterated-decision

detector. In Fig. 3.3, the sequence of operating points is indicated on the solid curves with
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Figure 3.3: Iterated-decision detector performance for i.i.d. Gaussian H. The solid curves
plot QPSK symbol error rate as a function of the correlation coefficient ρ for various
β = N/Q values, with an SNR per bit of 7 dB. Along each curve, ◦’s identify the the-
oretically predicted decreasing error rates achieved with l = 1, 2, . . . decoding passes, and
the intersections with the dashed line are the steady-state values (l →∞).
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the ◦ symbols. That the sequence of error probabilities Pr(ε1),Pr(ε2), . . . obtained by the
recursive algorithm is monotonically decreasing suggests that additional iterations always

improve performance. The error rate performance for a given SNR of 1/ζ and a given β

eventually converges to a steady-state value of Pr(ε∞), which is the unique solution to the

equation

Pr(ε∞) = G(ζ, β,H−1(Pr(ε∞))), (3.68)

corresponding to the intersection of the dashed line and the appropriate solid curve in

Fig. 3.3.

The convergence properties of the iterative detector are closely related to the value of

β and warrant further investigation. If β is relatively small, Fig. 3.3 suggests that steady-

state performance is approximately achieved with comparatively few iterations, after which

additional iterations provide only negligibly small gains in performance. This observation

can also be readily made from Fig. 3.4, where bit-error rate is plotted as a function of

SNR per bit for 1, 2, 3, 5, and an infinite number of iterations, with β = N/Q = 0.77. It is

significant that, for small β, few passes are required to converge to typical target bit-error

rates, since the amount of computation is directly proportional to the number of passes
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Figure 3.4: Theoretical iterated-decision detector performance for i.i.d. Gaussian H, as a
function of SNR per bit. The solid curves depict the QPSK bit-error rate with β = N/Q =
0.77 as a function of SNR per bit for 1, 2, 3, 5, and ∞ decoding iterations.
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required; we emphasize that the complexity of a single pass of the iterated-decision detector

is comparable to that of a decision-feedback detector or a linear detector. As β increases,

Fig. 3.3 shows that the gap between the solid curve and the dashed curve decreases. Thus

the “steps” of the descending staircase get smaller, and there is a significant increase in the

number of iterations required to approximately achieve steady-state performance. Moreover,

the probability of error at steady-state becomes slightly larger at the same SNR. When β is

greater than some SNR-dependent threshold, not only can (3.68) have multiple solutions,

but one of the solutions occurs at a high probability of error, as illustrated by the curve

in Fig. 3.3 corresponding to β = 4. The dependence of the threshold on SNR is shown

in Fig. 3.5. As the SNR increases, the β threshold increases, and the bit-error rate curve

becomes much sharper at the threshold. Our experiments show that in the high SNR regime

the threshold for QPSK is near β ≈ e. In general, the threshold is also dependent on the

signal constellation used.

We can gain some insight into this thresholding effect by studying the high-SNR (ζ → 0)

limit of (3.38) for fixed ρ. For a particular eigenvalue matrix ΛN of H†
NHN , let R be the

number of nonzero eigenvalues of ΛN , and let R/N → 1/κ as N → ∞. (Note from (3.61)

that 1−R/N ≥ [1− 1/β]+.) Then the SINR expression in (3.38) with (3.33) becomes

γ =

(
1

limN→∞ 1
N

∑N
k=1

1
1+λk/ξ

− 1
)
· 1
1− ρ2

=

(
1(

1− 1
κ

)
+ limN→∞ 1

N

∑R
k=1

1
1+λk/ξ

− 1
)
· 1
1− ρ2

=

(
1
κ − limN→∞ 1

N

∑R
k=1

1
1+λk/ξ(

1− 1
κ

)
+ limN→∞ 1

N

∑R
k=1

1
1+λk/ξ

)
· 1
1− ρ2

. (3.69)

In the limit as ζ → 0 with ρ fixed, we have from (3.34) that ξ → 0. Thus

lim
ζ→0

γ =
1
κ

1− 1
κ

· 1
1− ρ2

=
1

κ− 1 ·
1

1− ρ2
. (3.70)

Since this limit is approached from below, it is a convenient upper bound on γ for any ζ,

corresponding to lower bounds on Pr(ε). This bound, which we call the zero-modes bound,

is illustrated in Fig. 3.6 for a channel with κ = 1.641 and all nonzero eigenvalues equal to κ.

The solid curve corresponds to (3.38) and is indeed lower-bounded by the zero-modes bound.
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For channels with larger values of κ, the bound and the dashed line intersect, leading to

the thresholding phenomenon. Since the dashed line is a function of the signal constellation

used, the threshold is in turn dependent on the signal constellation. An intriguing open

issue is whether these thresholds are a phenomenon specific to the iterative detector, or

rather a fundamental limit of detection in general.

We can also determine another upper bound on γ by taking the limit of (3.38) as ρ→ 1

for fixed ζ. The SINR expression in (3.38) with (3.33) can be rewritten as

γ =

(
1

limN→∞ 1
N

∑N
k=1

1
1+λk/ξ

− 1
)
· 1
1− ρ2

=

(
1− limN→∞ 1

N

∑N
k=1

1
1+λk/ξ

limN→∞ 1
N

∑N
k=1

1
1+λk/ξ

)
· 1
1− ρ2

=

(
limN→∞ 1

N

∑N
k=1

λk
ξ+λk

limN→∞ 1
N

∑N
k=1

1
ξ+λk

)
· 1
ζ
, (3.71)

where we have used (3.34). As ρ→ 1 with ζ fixed, we have from (3.34) that ξ →∞. Thus,

lim
ρ→1

γ =

(
limN→∞ 1

N

∑N
k=1 λk

limN→∞ 1
N

∑N
k=1 1

)
1
ζ
=
1
ζ
. (3.72)

Thus (3.72) is another upper bound on γ, corresponding to a lower bound on Pr(ε). In fact,

this bound is the AWGN channel bound, and is illustrated in Fig. 3.6.

We now examine the conditions under which the iterated-decision detector with mode-

interleaved precoding can achieve AWGN channel performance. First, from Fig. 3.6, we

observe that a necessary condition for the AWGN channel bound to be achieved is that the

zero-mode bound lie completely below the dashed line. This is the case for virtually all

practical channels, for which κ ≈ 1. Second, the convergence in (3.72) must occur for small

enough values of 1/(1 − ρ) so that γ∞ ≈ 1/ζ; i.e., convergence of the solid curve to the

AWGN channel bound in Fig. 3.6 must occur to the left of the dashed line. This is indeed

the case at high SNR, as we now show. Since the spectral radius of {ΛN} is bounded, there
exists a universal ξ∗ such that

γ =

(
limN→∞ 1

N

∑N
k=1

λk
ξ+λk

limN→∞ 1
N

∑N
k=1

1
ξ+λk

)
· 1
ζ
≥ (1− ε)

1
ζ

(3.73)
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for all ζ. At a given ζ, the value of ρ corresponding to ξ∗ is

ρ∗ =

√
1− ζ

ξ∗
≈ 1− ζ

2ξ∗
, (3.74)

and thus the value of 1/(1− ρ) such that γ ≥ (1− ε)1/ζ is

1
1− ρ∗

∝ 1
ζ
. (3.75)

Next, looking at (3.32) and (3.28)–(3.29) with the value γ = 1/ζ, we see that the value of

1/(1− ρ) at which the dashed line intersects the AWGN channel bound is

1
1− ρ

∝ exp
(
1
ζ

)
(3.76)

where we have used the approximation Q(v) ∝ exp(−v2/2). As ζ → 0, (3.75) becomes less

than (3.76), so the AWGN channel bound is achieved at high SNR.

We now compare the performance of the iterated-decision detector to other detectors for

i.i.d. Gaussian H. In Fig. 3.7, the theoretical (Q→∞) and simulated (Q = 128) bit-error

rates of various detectors are plotted as a function of SNR with β = 1. The iterated-

decision detector significantly outperforms the other detectors at moderate to high SNR,

and asymptotically approaches the AWGN channel bound. Next, in Fig. 3.8, the effect of

β on the theoretical (Q→∞) and simulated (Q = 128) bit-error rates is compared for the

various detectors4 when H is i.i.d. Gaussian with Q = 128 at an SNR per bit of 10 dB. The

iterated-decision detector has clearly superior performance when β � 1.5.

Finally, we plot in Fig. 3.9 the performance of the 2 × 2 channel in (2.1) when the

iterated-decision detector is used in conjunction with mode interleaving. Mode-interleaved

precoding is applied to a block diagonal matrix that consists of 64 channel uses stacked

as in (2.20). The iterated-decision detector with precoding outperforms the ML detector

without precoding, and even achieves the AWGN channel bound at high SNR. Although

ML detection is too complex to implement in the precoded case, we can infer that the ML

performance curve must lie between the performance curve for the iterated-decision detector

with precoding and the AWGN channel bound. Note that the iterated-decision detector

4The theoretical large system performance of the decorrelator for the case β > 1 is derived in [22], where
the decorrelator is defined as the Moore-Penrose generalized inverse [35] of H.
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without mode-interleaved precoding performs rather poorly, since the small system does

not lend itself to Gaussian approximations for the effective noise at the slicer input.

3.2 Iterated-Decision Equalization

In the Toeplitz case, the optimal matrices given by (3.23) and (3.15) can be considerably

simplified when the length L of the channel impulse response h[n] is much smaller than

the block length N of x[n] (N is also the dimensions of the H matrix), which is typically

the case. The columns of H are essentially shifted versions of the channel impulse response

h[n], and so the corresponding columns of the optimal Bl matrix in (3.23) are also similarly

shifted versions of each other, with the scaling factor µli in (3.22) equal to a constant µl for

all i. With Bl and H both Toeplitz, Dl in (3.15) also is a Toeplitz matrix. The SINR γli at

the slicer input is equal for all transmitted symbols, and so a reasonable assumption, then,
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Figure 3.10: Iterated-decision equalizer.

is that the normalized correlation matrix of x and x̂l−1 is of the form

ρl−1 =
E[x · x̂l−1† ]

Es = ρl−1I. (3.77)

With Bl and Dl both Toeplitz, the iterated-decision detector can be implemented using

linear time-invariant filters (convolutions) as opposed to linear time-varying filters (matrix-

vector multiplications). We call this special version of the detector the iterated-decision

equalizer.

The detailed structure of the iterated-decision equalizer is depicted in Fig. 3.10. On the

lth pass of the equalizer, the received data r[n] is first processed by a linear filter bl[n] with

frequency response

Bl(ω) =
µlH∗(ω)

N0 + Es(1− (ρl−1)2)|H(ω)|2 (3.78)

with scale factor

µl =
1

1
2π

∫ π
−π

|H(ω)|2
N0+Es(1−(ρl−1)2)|H(ω)|2dω

, (3.79)

producing the sequence

r̃l[n] =
∑
k

bl[n− k]r[k]. (3.80)

Next, an estimate ẑl[n] of the ISI constructed, where

ẑl[n] =
∑
k

dl[n− k]x̂l−1[k] (3.81)

with

Dl(ω) = ρl−1
(
Bl(ω)H(ω)− 1

)
. (3.82)
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While the strictly causal feedback filter of the DFE subtracts out only postcursor ISI, the

noncausal nature of the filter dl[n] allows the iterated-decision equalizer to cancel both

precursor and postcursor ISI. Also, since ẑl[n] is intended to be an ISI estimate, it makes

sense that dl[0] = 0. The estimate ẑl[n] is subtracted from r̃l[n], i.e.,

x̃l[n] = r̃l[n]− ẑl[n]. (3.83)

The slicer input x̃l[n] defined via (3.83) satisfies, for each n,

x̃l[n] = x[n] + ul[n] (3.84)

where

ul[n] = bl[n] ∗ w[n] + c̃l[n] ∗ x[n]− dl[n] ∗ x̂l−1[n] (3.85)

is complex-valued and zero-mean, having variance

var ul[n] = Es(1− (ρl−1)2)
(

1
1−K l

− 1
)

(3.86)

where

K l =
1
2π

∫ π

−π
1

1 + |H(ω)|2/ξl dω (3.87)

with ξl given by (3.34). The resulting SINR is

γl =
(
1
K l
− 1
)
· 1
1− (ρl−1)2 . (3.88)

The slicer generates the hard decisions x̂l[n] from x̃l[n] using a symbol-wise minimum-

distance rule. Note that Step 2 of the iterative algorithm in Section 3.1.4 now uses (3.88).

Using the fact that the eigenvalues of a square ISI matrixH correspond to DFT samples

H[k] of the frequency response H(ω) and the eigenvector matrix corresponds to a discrete

Fourier transform (DFT) matrix, the iterated-decision equalizer can be alternatively imple-

mented in the DFT domain as illustrated in Fig. 3.11. The optimal filters are

Bl[k] =
µlH∗[k]

N0 + Es(1− (ρl−1)2)|H[k]|2 (3.89)

Dl[k] = ρl−1
(
Bl[k]H[k]− 1

)
(3.90)
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R̃[N−1]

R[1]

R[0]

...

Figure 3.11: Iterated-decision equalizer implemented in the DFT domain.

where

µl =
1

1
N

∑N−1
k=0

|H[k]|2
N0+Es(1−(ρl−1)2)|H[k]|2

. (3.91)

The iterative algorithm for determining the sequence of ρl remains the same as in Sec-

tion 3.1.4, except that γl is now computed in Step 2 from ρl−1 via (3.88) with

K l ≈ 1
N

N−1∑
k=0

1
1 + |H[k]|2/ξl . (3.92)

When implemented in the DFT domain, iterated-decision equalization for a block length

N has a complexity that is proportional to N logN for a given channel and SNR. More-

over, the complexity does not depend directly on the constellation size. By contrast, the

Viterbi algorithm which implements MLSD has complexity NML, where M is the signal

constellation size and L is the length of the channel. The actual savings can be dramatic

in practice on typical channels. For example, when N = 256, M = 4, and L = 5, and we

perform 10 iterations of the iterated-decision equalizer (which is typically more iterations

than needed), the iterated-decision equalizer is roughly an order of magnitude less com-

plex than the Viterbi algorithm with the same parameters. The difference is even more

dramatic with larger signal constellations. When M is increased to 64, the complexity of

the iterated-decision equalizer remains unchanged, but the Viterbi algorithm becomes an
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additional 6 orders of magnitude more complex.

The use of frequency-interleaved precoding does not increase the complexity of the

system from N logN . In fact, as we show in the next section, such precoding allows the

iterated-decision equalizer to perform asymptotically as well as the Viterbi algorithm for

uncoded systems.

3.2.1 Asymptotic Performance with Frequency-Interleaved Precoding

In Section 2.2.1, it was shown that with frequency-interleaved precoding, the coefficients of

the resulting effective channel hp−1 [n] are uncorrelated. In light of this fact, it is reasonable

to expect that the effective noise process at the slicer input becomes white in the limit as

N → ∞. This is indeed the case as described by the following theorem, whose proof is in
Appendix B.

Theorem 3.2 Let xN [n] and x̂l−1N [n] for n = 0, 1, 2, . . . , N−1 be two sequences of zero-

mean uncorrelated symbols with energy Es; and let the normalized correlation between the

two sequences be expressed in the form

E[x∗
N [n] · x̂l−1N [k]]

Es = ρl−1δ[n− k]. (3.93)

Let {xN [n]} and {x̂l−1N [n]} for N = 1, 2, 3, . . . be two sets of such sequences. Let the frequency

interleaver FN (·) be defined as

FN

(
2πk
N

+ θ

)
=
2πpN (k)

N
+ θ (3.94)

where pN (·) is a permutation of the set SN = {0, 1, 2, . . . , N−1}, k ∈ SN , and θ ∈ [0, 2π/N).
Let {FN (·)} for N = 1, 2, 3, . . . be a sequence of frequency interleavers with all permutations

in SN being equally likely, and let {F−1
N (·)} be the corresponding inverse frequency inter-

leavers. Let the physical channel h[n] and the frequency-interleaved channels {hF−1
N
[n]}

have frequency responses of H(ω) and {HF−1
N
(ω)

�
= H(F−1

N (ω))} respectively, and let H(ω)

be continuous almost everywhere on [−π, π]. Finally, let {Bl
F−1

N

(ω)
�
= Bl(F−1

N (ω))} and

{Dl
F−1

N

(ω)
�
= Dl(F−1

N (ω))} be the frequency-interleaved versions of the filters given in (3.78)

and (3.82). From (3.84), the slicer input can be expressed, for each n, as

x̃lN [n] = xN [n] + ulN [n] (3.95)
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where ulN [n] is complex-valued and zero-mean. Then, as N →∞, for a frequency-interleaved

precoded system ulN [n] converges in distribution to a marginally Gaussian white noise se-

quence that is uncorrelated with the entire sequence xN [n].

Thus, treating the cascade of the frequency-interleaved channel with the equalizer as an

AWGN channel in Step 3 of the iterative algorithm for determining ρl is reasonably well

justified. Note also that (L − 1)/N → 0 as N → ∞, so the overhead for the cyclic prefix
becomes negligible.

As increasingly aggressive data rates are pursued in wideband systems to meet esca-

lating traffic requirements, ISI becomes increasingly severe. We thus consider a corollary

to Theorem 3.2 for the special case of severe-ISI channels. For the purposes of analysis, a

convenient severe-ISI channel model5 we will exploit is one in which h[n] is a finite impulse

response (FIR) filter of length L, where L is large and the taps are mutually independent,

zero-mean, complex-valued, circularly symmetric Gaussian random variables with variance

1/L, independent of the data x[n] and the noise w[n].

When L→∞, the channel frequency response denoted by

H(ω) =
L−1∑
n=0

h[n]e−jωn (3.96)

has the property that the channel frequency response at different frequencies is effectively

uncorrelated. Specifically, the normalized correlation function of H(ω) approaches zero,

i.e.6,

ρH(ω, ν) =
cov(H(ω), H(ν))√
varH(ω)

√
varH(ν)

p.w.a.e.−→ 0, as L→∞ when ω 	= ν. (3.97)

Since H(ω) is a Gaussian random process, (3.97) implies that arbitrarily close samples of

H(ω) are independent, i.e., for every ω and ν such that ω 	= ν we have that H(ω) and H(ν)

are independent.

To verify this property, we first note that

E[H(ω)] = E[H(ν)] = 0 (3.98)

varH(ω) = varH(ν) = 1 (3.99)
5The theoretical information limits of such a channel are derived in Appendix C.
6We use

p.w.a.e.−→ to denote pointwise convergence almost everywhere.
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where we have used (3.96) and the fact that h[n] is a white zero-mean sequence. Similarly,

we obtain

cov(H(ω), H(ν)) =
L−1∑
n=0

L−1∑
m=0

E[h[n]h∗[m]]e−jωnejνm

=
L−1∑
n=0

E[h[n]h∗[n]]e−j(ω−ν)n

=
1
L

L−1∑
n=0

e−j(ω−ν)n

=
1
L
e−j(ω−ν)(L−1)/2

sin[(ω − ν)L/2]
sin[(ω − ν)/2]

. (3.100)

Using (3.99) and (3.100) in (3.97), we get

|ρH(ω, ν)| =

 1 ω = ν∣∣∣ sin[(ω−ν)L/2]L sin[(ω−ν)/2]

∣∣∣ ω 	= ν.
(3.101)

and, taking the limit as L→∞, we see that the property is verified.

Since arbitrarily close samples ofH(ω) for an i.i.d. Gaussian ISI channel are independent,

Theorem 3.2 applies in the limit as L → ∞ and it is redundant to have a frequency-

interleaved precoder at the transmitter. The following corollary characterizes the composite

system consisting of this special channel in cascade with the multipass equalizer after l

iterations [15].

Corollary 3.2 Let {hL[n]} be a sequence L mutually independent, zero-mean, complex-

valued, circularly symmetric Gaussian random variables with variance 1/L. Then, as L→
∞,

var ul[n] = Es(1− (ρl−1)2)
(

1
1− ξleξlE1(ξl)

− 1
)

(3.102)

and

γl
m.s.−→
(

1
ξleξlE1(ξl)

− 1
)
· 1
1− (ρl−1)2 . (3.103)

where

E1(s) =
∫ ∞

s

e−t

t
dt (3.104)

is the exponential integral.
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Proof: Arbitrarily close samples of the asymptotic random process limL→∞ HL(ω)

are independent, complex-valued, circularly symmetric Gaussian random variables with

zero mean and unity variance. Thus, arbitrarily close samples of limL→∞ |HL(ω)|2/ξl are
independent, real-valued, exponentially distributed random variables with mean 1

ξl . From

(3.87),

K l = lim
L→∞

1
2π

∫ π

−π
1

1 + |HL(ω)|2/ξl dω

=
1
2π

∫ π

−π
lim
L→∞

1
1 + |HL(ω)|2/ξl dω

=
∫ ∞

0

(
1

1 + α

)
ξle−ξ

lα dα

= ξleξ
l
E1(ξl) (3.105)

where the second equality is an application of the bounded convergence theorem and the

fourth equality is from the identity [1]

∫ ∞

0

e−st

1 + t
dt = esE1(s). (3.106)

Substituting (3.105) into (3.86) and (3.88) we obtain the desired result. �

Note that the requirement that L go to infinity implies that the block length N must

also go to infinity. Also, in Step 2 of the iterative algorithm for determining ρl, the SINR

γl can be computed from ρl via (3.103), (3.34), and (1.6).

We now present some simulation results, starting with the random ISI channel model.

In the ISI case, we have a square Toeplitz matrix, which means that β is unity. In Fig. 3.12,

we plot the curves for the random ISI channel analogous to Fig. 3.3. The sequence of

operating points is indicated on the solid curves with the ◦ symbols. The set of operating
points obtained from simulations is also indicated in Fig. 3.12 by the × symbols. These

results suggest that the theoretical predictions are quite accurate. In Fig. 3.13, bit-error rate

is plotted as a function of SNR per bit for 1, 2, 3, 5, and an infinite number of iterations.

We observe that steady-state performance is approximately achieved with comparatively

few iterations. We emphasize that the complexity of a single pass of the iterated-decision

equalizer is comparable to that of the DFE or the linear equalizer.
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We now discuss the high-SNR (ζ → 0) performance of the equalizer. We first note from

(3.34) that if ρ→ 1, then ξ →∞. Using the asymptotic series expansion [1]

E1(t) = e−t
∞∑
k=0

(−1)k k!
tk+1

for large t (3.107)

in (3.103) and retaining only the first two terms of the series, our SINR expression as ρ→ 1

becomes

γ →
(
1
ξ

)
· 1
1− (ρ)2 =

1
ζ
, (3.108)

where the equality follows from (3.34). When (3.108) is substituted into (3.28) or (3.29),

we get the matched filter bound. Using the same reasoning as in Section 3.1.5, we can show

that perfect ISI cancellation is approached at high SNR.

Figure 3.14 compares the theoretical performance (L → ∞) of the iterated-decision
equalizer with experimentally obtained results (L = 256). The experimental results are

indeed consistent with theoretical predictions, especially at high SNR (ζ → 0) where the

equalizer achieves the matched filter bound, i.e., γ → 1/ζ. For comparison, in Fig. 3.14 we

also plot the theoretical error rates of the ideal MMSE-DFE, the MMSE linear equalizer,

and the ZF linear equalizer, based on their asymptotic SINRs in the large ISI limit [15]

γMMSE−DFE = exp
{
eζE1(ζ)

}
− 1 (3.109)

γMMSE−LE =
1

ζeζE1(ζ)
− 1 (3.110)

γZF−LE = 0. (3.111)

We can readily see that at moderate to high SNR, the iterated-decision equalizer requires sig-

nificantly less transmit power than any of the other equalizers to achieve the same probabil-

ity of error. Specifically, at high SNR (ζ → 0), we have from [15] that γMMSE−DFE → 1/ζeΓ0

and γMMSE−LE → 1/[ζ(−Γ0 − ln ζ)] − 1, where Γ0 = 0.57721 · · · denotes Euler’s constant.
Thus, the MMSE-DFE theoretically requires eΓ0 times or 10Γ0 log e ≈ 2.507 dB more

transmit power to achieve the same probability of error as the iterated-decision equalizer.

Moreover, as ζ → 0, the MMSE-LE requires increasingly more transmit power than the

iterated-decision equalizer to achieve the same probability of error. The ZF-LE is even

worse: γZF−LE = 0 for all ζ, which is expected since the zeros of the random channel con-
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Figure 3.14: Theoretical (L→∞) and experimentally observed (L = 256) performance for
various equalizers. The solid curves depict QPSK bit-error rates as a function of SNR per
bit.

verge uniformly on the unit circle in the long ISI limit [10]. These results emphasize the

strong suboptimality of conventional equalizers.

Our simulations and plots in the remainder of this section are based on the three-tap

channel with impulse response

h[n] = 0.5δ[n] + 0.707δ[n− 1] + 0.5δ[n− 2] (3.112)

with N = 8192 and frequency-interleaved precoding. Figure 3.15 shows the probability of

bit error as a function of SNR after a different number of iterations. We see that there

is a sharp performance threshold between 6 and 7 dB; below the threshold performance is

poor, but above the threshold the matched filter bound is achieved. We find the expla-

nation for this threshold in Fig. 3.16, which shows that as the SNR decreases, the space

between the solid convergence curve and the dashed convergence curve gets narrower until

the two curves meet, resulting in poor performance. This phenomenon is similar to the

β threshold observed in Fig. 3.5. In Fig. 3.17, we compare the bit-error rate as a func-

tion of SNR for the iterated-decision equalizer with frequency-interleaved precoding with
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Figure 3.15: Theoretical iterated-decision equalizer performance with frequency-interleaved
precoding for the three-tap channel (3.112). The successively lower curves plot the QPSK
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Figure 3.16: Iterated-decision equalizer performance with frequency-interleaved precoding.
The solid curves plot QPSK symbol error rate as a function of ρ for the three-tap channel
(3.112) at various SNRs. Along the curve, ◦’s identify the theoretically predicted decreasing
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precoding, the various other detectors are not used in conjunction with precoding. Since
the iterated-decision detector with frequency-interleaved precoding achieves the matched
filter bound at high SNR, we can infer that ML detection with precoding (not pictured)
would also achieve the matched filter bound.

various other equalizers. The iterated-decision equalizer with frequency-interleaved precod-

ing clearly outperforms various other equalizers, including MLSD and the iterated-decision

equalizer without precoding, and indeed approaches the matched filter bound at high SNR.

Although MLSD with precoding is too complex to implement, we can infer that its per-

formance lies between the matched filter bound and the curve for the iterated-decision

equalizer with precoding. Note that the SNR gap between the MLSD performance without

precoding and the matched filter bound is rather significant. In fact, it can be shown that

for square QAM constellations this particular channel is the worst unit-energy three-tap

channel in terms of asymptotic SNR loss [51], the gap between the MLSD performance and

the matched filter bound at high SNR. At high SNR, the SNR loss approaches 2.3 dB. The

iterated-decision equalizer without precoding also performs poorly, because the Gaussian

assumption for the effective noise process at the slicer input is not valid without frequency

interleaving. As discussed in Section 2.3, if frequency-interleaved precoding is used in con-
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junction with a linear equalizer (LE) or DFE, there is no change in the minimum-mean

square slicer error [43] when h[n] is transformed into hp−1 [n], so there is no obvious benefit

in combining precoding with an LE or DFE.

3.3 Adaptive Iterated-Decision Detector

In Section 3.1, we derived the optimal matrices Bl and Dl given that the channel matrix H

is known. We now develop an adaptive implementation of the iterated-decision detector, in

which optimal matrices are selected automatically (from the received data) without explicit

knowledge of the channel. The received vector sequence is

r[n] = Hx[n] +w[n], (3.113)

for n = 0, 1, . . . , τ − 1, where τ is the length of the packet. We assume that the packet

length is chosen small enough such that the channel encountered by each packet appears

fixed. Some of the symbols in the vector sequence x[n] (not necessarily at the head of the

packet) are for training and are known at the receiver, while the rest are data symbols that

are unknown at the receiver.

Before the first pass (l = 1) of the adaptive iterated-decision detector, we need to

initialize the hard decisions x̂0i [n]. Since the locations and values of the training symbols in

each packet are known at the receiver, we set x̂0i [n] = xi[n] for the i and n corresponding

to those locations. For all other locations in the packets, we set x̂0i [n] to be the mean of the

signal constellation, typically zero.

On the lth pass of the detector where l = 1, 2, 3, . . ., the ith component of the slicer

input x̃l[n] can be expressed as

x̃li[n] = al
†
i k

l
i[n] (3.114)

where

ali =
[

bl
1,i bl

2,i · · · bl
Q,i −dl

1,i · · · −dl
i−1,i −dl

i+1,i · · · −dl
N,i

]T
(3.115)

kli[n] =
[

r1[n] r2[n] · · · rQ[n] x̂l−1
1 [n] · · · x̂l−1

i−1[n] x̂l−1
i+1[n] · · · x̂l−1

N [n]

]T
(3.116)

with blj,k and dlj,k being the jkth elements of Bl and Dl respectively. The slicer then gener-
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ates the hard decisions x̂li[n] from x̃li[n] for all i and n, except for those values corresponding

to the locations of training symbols in xi[n]. For those n, we set x̂li[n] = xi[n].

In the lth iteration, there are two sets of data available to the receiver: r[n] and x̂l−1[n],

n = 0, 1, . . . , τ − 1. If we assume that xi[n] ≈ x̂l−1i [n] for all i and all n for the purposes

of determining the optimal matrices, then it is reasonable to choose bi and di so as to

minimize the sum of error squares:

E(ali) =
∞∑

n=−∞
|x̂l−1i [n]− al

†
i k

l
i[n]|2. (3.117)

Since this is a linear least-squares estimation problem, the optimum ali is [39]

ali,opt = [Φl
i]
−1uli, (3.118)

where Φl
i =
∑∞

n=−∞ kli[n]k
l†
i [n] and uli =

∑∞
n=−∞ x̂l−1

∗
i [n]kli[n]. The matrices Φ

l
i can be

efficiently obtained by eliminating the (Q+i)th row and column of Φl =
∑∞

n=−∞ kl[n]kl
†
[n]

where (kl[n])T = [(r[n])T (x̂l−1[n])T ], and [Φl
i]
−1 can be efficiently computed using formulas

for the inversion of a partitioned matrix [46].

We now present some simulation results for adaptive iterated-decision detection for i.i.d.

Gaussian H. The block-iterative nature of the detector allows the training symbols to be

located anywhere in the packet. Since the locations do not appear to affect performance, we

arbitrarily choose to uniformly space vectors of training symbols within the sequence x[n] for

n = 0, 1, . . . , τ − 1. In Fig. 3.18, we plot the bit-error rate of the adaptive iterated-decision
equalizer as a function of the number of iterations, for varying amounts of training data. The

graph strongly suggests that there is a threshold for the number of training symbols, below

which the adaptive detector performs poorly and above which the bit-error rate consistently

converges to approximately the same steady-state value regardless of the exact number of

training symbols. The excess training data is still important though, since the bit-error

rate converges quicker with more training data. In Fig. 3.19, we plot the probability of bit

error as a function of SNR for varying amounts of training data. We see that, as expected,

performance improves as the amount of training data is increased. Moreover, only a modest

amount of training symbols is required at high SNR for the adaptive detector to perform

as if the channel were exactly known at the receiver. For comparison purposes, we also
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Figure 3.18: Experimentally observed QPSK bit-error rate for the adaptive iterated-decision
detector as a function of the number of decoding iterations and the number of training
vectors transmitted with each packet of 10000 data vectors at an SNR per bit of 7 dB. The
channel is an i.i.d. Gaussian matrix with β = N/Q = 1.
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Figure 3.19: Experimentally observed (Q = 128) QPSK bit-error rates for the adaptive
iterated-decision detector and the RLS-based adaptive linear detector (forgetting factor
λ = 1), with β = N/Q = 1. Each packet consists of 10000 data vectors plus either 500,
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plot in Fig. 3.19 the performance of the RLS-based implementation of the adaptive linear

detector [40]. The linear detector performs significantly worse than the iterated-decision

detector for comparable amounts of training data.

This adaptive iterated-decision detector can also be applied to a frequency-interleaved

precoded ISI channel, for which H is a circulant matrix. One issue that remains to be

explored is the development of an adaptive version of the frequency-interleaved iterated-

decision equalizer that exploits the circulant structure. For example, it is plausible to

somehow use the least-squares criterion to solve for the optimal Bl[k] and Dl[k] in the DFT

domain, with the constraint that 1
N

∑N−1
k=0 Dl[k] = 0. Or perhaps the least-squares criterion

can be used to solve for the optimal filter taps bl[n] and dl[n] corresponding to the original

ISI channel taps h[n], and then frequency interleaving those optimal filters to match the

frequency-interleaved ISI channel.

Solving for the optimal filter taps bl[n] and dl[n] corresponding to the original ISI channel

taps h[n] is particularly simple because the structure of the H matrix is a banded Toeplitz

matrix, with the length of the channel impulse response L much less than the block length

N . Since the filters bl[n] and dl[n] for the lth iteration are finite-length filters, we would

ideally like them to approximate (3.78) and (3.82), which are infinite length, without using

an excessive number of taps. Since the optimal bl[n] in (3.78) includes a filter matched

to h[n], and the optimal dl[n] in (3.82) includes a cascade of h[n] and the corresponding

matched filter, a reasonable rule of thumb is to select L strictly anticausal taps and L

strictly causal taps for each filter. The slicer input x̃l[n] can then be expressed as

x̃l[n] = al
†
kl[n] (3.119)

where

al
†
=
[

bl[−L] · · · bl[0] · · · bl[L] −dl[−L] · · · −dl[−1] −dl[1] · · · −dl[L]
]
(3.120)

kl[n] =
[

r[n+L] · · · r[n] · · · r[n−L] x̂l−1[n+L] · · · x̂l−1[n+1] x̂l−1[n−1] · · · x̂l−1[n−L]

]T
. (3.121)

The optimum al is [39]

alopt = [Φl]−1ul, (3.122)

where Φl =
∑∞

n=−∞ kl[n]kl
†
[n] and ul =

∑∞
n=−∞ x̂l−1

∗
[n]kl[n]. The resulting equalizer
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lends itself readily to practical implementation, even for large filter lengths. In particular,

the matrix Φl can be efficiently computed using correlation functions involving r[n] and

x̂l−1[n] [39], and [Φl]−1 can be efficiently computed using formulas for the inversion of a

partitioned matrix [46].

We plot in Fig. 3.20 the performance of the adaptive iterated-decision equalizer and

the recursive least squares (RLS) based implementation of the adaptive DFE [39] for 128-

tap random ISI channels. The DFE performs significantly worse than the iterated-decision

equalizer for comparable amounts of training data. Indeed, the high SNR gap is even larger

than the 2.507 dB determined for the nonadaptive case. This is because, as Figs. 3.14

and 3.20 show, the performance of the adaptive DFE is not accurately predicted by the

nonadaptive MMSE-DFE, even in the limit as L → ∞. It is also worth stressing that

the RLS-based adaptive DFE is much more computationally expensive than the adaptive

iterated-decision equalizer because the RLS-based DFE requires the multiplication of large
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Figure 3.20: Experimentally observed QPSK bit-error rate for the adaptive iterated-decision
equalizer and the RLS-based adaptive DFE (with forgetting factor λ = 1) as a function of
SNR per bit. Blocks of 10000 data symbols were transmitted through 128-tap channels,
which were equalized using 257 feedforward taps and 256 noncausal feedback taps in the case
of the iterated-decision equalizer, and using 257 feedforward taps and 128 strictly causal
feedback taps in the case of the DFE.
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matrices for each transmitted symbol, whereas the iterated-decision equalizer essentially

requires the computation of one large matrix inverse per iteration for all the symbols in the

packets, with the number of required iterations being typically small.
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Chapter 4

Iterated-Decision Detection as

Low-Bandwidth Message Passing

In the previous chapter, we showed that asymptotically all interference can be cancelled

by using the iterated-decision detector with mode-interleaved precoding. Thus, with low

complexity, performance close to the AWGN channel bound and the more complex ML

detector can be achieved.

In this chapter, we explain why both the iterated-decision detector and ML detection

asymptotically perform the same despite the gap in complexity when mode-interleaved pre-

coding is present. We show that the iterated-decision detector is a simplified version of

a relative of the sum-product algorithm [42] that approximates ML detection. For conve-

nience, we focus our analysis primarily on the iterated-decision equalizer, and comment on

the general detector case at the end of the chapter.

In Section 4.1, we review the sum-product algorithm. In Section 4.2, we apply the sum-

product algorithm to the problem of detection over ISI channels. When the sum-product

algorithm is applied to a trellis as is commonly done, the well-known forward/backward

algorithm [4] results, which computes the exact a posteriori probabilities. When the sum-

product algorithm is alternatively applied to a graph with cycles, an algorithm that approx-

imates the a posteriori probabilities is obtained. In Section 4.3, we describe the max-log

simplification to the sum-product algorithm, which turns out to provide an exact solution

to a slightly different problem. This modified algorithm, the max-sum algorithm, is the

sum-product algorithm in the max-sum semiring. We show that the max-sum algorithm on
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a trellis solves the ML detection problem, so the max-sum algorithm on a graph with cycles

can be expected to approximately solve the ML detection problem. In Section 4.4, we show

that with mode-interleaved precoding, the iterated-decision equalizer has strong similarities

to the max-sum algorithm on a particular graph with cycles, thereby providing an intuitive

explanation for the asymptotically optimal performance of the iterated-decision equalizer.

We conclude the chapter by generalizing the analysis to the iterated-decision detector in

Section 4.5.

4.1 The Sum-Product Algorithm

Often times we may wish to compute a marginal function gn(xn) of a multivariate function

g(x1, . . . , xN ), defined as

gn(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

g(x1, . . . , xN ). (4.1)

We may do this by exhaustively summing over all possible combinations of the summation

variables, but potentially dramatic computational savings can be obtained by exploiting the

distributive law if g(x1, . . . , xN ) can be factored into a product of local functions:

g(x1, . . . , xN ) =
∏
X∈Q

gX(X) (4.2)

where Q is set of all subsets of {x1, . . . , xN}.
For example, suppose g is a function of x1, x2, x3, x4, x5 and can be expressed as the

product

g(x1, x2, x3, x4, x5) = gA(x1, x3)gB(x2)gC(x2, x3, x4)gD(x4, x5). (4.3)

The marginal function g1(x1) can be expressed as

g1(x1) =
∑
x2

∑
x3

∑
x4

∑
x5

gA(x1, x3)gB(x2)gC(x2, x3, x4)gD(x4, x5)

=
∑
x3

gA(x1, x3)

(∑
x2

gB(x2)

(∑
x4

gC(x2, x3, x4)

(∑
x5

gD(x4, x5)

)))
. (4.4)

Alternatively, we may rewrite (4.4) using “not-sum” notation [42], whereby summations of
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a function are performed over all but one of the function’s arguments. In not-sum notation,

the marginal function g1(x1) is

g1(x1) =
∑

∼{x1}
gA(x1, x3)


 ∑

∼{x3}
gB(x2)gC(x2, x3, x4)


 ∑

∼{x4}
gD(x4, x5)




 , (4.5)

where
∑

∼{xn} is the summation operator over all arguments of the function except for xn.

Similarly, the marginal function g2(x2) is

g2(x2) = gB(x2)


 ∑

∼{x2}
gC(x2, x3, x4)


 ∑

∼{x3}
gA(x1, x3)




 ∑

∼{x4}
gD(x4, x5)




 . (4.6)

The purpose of the sum-product algorithm is to efficiently compute marginal functions

using expressions such as (4.5) and (4.6) that are derived from the distributive law.

4.1.1 Single-Marginal Sum-Product Algorithm

Expressions like (4.5) and (4.6) can be represented by ordered rooted trees in which internal

nodes represent operators and leaf nodes represent variables or constants [54]. For example,

the expression (x + y) × z can be represented by the tree in Fig. 4.1. With expressions

consisting exclusively of symmetric operators like multiplication and addition, an unordered

rooted tree unambiguously represents the expression.

A factor graph [42] describes the structure of a specific factorization of a multivariate

function using variable nodes, factor nodes, and connecting edges. In the factor graph

for the factorization, there exists a variable node for each variable xn in the multivariate

function, a factor node for each local function gX , and an edge connecting a variable node

xn to a factor node gX if and only if xn is an argument of gX . Factor graphs can be classified

+

×

x y

z

Figure 4.1: An expression tree representing (x+ y)× z.
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x5x4x3x2x1

Figure 4.2: A factor graph for the factorization gA(x1, x3)gB(x2)gC(x2, x3, x4)gD(x4, x5).

×

∑
∼{x}

×

. . .

From Children

To Parent

. . .

g

Figure 4.3: Local substitutions that transform a rooted cycle-free graph to an expression
tree for a marginal function. On the left is the substitution at a variable node; on the right
is the substitution at a factor node g with parent x.

as bipartite graphs, which are defined as graphs in which all vertices are partitioned into

two mutually exclusive sets such that no edges exist between vertices in the same set. The

factor graph corresponding to the particular factorization of g(x1, x2, x3, x4, x5) in (4.3) is

depicted in Fig. 4.2.

When a factor graph has no cycles as in Fig. 4.2, the expression tree for the marginal

function gn(xn) has a direct relationship with the factor graph redrawn as a tree rooted at xn.

In this redrawn factor graph, if the variable nodes are replaced by a product operator, the

factor nodes are replaced by a “form product and multiply by g” operator, and the edges

between each variable node x and its children are associated with the not-sum operator∑
∼{x}, then we obtain exactly the expression tree for gn(xn). These local substitutions are

illustrated in Fig. 4.3. The factor graph of Fig. 4.2 redrawn as a tree rooted at x1 is shown

in Fig. 4.4(a), and the corresponding expression tree for g1(x1) is shown in Fig. 4.4(b).
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Figure 4.4: (a) The factor graph of Fig. 4.2 redrawn as a tree rooted at x1. (b) The
corresponding expression tree for g1(x1).

Similarly, the factor graph redrawn as a tree rooted at x2 is shown in Fig. 4.5(a), and the

corresponding expression tree for g2(x2) is shown in Fig. 4.5(b).

This rather remarkable relationship allows us to use the rooted factor graph to visu-

alize and describe the algorithm for computing a marginal function gn(xn) as a sequence

of “messages” sent along all edges from the leaf nodes to the root. These messages are

always a description of some function, and a “product of messages” is always interpreted

as the product of the functions described by the messages, not the product of the messages

themselves. Similarly, a not-sum for x operates not on literal messages, but of the functions

described by the messages.

In this algorithm, each node must wait for messages sent by all of its children before
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Figure 4.5: (a) The factor graph of Fig. 4.2 redrawn as a tree rooted at x2. (b) The
corresponding expression tree for g2(x2).

sending its own message to its parent. To begin, each leaf variable node sends the identity

function (the constant unity function) to its parent, and each leaf factor node g sends to

its parent x the result of a not-sum for x of the function g. Each internal variable node

sends the product of the functions arriving from all its children upwards to its parent, while

each internal factor node g sends to its parent x the output of the not-sum operation for

x of the product of g with all the functions from its children. Products with only one

operand act as identity operators. These operations are shown in Fig. 4.3. Eventually, the

algorithm terminates at the root when the product of the functions sent by its children gives

the desired marginal function gn(xn). This algorithm shall be referred to as the “single-

marginal sum-product algorithm,” since only one marginal is computed using various sum

and product operators. Note that a function passed on the edge {x, g} is always a function
of only x, regardless of whether the function is passed from x to g or from g to x. We can

interpret these single-argument messages between child and parent as a summary for x of

the product of local functions in the child’s subtree.
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4.1.2 The Complete-Marginal Sum-Product Algorithm

To obtain all the marginal functions of a function g(x1, . . . , xn) associated with a cycle-free

factor graph, one could use the “single-marginal sum-product algorithm” for each variable

xn. However, doing so is likely to be inefficient since one can take advantage of the fact

that many intermediate computations can be recycled amongst the various single-marginal

sum-product algorithms.

The sum-product algorithm, which efficiently combines the various single-marginal sum-

product algorithms, can be visualized and described on an unrooted factor graph. Essen-

tially, all of the rooted, cycle-free factor trees are overlayed onto the unrooted, cycle-free

factor graph, so messages are passed along the edges in both directions. Hence, parent-

child relationships are no longer permanent; the temporary designations of parent and child

depend on the direction a message is sent along an edge.

The rule that governs the algorithm is that a node sends a message to a neighbor

(temporary parent) when messages from each of the other neighbors (temporary children)

have been received and appropriately combined, just as in the single-marginal sum-product

algorithm. Thus, the algorithm begins at the leaf nodes, where messages are passed to their

neighbors. Any internal node remains idle until all but one of its neighbors have sent it a

message. At this point, the node appropriately combines the received messages and sends

the resulting message to the remaining neighbor (temporary parent). The node becomes

idle once again, until the remaining neighbor (now a temporary child) responds with a

message. Having now received messages from all its neighbors, the node can finish sending

messages to all its neighbors by appropriately combining received messages. The algorithm

terminates when messages have been passed exactly twice along each edge of the factor

graph, once in each direction. Each marginal function is obtained by taking the product of

all messages sent to the corresponding variable node by all its neighbors.

As with the single-marginal algorithm, both messages passed in opposite directions on

the edge {x, g} are always a function of only the variable x, and we can interpret a single-

argument message between neighbors as a summary for x of the product of local functions

in the message sender’s subgraph.
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4.2 Applying Sum-Product Algorithm to ISI Channels

Consider a sequence of symbols1 x = {xn} selected from corresponding discrete sets {Xn}
and transmitted over an ISI channel with output

rn =
∑
k

hn−kxk + wn. (4.7)

In this case, the global function we are interested in is the a posteriori joint probability

mass function for x = {xn} given the fixed observation r = {rn}:

g(x) = p(x|r) ∝ p(x)f(r|x), (4.8)

where we have used Bayes’ rule. If the a priori distribution p(x) for the transmitted vectors

is uniform, then

g(x) ∝ f(r|x). (4.9)

The corresponding marginal functions have the form

gn(xn) = p(xn|r) ∝
∑

∼{xn}
f(r|x) (4.10)

which, for each possible value of xn, is separate summation over all variables except xn.

It follows that selecting the value of xn for which gn(xn) is largest gives the most likely

value of xn given the entire vector r, thereby minimizing the probability of error for each

individual symbol.

4.2.1 Trellis Processing

The typical application of the sum-product algorithm to the detection of information sent

via an ISI channel is usually the forward/backward algorithm [4], also known as the BCJR

algorithm (after inventors Bahl, Cocke, Jelinik and Raviv), a posteriori probability (APP)

algorithm, or maximum a posteriori (MAP) algorithm.

This algorithm applies the sum-product algorithm to a cycle-free trellis that represents

a modified form of the global function p(x|r) through a hidden Markov model. If we define
yn

�
=
∑

k hn−kxk, then we have a Markov model with input variables x = {xn}, state
1For notational convenience in this chapter, we use subscripts rather than arguments to denote time.
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variables s = {sn}, and output variables y = {yn}. The Markov model is hidden because y
is not observable; rather, we are able to observe only r, a noisy version of y:

rn =
∑
k

hn−kxk + wn = yn + wn. (4.11)

The a posteriori joint probability mass function for x, s, and y given the fixed observation

r is

p(x, s,y|r) ∝ p(x, s,y)f(r|x, s,y)
= p(x)p(s,y|x)f(r|y)
∝ p(s,y|x)f(r|y)

= I(s,y,x)
N−1∏
n=0

f(rn|yn)

=
N−1∏
n=0

In(sn, yn, xn, sn+1)
N−1∏
n=0

f(rn|yn). (4.12)

where the a priori distribution p(x) for the transmitted vectors is uniform, N is the length

of x, and In(sn, yn, xn, sn+1) for n = 0, 1, . . . N − 1 are the component indicator functions
of the overall indicator function I(s,y,x) for valid configurations of s, y, and x. The factor

graph for this particular factorization of p(x, s,y|r) is depicted in Fig. 4.6. Since this factor

y1

s2

y2

x0

y0

x1

I4I3I2I1I0

f(r0|y0) f(r1|y1) f(r2|y2) f(r3|y3) f(r4|y4)

x2

s5s0 s3

x3

y3

s4

x4

y4

s1

Figure 4.6: A cycle-free factor graph for the global function p(x, s,y|r): the xn are input
variables, the sn are state variables, the yn are output variables, and each rn is the noisy
observation of yn.
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graph is cycle-free, the a posteriori probabilities for each transmitted symbol xn, i.e.,

gn(xn) = p(xn|r) ∝
∑

∼{xn}
p(x, s,y|r), (4.13)

can be computed using the sum-product algorithm.

4.2.2 Iterative Processing

A trellis is not the only way in which we can represent the global function p(x|r). Let us
now consider an alternative factor graph that does not require hidden state variables. If we

factor the global function as

p(x|r) ∝ p(x)f(r|x)
∝ f(r|x)

=
N−1∏
n=0

f(rn|x)

∝
N−1∏
n=0

f(rn|xn−J , . . . , xn+K) (4.14)

where we have used a uniform a priori distribution for p(x), the independence of the rn’s

conditioned on x, and a channel impulse response hn with J strictly causal taps and K

strictly anticausal taps, then we obtain the factor graph depicted in Fig. 4.7. It is this

particular graph that, as we shall demonstrate later in Section 4.4, is closely connected to

the iterated-decision equalizer.

f(r0|x0)

x0 x1 x4x3x2

f(r3|x1x2x3) f(r4|x2x3x4)f(r1|x0x1) f(r2|x0x1x2)

Figure 4.7: A factor graph with cycles for the global function p(x|r): the xn are input
variables and the rn are ISI channel output variables. In this example, the channel taps hn
are nonzero for n = 0, 1, 2 and the block length is N = 5.
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Unlike the previous factor graph, this graph is not cycle-free, so the marginal functions

for each transmitted symbol xn cannot be computed exactly by the sum-product algorithm.

However, the same message propagation rules can still be applied to a graph with cycles.

Since simulations have shown that applying sum-product based decoding algorithms with

very long codes can achieve near-capacity results on factor graph with cycles [12, 17], we

can reasonably expect that the sum-product algorithm still gives good approximations to

the marginal functions.

With the presence of cycles in this factor graph, the sum-product algorithm has no

obvious beginning and no natural termination. Furthermore, there are plenty of ways to

schedule the order in which messages are passed over all of the edges. An edge can now be

traversed in the same direction by updated messages at different times during the duration

of the algorithm. Every time a message is passed along an edge, it replaces the message

that was previously sent in the same direction along that edge.

A natural message-passing schedule is suggested by the bipartite property of the factor

graph. Messages can be passed simultaneously over all edges in one direction, followed by the

other direction, and then back again in the first direction, i.e., messages are repeatedly sent

back and forth in parallel between the variable and factor nodes. We refer to an iteration

as the successive passing of messages in both directions. We choose to begin the algorithm

with the convention that the variable nodes all send constant unity functions to the factor

nodes, and we terminate the algorithm after a pre-determined number of iterations.

Let us focus on how the approximation to the marginal function g2(x2) is updated during

each iteration. At the beginning of each iteration, there is an approximation to gn(xn) at

each variable node. These approximate marginal distributions can be interpreted as a priori

distributions with notation p(xn). Messages from the variable nodes other than x2 are sent

to the factor nodes that are neighbors of x2. In this case, the factor nodes receiving the

messages are f(r2|x0x1x2), f(r3|x1x2x3), and f(r4|x2x3x4). At the node f(r2|x0x1x2),
the product of the function is taken with the incoming approximate functions p(x0) and

p(x1), and a not-sum operation is performed for x2. Thus, a message is sent from the node

f(r2|x0x1x2) to the node x2 that approximately represents the function

∑
∼{x2}

f(r2|x0x1x2)p(x0)p(x1) ≈
∑

∼{x2}
f(r2x0x1|x2) = f(r2|x2). (4.15)
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Similarly, the message sent from nodes f(r3|x1x2x3) and f(r4|x2x3x4) to x2 approximately

represent f(r3|x2) and f(r4|x2) respectively. The product f(r2|x2)f(r3|x2)f(r4|x2), taken
at the node x2 is approximately equal to f(r|x2), which is proportional to g2(x2) = p(x2|r).

4.3 The Max-Sum Algorithm

Although the BCJR algorithm was proposed three decades ago [4], it initially received little

attention because of numeric problems in representing the probabilities and the computa-

tional complexity of the mixed multiplications and additions of these values.

The max-log approximation for the sum-product algorithm addresses these issues. First,

because the noise is Gaussian, each not-sum of conditional probability distribution functions

is a summation of exponentials over many variables. Since the sum is typically dominated

by the exponential with the largest exponent, only the largest term of the summation is

kept to reduce the number of computations. Hence, the not-sum operator is replaced by a

“not-max” operator. Second, processing of probabilities occurs in the logarithmic domain;

the products of probability functions now become the sum of log probability functions.

The range of values handled in this way becomes more manageable, and also additions are

simpler than products.

With these heuristic modifications designed to simplify implementation, the sum-product

algorithm on a graph without cycles ends up providing the exact solution to a problem that

is slightly different from the minimization of symbol error probability. The modified algo-

rithm is in fact the sum-product algorithm in the “max-sum” semiring, which computes the

ML vector [2]. To understand this connection, we briefly discuss the max-sum semiring.

4.3.1 Max-Sum Semiring

A commutative semiring is a set S, together with two binary operations called “+” and “·”,
which satisfy the following axioms:

1. The operation “+” is associative and commutative, and there exists an identity ele-

ment 0 such that s+ 0 = s for all s ∈ S.

2. The operation “·” is associative and commutative, and there exists an identity element
1 such that s · 1 = s for all s ∈ S.
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3. All a, b, c ∈ S satisfy the distributive law

(a · b) + (a · c) = a · (b+ c). (4.16)

Because the range S = [0,∞) of the functions in the sum-product algorithm is a com-

mutative semiring with ordinary addition and multiplication, the sum-product algorithm

operates in what is called the “sum-product” semiring.

The semiring that we will focus on in the rest of this chapter is the “max-sum” semiring,

consisting of the set S = [−∞,∞) with the ordinary addition operator replaced with the
“max” operator and the ordinary product operator replaced with summation. The marginal

functions of a global function g(x1, . . . , xn) are now defined as

gn(xn) = max
∼{xn}

g(x1, . . . , xn) (4.17)

where the not-max operator max∼{xn} is the max operator over all arguments of the function

except for xn.

For example, suppose g is a function of x1, x2, x3, x4, x5 and can be “factored” into the

sum

g(x1, x2, x3, x4, x5) = gA(x1, x3) + gB(x2) + gC(x2, x3, x4) + gD(x4, x5), (4.18)

represented by the same graph in Fig. 4.2. Analogous to (4.5) and (4.6), the marginal

function g1(x1) can be expressed as

g1(x1) = max
∼{x1}

(
gA(x1, x3) + max

∼{x3}

(
gB(x2) + gC(x2, x3, x4) + max

∼{x4}
gD(x4, x5)

))
, (4.19)

and g2(x2) can be expressed as

g2(x2) = gB(x2) + max
∼{x2}

(
gC(x2, x3, x4) + max

∼{x3}
gA(x1, x3) + max

∼{x4}
gD(x4, x5)

)
. (4.20)

The local substitutions made in the factor graph are now depicted in Fig. 4.8.
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g

∼{x}
max

++

. . .

From Children

To Parent

. . .

Figure 4.8: Local substitutions that transform a rooted cycle-free graph to an expression
tree for a marginal function in the max-sum semiring. On the left is the substitution at a
variable node; on the right is the substitution at a factor node g with parent x.

4.3.2 ML Detection

Applying the max-sum algorithm to the ISI channel case, the global function we are inter-

ested in is the logarithm of the a posteriori joint probability mass function for x given the

fixed observation r:

g(x) = log p(x|r). (4.21)

The corresponding marginal functions have the form

gn(xn) = max
∼{xn}

log p(x|r) (4.22)

which, for each possible value of xn, is separate maximization over all variables except

xn. It follows that the value of xn for which gn(xn) is largest is the nth component of

the maximum-likelihood vector for x, i.e. the vector for which p(x|r) is largest. In other
words, each symbol of the maximum likelihood sequence, i.e. argmaxxn gn(xn), can be

computed using the max-sum algorithm. So while the sum-product algorithm minimizes the

probability of symbol error, the max-sum algorithm minimizes the probability of sequence

error.

If the max-sum algorithm is performed in the ISI channel case on the trellis in Fig. 4.9,

each symbol of the ML sequence is determined by messages passed in both the forward and

backward directions along the trellis. In comparison, the well-known Viterbi algorithm [27],
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which also computes the ML sequence, is equivalent to passing messages only in the forward

direction of the trellis in Fig. 4.9 but maintaining memory of survivor paths. In general,

only after all possible forward messages have been passed can decisions on any of the

symbols occur by tracing back along the path corresponding to the ML sequence. Thus,

with the Viterbi algorithm, there is also some kind of implicit “backward” mechanism.

Nevertheless, because of the difference in the backward mechanism, the max-sum algorithm

on the trellis can compute each symbol of the ML sequence individually, while the Viterbi

algorithm generally computes all symbols only after message passing in the forward direction

is completed.

The max-sum algorithm can also be performed on the graph with cycles depicted in

Fig. 4.10, thereby providing an approximate, rather than exact, solution to the ML detection

problem. As pointed out in Section 4.2.2 for the corresponding sum-product algorithm, a

natural message-passing schedule is suggested by the bipartite property of the factor graph.

We begin the algorithm with the convention that the variable nodes all send zero functions

to the factor nodes, and we refer to an iteration as the passing of messages in parallel from

all variable to factor nodes and then back from all factor to variable nodes. As we discuss

in the next section, it is this version of the max-sum algorithm that is strongly related to

the iterated-decision detector.

4.4 Relating the Max-Sum Algorithm to Iterated-Decision

Detection

In this section, we demonstrate that the iterated-decision equalizer can be interpreted as an

approximation to the max-sum algorithm on the factor graph of Fig. 4.10. In doing so, we

gain a new perspective on the convergence results of Theorems 3.1 and 3.2. A concentration

result was proved in [53] that the decoder performance on random graphs converges to its

expected value as the length of the code increases (i.e. the size of the random graph gets

large) for a variety of channels, generalizing the result for low-density parity-check codes and

binary symmetric channels (BSCs) in [45]. With mode-interleaved precoding, the iterated-

decision detector can be viewed as a message-passing algorithm on a large random graph,

so the concentration results suggests that performance of the iterated-decision detector

asymptotically converges.
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Figure 4.9: A cycle-free factor graph for the global function log p(x, s,y|r): the xn are input
variables, the sn are state variables, the yn are output variables, and each rn is the noisy
observation of yn.

x0 x1 x4x3x2

log f(r0|x0) log f(r1|x0x1) log f(r2|x0x1x2) log f(r3|x1x2x3) log f(r4|x2x3x4)

Figure 4.10: A factor graph with cycles for the global function log p(x|r): the xn are input
variables and the rn are ISI channel output variables. In this example, the channel taps hn
are nonzero for n = 0, 1, 2 and the block length is N = 5.
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The first step in making the connection between the max-sum algorithm and the iterated-

decision equalizer is to compare the structure of the two algorithms. We decompose each

input x̃ln to the slicer of the iterated-decision equalizer into a sum of terms corresponding

to information gained about xn from each received symbol in the sequence rn. From (3.83),

(3.80), and (3.81), the decomposition proceeds as

x̃ln =
∑
k

rkb
l
n−k −

∑
j

x̂l−1j dln−j

=
∑
k

rkb
l
n−k −

∑
j �=n

ρl−1x̂l−1j

∑
k

hkb
l
n−j−k

=
∑
k

rkb
l
n−k −

∑
j �=n

ρl−1x̂l−1j

∑
k

hk−jbln−k

=
∑
k

rkb
l
n−k −

∑
k

bln−k
∑
j �=n

ρl−1x̂l−1j hk−j

=
∑
k

bln−k


rk −

∑
j �=n

ρl−1x̂l−1j hk−j


 . (4.23)

The second equality of (4.23) comes from the fact that dln is equal to the convolution of hn

and bln scaled by ρl−1 except with the zeroth tap of the convolution set to zero, the third

equality is a change of summation variable, and the fourth equality is a change of summation

order. The block diagram for computing x̃ln as in (4.23) is shown in Fig. 4.11 for the case

in which hn 	= 0 for n = 0, 1, 2 and bn 	= 0 for n = −2,−1, 0. The coefficients next to each
edge are multiplicative factors. We note that the pattern of the signal flow is similar to the

message flow in Fig. 4.12, which shows the flow of messages on the factor graph of Fig. 4.10

used to update the variable node xn during each iteration of the max-sum algorithm. From

the figures, it is clear that both the iterated-decision equalizer and the max-sum algorithm

update a variable node using information obtained from other variables and received data.

By overlaying the block diagrams like the one in Fig. 4.11 for all the x̃ln’s, we obtain the

complete iterated-decision equalizer. Similarly, by overlaying the expression trees like the

one in Fig. 4.12 for all the xn’s, we obtain the max-sum algorithm.

In the remainder of this section, we compare the content of the flows on these two

very similar structures, and show that even the content is also very similar. For simplicity,

we focus our analysis on binary variables, i.e., x ∈ {+1,−1}, and defer a discussion of
nonbinary variables to the end of this section.
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bl−2

−h1
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−h1 bl−1
bl0
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Figure 4.11: A block diagram for the computation of x̃ln in iterated-decision equalization.
In this example, hn 	= 0 for n = 0, 1, 2 and bn 	= 0 for n = −2,−1, 0. The coefficients next
to the edges are scaling factors.

∼{xn}
max

log f(rn|xn−2xn−1xn) log f(rn+1|xn−1xnxn+1) log f(rn+2|xnxn+1xn+2)

xn+2xn+1xnxn−1xn−2

∼{xn}
max

∼{xn}
max

Figure 4.12: The expression tree for the computation of x̃ln during an iteration of the
max-sum algorithm on the factor graph in Fig. 4.10. In this example, hn 	= 0 for n = 0, 1, 2.

4.4.1 Binary Signalling Over AWGN Channels

We begin by developing a couple of tools associated with binary signalling over AWGN

channels that will prove useful in the sequel. The received symbol over such an AWGN

channel is

x̃ = x+ w, (4.24)

where x ∈ {−1,+1} and w is independent noise of distribution N (0, σ2). Given the value
of x, the conditional probability distribution function of x̃ is

f(x̃|x) = 1√
2πσ

e−(x̃−x)
2/2σ2

, (4.25)
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which can be used to compute log-likelihood ratios (L-values) and Bayes’ least-squares

estimators.

Log-Likelihood Ratios

The log-likelihood ratio (L-value) is commonly used to describe the probability mass func-

tion of a binary random variable such as x given an observation. The L-value for x given x̃

is calculated as

L(x|x̃) = log
Pr(x = +1|x̃)
Pr(x = −1|x̃) . (4.26)

Using Bayes’ rule, equal a priori probabilities, and (4.25),

L(x|x̃) = log
f(x̃|x = +1)Pr(x = +1)
f(x̃|x = −1)Pr(x = −1)

= log
f(x̃|x = +1)
f(x̃|x = −1)

= log
1√
2πσ

− (x̃− 1)2
2σ2

− log 1√
2πσ

+
(x̃+ 1)2

2σ2

=
2x̃
2σ2

+
2x̃
2σ2

=
2x̃
σ2

. (4.27)

Thus L(x|x̃) is directly proportional to x̃, scaled by the variance of the additive noise.

The usefulness of this fact is not limited only to AWGN channels. In situations where an

information bit is affected by approximately Gaussian additive interference and noise, the

sum of the bit, interference, and noise can be interpreted as the L-value of the bit scaled

by the total variance of the interference and noise. We can also rearrange (4.26) to get the

expressions

Pr(x = +1|x̃) =
eL(x|x̃)

1 + eL(x|x̃)
(4.28)

Pr(x = −1|x̃) =
1

1 + eL(x|x̃)
(4.29)

and, in light of (4.27),

Pr(x = +1|x̃) =
e2x̃/σ

2

1 + e2x̃/σ2 (4.30)

Pr(x = −1|x̃) =
1

1 + e2x̃/σ2 . (4.31)
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Bayes’ Least-Squares Estimation

The Bayes’ least-squares estimate x̂BLS minimizes the mean-square error between itself and

x, where x̂BLS is a function of x̃, i.e.,

x̂BLS(x̃) = argmina
∑
x

(x− a)2 Pr(x|x̃). (4.32)

Since this estimator minimizes the mean-square estimation error, it is alternatively referred

to as an MMSE estimator. The minimization of (4.32) can be performed by differentiating

with respect to a and setting the result to zero. In doing so, we obtain

x̂BLS(x̃) = E[x|x̃], (4.33)

which is the mean of the posterior density f(x|x̃).

In our case, we evaluate E[x|x̃] using (4.30) and (4.31) to get

E[x|x̃] = Pr(x = +1|x̃)− Pr(x = −1|x̃)

=
e2x̃/σ

2

1 + e2x̃/σ2 −
1

1 + e2x̃/σ2

= tanh
(

x̃

σ2

)

=
∣∣∣∣tanh

(
x̃

σ2

)∣∣∣∣ sgn(x̃), (4.34)

where the last equality is because the hyperbolic tangent is an odd-symmetric function that

is positive when its argument is positive. An alternate expression for E[x|x̃] is given by

E[x|x̃] = Pr(x = sgn(x̃)|x̃) · sgn(x̃)− Pr(x 	= sgn(x̃)|x̃) · sgn(x̃)
= [1− 2Pr(x 	= sgn(x̃)|x̃)] sgn(x̃)
= ρ(x̃) sgn(x̃), (4.35)

where

ρ(x̃)
�
= |E[x|x̃]| = 1− 2Pr(x 	= sgn(x̃)|x̃) ≥ 0. (4.36)
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Figure 4.13: The function ρ(x̃) = | tanh(x̃/σ2)|.

Comparing (4.35) to (4.34) and incorporating (4.27), we see that

ρ(x̃) =
∣∣∣∣tanh

(
x̃

σ2

)∣∣∣∣ =
∣∣∣∣tanh

(
L(x|x̃)
2

)∣∣∣∣ . (4.37)

The quantity ρ(x̃) can be interpreted as a measure of reliability of the observation x̃. As

illustrated in Fig. 4.13, in this context a value of x̃ close to zero is interpreted as unreliable,

and a value of x̃ far away from zero is very reliable.

4.4.2 Low-Bandwidth Message Passing from Variable to Factor Nodes

With the concepts of L-values and Bayes’ least-squares estimators established, we return

back to the max-sum algorithm. In the binary case, a different a priori probability mass

function is associated with each xn at the beginning of the lth iteration (Fig. 4.14(a)).

For the time being, let us assume that the a priori probability mass function for xn was

derived during the previous iteration from a noisy observation x̃l−1n , defined in (4.24). Thus

each symbol xn can be associated with a Bayes’ least squares estimate E[xn|x̃l−1n ] which

can be considered as an alternative form of likelihood information because of (4.27). As

determined in (4.35), E[xn|x̃l−1n ] consists of a reliability ρ(x̃l−1n ) and the most significant

bit x̂l−1n
�
= sgn(x̃l−1n ). As shown in Fig. 4.14(b), we propose to approximate the a priori

probability mass function for xn as

p(xn) ≈ δ(xn − ρ(x̃l−1n )x̂l−1n ). (4.38)

In essence, we are making a scalar approximation to a binary probability mass function.

Furthermore, rather than keep a different reliability for each symbol xn, we propose to

combine all reliabilities into a single parameter. We next define ρl−1 as the expectation of
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Figure 4.14: (a) A different a priori probability mass function is associated with each
binary variable at the beginning of each iteration. (b) The probability mass functions are
approximated by impulse functions located at the associated Bayes’ least squares estimates.
(c) The expected absolute value of the Bayes’ least squares estimate replaces the magnitude
of the Bayes’ least squares estimates for each binary variable.

ρ(x̃l−1n ) with respect to x̃l−1n , so we have from (4.36)

ρl−1 �
= E[ρ(x̃l−1n )] = E[|E[xn|x̃l−1n ]|] = 1− 2E[Pr(xn 	= x̂l−1n )], (4.39)

which can be alternatively verified by integrating (4.37) with respect to the a priori prob-

ability distribution function

f(x̃) =
1
2
· 1√

2πσ
e−(x̃−1)

2/2σ2
+
1
2
· 1√

2πσ
e−(x̃+1)

2/2σ2
. (4.40)

Since x̃l−1n is directly proportional to L(xn|x̃l−1n ), the single parameter ρl−1 conveniently

summarizes information about all possible L-values at a given SNR. The quantity E[Pr(xn 	=
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x̂l−1n )] in (4.39) can be interpreted as the average probability of bit error, which is consistent

with the expression for ρl−1 in the context of the iterated-decision detector in (3.32).

We call this simplification “low-bandwidth message passing” because the messages sent

from variable to function nodes describe functions parametrized only by a single parameter

ρl−1 that summarizes reliability, and the most significant bit of each x̃l−1n . We are essentially

approximating the a priori distributions as impulse functions at ρl−1x̂l−1n (Fig. 4.14(c)); i.e.,

p(xn) ≈ δ(xn − ρl−1x̂l−1n ). (4.41)

4.4.3 Message Passing from Factor to Variable Nodes

In the expression tree of Fig. 4.12, which describes how the max-sum algorithm updates

information about xn, the logarithms of the approximate a priori distributions arriving

at a factor node are summed with the logarithm of the associated factor, and a not-max

operation is performed. For example, the message sent to the variable node xn from the

function node log f(rn|xn−2xn−1xn) describes the function

max
∼{xn}

(
log f(rn|xn−2xn−1xn) + log δ(xn−2 − ρl−1x̂l−1n−2) + log δ(xn−1 − ρl−1x̂l−1n−1)

)
= max

∼{xn}

(
log f(rn|xn−2xn−1xn)δ(xn−2 − ρl−1x̂l−1n−2)δ(xn−1 − ρl−1x̂l−1n−1)

)
= max

∼{xn}
log f(rn|xn−2 = ρl−1x̂l−1n−2, xn−1 = ρl−1x̂l−1n−1, xn)

= log f(rn|xn−2 = ρl−1x̂l−1n−2, xn−1 = ρl−1x̂l−1n−1, xn). (4.42)

This function passed from the node log f(rn|xn−2xn−1xn) to node xn is a function of the

binary variable xn and, as such, can be parametrized by a single value. One particular

parametrization is the L-value

log
f(rn|xn−2 = ρl−1x̂l−1n−2, xn−1 = ρl−1x̂l−1n−1, xn = +1)

f(rn|xn−2 = ρl−1x̂l−1n−2, xn−1 = ρl−1x̂l−1n−1, xn = −1)
. (4.43)

Since

f(rn|xn−2xn−1xn) = 1√
2πN0

e−(rn−h2xn−2−h1xn−1−h0xn)2/2N0 , (4.44)
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the L-value can be expressed as

2hn−2(rn − hnρ
l−1x̂l−1n−2 − hn−1ρl−1x̂l−1n−1)/N0 (4.45)

Similarly, the function passed from the node f(rn+1|xn−1xnxn+1) to node xn can be parametrized
as

2hn−1(rn+1 − hnρ
l−1x̂l−1n−1 − hn−2ρl−1x̂l−1n+1)/N0 (4.46)

and the function from f(rn+2|xnxn+1xn+2) to node xn can be parametrized as

2hn(rn+2 − hn−1ρl−1x̂l−1n+1 − hn−2ρl−1x̂l−1n+2)/N0. (4.47)

4.4.4 Combining Messages at Variable Nodes

At the variable node xn, the sum of the functions the L-values (4.45), (4.46), and (4.47)

represent also can be parametrized by the literal sum of the L-values themselves:

2
N0

∑
k

hk−n


rk −

∑
j �=n

hk−jρl−1x̂l−1j


 . (4.48)

Let us develop some intuition as to the interpretation of this L-value. Suppose the

L-value originated from a noisy observation of a binary variable in AWGN, as described

by (4.24), (4.25), and (4.26). What values of the observation x̃ln and the noise variance σ2

would be consistent with the L-value in (4.48)?

To answer this question, let us return to the iterated-decision equalizer. As shown in

(4.23), the input to the slicer x̃ln can be thought of as the sequence rn−
∑

j �=n ρl−1x̂l−1j hn−j

processed by the linear MMSE filter bln with frequency response

Bl(ω) =
(1− (ρl−1)2)H∗(ω)

(1− (ρl−1)2)|H(ω)|2 +N0
. (4.49)
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From (4.23), the slicer input can be expressed as

x̃ln =
∑
k

(
1
2π

∫ π

−π
Bl(ω)ejω(n−k)dω

)rk −
∑
j �=n

ρl−1x̂l−1j hk−j




=
∑
k

(
1
2π

∫ π

−π
(1− (ρl−1)2)H∗(ω)

(1− (ρl−1)2)|H(ω)|2 +N0
ejω(n−k)dω

)rk −
∑
j �=n

ρl−1x̂l−1j hk−j


 .

(4.50)

The corresponding mean-square error between x̃ln and xn is

σ2 =
1
2π

∫ π

−π
(1− (ρl−1)2)N0

(1− (ρl−1)2)|H(ω)|2 +N0
dω. (4.51)

If the mean-square error is approximated as independent and Gaussian, then from (4.27)

the L-value corresponding to the slicer input x̃ln is

L(xn|x̃ln)

=
2
∑

k

(
1
2π

∫ π
−π

(1−(ρl−1)2)H∗(ω)
(1−(ρl−1)2)|H(ω)|2+N0

ejω(n−k)dω
)(

rk −
∑

j �=n ρl−1x̂l−1j hk−j
)

1
2π

∫ π
−π

(1−(ρl−1)2)N0

(1−(ρl−1)2)|H(ω)|2+N0
dω

≈
2
∑

k

(
1
2π

∫ π
−π

(1−(ρl−1)2)
(1−(ρl−1)2)|H(ω)|2+N0

dω

)(
1
2π

∫ π
−πH∗(ω)ejω(n−k)dω

) (
rk −∑j �=n ρl−1x̂l−1

j hk−j

)
N0

(
1
2π

∫ π
−π

(1−(ρl−1)2)
(1−(ρl−1)2)|H(ω)|2+N0

dω

)

=
2
N0

∑
k

hk−n


rk −

∑
j �=n

ρl−1x̂l−1j hk−j


 . (4.52)

Comparing to (4.48), we see that the slicer input of the iterated-decision equalizer leads

approximately to the same L-value as the max-sum algorithm, thereby providing an intuitive

explanation as to why the iterated-decision equalizer approximates the ML solution with

mode-interleaved precoding. Without mode-interleaved precoding, the sequence x̃ln is not

guaranteed to resemble the output of an AWGN channel, and (4.52) is a less reliable result.

This L-value for xn, common to both the iterated-decision equalizer and the max-sum

algorithm, can be used to determine a new a priori distribution for xn via (4.30) and (4.31).

A new iteration begins and, regarding the assumption in Section 4.4.2, it is clear now that

the a priori distributions can indeed be interpreted as being derived from noisy observations

in light of (4.50) and (4.51).
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4.4.5 Nonbinary Variables

In this section, we discuss the generalization of the preceding analysis from binary vari-

ables to nonbinary variables. We make the mild assumptions that the equiprobable signal

constellation has zero mean and symmetry about zero.

We begin with a generalization of the L-value given in (4.26). We define the L-value for

a variable x ∈ X given x̃ as

L(x|x̃) =
∑
α∈X

α log Pr(x = α|x̃). (4.53)

For a symbol x received in independent N (0, σ2) noise, the L-value is

L(x|x̃) =
∑
α∈X

α log
f(x̃|x = α) Pr(x = α)

f(x̃)

=
∑
α∈X

α log f(x̃|x = α) +
1
|X |
∑
α∈X

α− f(x̃)
∑
α∈X

α

=
∑
α∈X

α log f(x̃|x = α)

= log
1√
2πσ

∑
α∈X

α−
∑
α∈X

α
(x̃− α)2

2σ2

= − x̃2

2σ2
∑
α∈X

α+
x̃

σ2

∑
α∈X

α2 − 1
2σ2
∑
α∈X

α3

=
x̃

σ2

∑
α∈X

α2 (4.54)

where we have used the zero mean of the constellation X in the third, fifth, and sixth

equalities, and the symmetry of X in the sixth equality. Thus, given the noise variance

σ2, there is a one-to-one mapping between x̃ and L(x|x̃), so L(x|x̃) can parametrize the
distribution of x.

We can also generalize the notion of the symbol reliability ρ(x̃). For an observation x̃

of x in independent N (0, σ2), we can use the Bayes’ least squares estimate

E[x|x̃] =
∑
α∈X

αp(x = α|x̃) (4.55)

to define ρ(x̃) as

ρ(x̃)
�
=

E[x|x̃]x̂
Es (4.56)
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with x̂ as the minimum distance symbol decision for x̃.

With these generalized definitions for the L-values and symbol reliabilities, the analysis

of Sections 4.4.2–4.4.4 still holds. In particular, the parameter ρl−1 that summarizes the

probability mass functions for each symbol xn is defined as the expectation of ρ(x̃l−1n ) with

respect to x̃l−1n ; i.e.,

ρl−1 �
= E[ρ(x̃l−1n )] (4.57)

where the expectation is with respect to the distribution

f(x̃) =
1
M

∑
x∈X

1√
2πσ

e−(x̃−x)
2/2σ2

. (4.58)

This definition is consistent with the expression for ρl−1 in the context of the iterated-

decision detector in (3.32), since

ρl−1 = E[ρ(x̃l−1n )] = E

[
E[xn|x̃l−1n ]x̂l−1n

Es

]
= E

[
E[xnx̂l−1n |x̃l−1]

Es

]
=

E[xnx̂l−1n ]
Es . (4.59)

Since x̃l−1n is directly proportional to L(xn|x̃l−1n ), the single parameter ρl−1 conveniently

summarizes information about all possible L-values at a given SNR. The quantities E[x|x̃],
ρ(x̃), and f(x̃) as a function of x̃ are shown in Fig. 4.15 for X = {−3,−1,+1,+3}.

4.5 Summary

In this chapter, we have compared the iterated-decision equalizer with the max-sum algo-

rithm on a particular factor graph with cycles. We have demonstrated that both algorithms

compute similar L-values for the symbols after each iteration provided that mode-interleaved

precoding is used. Thus, since the max-sum algorithm approximates ML detection, so does

the iterated-decision equalizer. Let us conclude with some comments on the general detec-

tion case when H is not Toeplitz.

For the general detection case in whichH is an arbitrary Q×N matrix, trellis processing

as described in Section 4.3.2 is generally not possible, but iterative processing is. The factor

graph associated with iterative processing for the general detection case is based on the
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Figure 4.15: The quantities E[x|x̃], ρ(x̃), and f(x̃) as a function of x̃, for 4-PAM where
X = {−3,−1,+1,+3}.

global function log p(x|r), where

p(x|r) ∝ p(x)f(r|x)
∝ f(r|x)

=
Q−1∏
n=0

f(rn|x) (4.60)

because of the independence of the rn’s conditioned on x. Thus, the factor graph has N

variable nodes, Q factor nodes, and edges connecting every variable node to every factor

node. The analysis in Section 4.4 is extendable in a straightforward manner to the general

detection case, so we can conclude that the iterated-decision detector approximates the ML

solution provided by the max-sum algorithm.
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Chapter 5

Iterative Detection And Decoding
Algorithms

In Section 1.2.3, we discussed the broader objective of combining detection and channel

coding to approach the mutual information of an interference channel without having chan-

nel state information at the transmitter. In this chapter, we discuss how iterated-decision

detection can be integrated into such a communication system.

The optimal receiver in a probability of error sense uses an exact maximum-likelihood

(ML) or maximum a posteriori (MAP) algorithm that treats the encoder and the interfer-

ence channel as a single product code and performs joint detection and decoding, depicted

in Fig. 1.7. However, as discussed in Section 1.2.3, the complexity of such a receiver is

usually determined by the product of the complexities of the optimal detector for the corre-

sponding uncoded system and the optimal decoder for the corresponding AWGN channel,

thus rendering such a system impractical.

The iterated-decision detector can readily be used at the receiver in cascade with a

decoder as depicted in Fig. 1.8. As in the uncoded case, the iterated-decision detector

progressively removes interference from the coded data until convergence occurs. At this

point, the decoder can process either the “soft” decisions x̃l or the “hard” decisions x̂l to

give an estimate of the original uncoded data. However, using the iterated-decision detector

in the receiver design of Fig. 1.8 does not give the best level of performance for this order

of complexity.

Instead of just one pass through the detector and decoder, the two blocks can send infor-

mation back and forth between them as shown in Fig. 5.1. With its excellent performance

and its ability to take into account a priori information, the iterated-decision detector is a
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Figure 5.1: Iterative processing using separate detection and decoding blocks.

natural candidate for the detector block. With this iterative receiver structure, complex-

ity is still on the same order as before because detection and decoding are still dealt with

separately, yet optimal joint detection and decoding can be approximated.

In this chapter, we introduce iterative detection and decoder schemes for interference

channels inspired by the message-passing interpretation of the iterated-decision detector in

Chapter 4. In Section 5.1, we discuss the use of binary codes with iterated-decision de-

tection for power-limited interference channels, which support low information rates. We

view the receiver as implementing message passing algorithms on a factor graph partitioned

into separate coding and interference subgraphs, where message passing on the interference

subgraph is efficiently implemented by the iterated-decision detector. Tools to analyze the

performance of such systems are introduced and, as with capacity-approaching codes over

AWGN channels, we find that capacity-approaching codes over interference channels also

exhibit the phenomenon that an arbitrarily small bit error probability can be achieved if

the noise level is smaller than a certain threshold. However, binary codes do not suffice to

approach the high information rates supported by bandwidth-limited interference channels.

Typically, information bits need to be mapped to symbols in a larger constellation, which

are then transmitted over the channel. In Section 5.2 we investigate the use of multilevel

coding [68] with iterated-decision detection. We observe that multistage decoding for mul-

tilevel codes is very similar to iterated-decision detection, and thus propose a combined

iterative detector and decoder. Although this combined receiver is not quite optimal, it

inspires a class of iterative detection/decoding algorithms based on the iterated-decision

detector that can potentially enable reliable transmission at rates close to the mutual infor-

mation of the channel. Since uncoded square QAM constellations as special cases of lattice

codes, the iterated-decision detector in Chapter 3 for uncoded systems is generalized in a

straightforward way to lattice-coded systems in Section 5.3.

We emphasize that the schemes presented in this chapter are not comprehensive; rather,
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they give a flavor of the kinds of low-complexity receivers that are possible in communica-

tion systems with channel coding and channel interference. As in Chapter 4, we focus on

the ISI channel case with the understanding that these results apply more generally.

5.1 Binary Codes

In Chapter 4, it was demonstrated that the iterated-decision detector can be interpreted as

an efficient message-passing algorithm on a graph. We can extend this concept further by

creating a graph that incorporates the effects of both interference and coding.

As an example, let us consider a system in which low-density parity-check (LDPC)

codewords are sent over an ISI channel. The LDPC code C with parity-check matrix



0 1 1 0 1 0

1 0 1 1 0 0

1 0 0 0 1 1

0 1 0 1 0 1


 (5.1)

is a regular binary (2,3)-LDPC code, meaning that each column of the matrix has 2 nonzero

entries and each row has 3 nonzero entries. If the codewords are sent over an ISI channel with

impulse response hn that is nonzero for n = 0, 1, 2, then the a posteriori joint probability

mass function for x given the fixed observation r is

p(x|r) ∝ p(x)f(r|x)

∝ [x ∈ C]
5∏

n=0

f(rn|x)

∝
3∏

k=0

Ik(x)
5∏

n=0

f(rn|xn−2, . . . , xn) (5.2)

where

I0(x) = [x1 ⊕ x2 ⊕ x4 = 0] (5.3)

I1(x) = [x0 ⊕ x2 ⊕ x3 = 0] (5.4)

I2(x) = [x0 ⊕ x4 ⊕ x5 = 0] (5.5)

I3(x) = [x1 ⊕ x3 ⊕ x5 = 0] (5.6)
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Figure 5.2: A factor graph representing the global function p(x|r) for an LDPC-coded
system with interference.

are indicator functions corresponding to the local parity constraints. The factor graph

representing p(x|r) is depicted in Fig. 5.2, consisting of two bipartite graphs superimposed
on one another. In fact, the graph is tripartite with two of the three vertex sets having no

edges between them.

As discussed in Section 4.2, since the factor graph representing p(x|r) has cycles the
class of message-passing algorithms with different message-passing schedules on the graph

approximate the performance of the optimal receiver in Fig. 1.7. In order to keep the

receiver at a manageable complexity, however, we restrict our attention to message-passing

schedules that rely on the fact that the overall graph consists of an interference subgraph

and a coding subgraph.

The detector/decoder in Fig. 1.8 falls within this restricted class of algorithms. The

detector block in Fig. 1.8 passes messages back and forth in parallel on the bipartite inter-

ference subgraph, which is approximately but efficiently implementable using the iterated-

decision detector. The converged L-values for x are then passed onto the decoder block,

which passes messages back and forth in parallel on the bipartite LDPC subgraph until the

L-values for x converge yet again. Hard decisions are then made on the converged L-values.

However, as depicted in Fig. 5.1, hard decisions need not be made immediately. Rather,

the converged L-values for x can be sent back to the iterative detector for further rounds of

processing. Now, supplied with a priori information from the decoder block in addition to

the original data received over the channel, the detector can output more reliable L-values

to the decoder. Thus, a hierarchy of iterations emerges—iterations within the detector
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Figure 5.3: A factor graph representing the global function p(x|r) for an RA-coded system
with interference.

block followed by iterations within the decoder block together form a single iteration of the

overall receiver structure. Note that convergence of the L-values for x within either the

detector block or the decoder block is not a necessary condition for passing the L-values to

the next block.

The concepts in our LDPC example apply more generally. Essentially, the effects of

the interference and the code can be combined into a single factor graph. The detector

block corresponds to message passing on the interference subgraph, and the decoding block

corresponds to message passing on the code subgraph. Iterations within the detector block

followed by iterations within the decoding block form an iteration in the larger system.

Figure 5.3 shows the factor graph for an interference channel with repeat-accumulate (RA)

codes [19]. An encoder for an RA code repeats each input bit a certain number of times,

permutes the result, and then forms an output sequence via an accumulator. The corre-

sponding graph for turbo codes [9] is similar in concept but a bit messier to illustrate, so is

omitted here.

5.1.1 Implementation with Iterated-Decision Detection

To implement iterative detection and decoding, we can use the iterated-decision detector

to implement message passing on the interference subgraph and any standard message-
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passing decoder to implement message-passing on the code subgraph. Thus, the iterated-

decision detector sends information to the decoder and vice-versa, as shown in Fig. 5.4. The

variables A1, E1, D1, A2, D2, E2 denote log-likelihood ratios (L-values [37]). The detector

block combines channel observations with a priori knowledge A1 and outputs extrinsic

information E1. This extrinsic information E1 is accepted as a priori knowledge A2 to the

decoder, which outputs the extrinsic information E2 that becomes the a priori knowledge

A1 of the detector block. The variables D1 and D2, defined as D2 = E2 +A2, can be used

to make decisions on the symbols. Note that this model includes the special case of an

uncoded system, for which E2 = A2. Let us now discuss how the exchanged information is

interfaced between the two blocks.

In this coded scenario, the slicer of the iterated-decision detector is eliminated, and the

vector x̃, which would otherwise have been the slicer input, is passed directly to the decoder.

As described in Theorem 3.1, the vector x̃ is the codeword x in marginally Gaussian noise,

so the decoder can interpret x̃ as the output of an AWGN channel. A message-passing

decoder requires knowledge of the AWGN variance to compute conditional probabilities

involving the received information, so (3.37) can be used to compute the variance of the

effective noise. If explicitly required by the particular decoding algorithm, the a priori

L-values A2 = E1 can be computed using (4.27).

Depending on the particular message-passing decoder used, the information available at

the output of the decoder may be either extrinsic L-values E2 or the sum of both extrinsic

and a priori L-values D2 = E2 +A2. If the latter is available, the extrinsic information E2

can be computed by subtracting off the a priori L-values A2 given by (4.27). Once available,
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the extrinsic values E2 can be converted into the single parameter ρ by computing the

mean of | tanh(E2/2)|, as suggested by (4.37) and (4.39). Furthermore, symbol-by-symbol
decisions x̂ can be made based on the extrinsic values E2. Both ρ and x̂ are then passed to

the iterated-decision detector for another iteration of processing. After a sufficient number

of iterations, symbol decisions can be made.

In the next few sections, we analyze the behavior of this iterative system by character-

izing the relationship between the inputs Al and outputs El of the detection and decoding

blocks during the lth iteration. Eventually, these relationships are used to visualize the

iterative exchange of information between the two blocks on extrinsic information transfer

(EXIT) charts [58].

5.1.2 Binary Signalling Over AWGN Channels

As in Section 4.4.1, we begin by studying some concepts associated with binary signalling

over AWGN channels, which will prove useful in the sequel. The scenario we discuss in this

section is modelled as

x̃ = x+ w (5.7)

where x ∈ {−1,+1}, w is independent noise of distribution N (0, σ2w), and x̃ is the received

symbol.

Gaussian L-Value Distributions

We begin by studying the distribution for the L-value of x̃. From (4.27), the associated

L-value for x̃ is

X̃
�
= L(x|x̃) = 2

σ2w
· x̃ = 2

σ2w
(x+ w). (5.8)

We can also express X̃ as

X̃ = µX̃x+ wX̃ (5.9)

where

µX̃ =
2
σ2w

(5.10)

and wX̃ being Gaussian distributed with mean zero and variance

σ2
X̃
=

4
σ2w

. (5.11)

141



Thus, the mean and variance of X̃ are connected by

µX̃ =
σ2
X̃

2
, (5.12)

and the conditional probability density function of the L-value X̃ is

pX̃(t|x) =
1√
2πσX̃

e−(t−(σ
2
X̃
/2)x)2/2σ2

X̃ . (5.13)

Essentially, (5.11) relates the variance σ2w of w to the variance σ2
X̃
of the corresponding

L-value X̃ for AWGN channels. As σ2w decreases, both the mean µX̃ and variance σ2
X̃
of

the L-value increase.

Mutual Information Between Channel Input and L-Values

We measure the quality of the L-values at the receiver using the mutual information between

the L-values and the channel input x. Based on the channel model of (5.9), the mutual

information between the discrete-valued channel input x and the continuous-valued L-value

X̃ is computed as [43]

IX̃ = I(x; X̃) =
1
2

∑
k=−1,+1

∫ ∞

−∞
pX̃(t|x = k) log2

2pX̃(t|x = k)
pX̃(t|x = −1) + pX̃(t|x = +1)

dt. (5.14)

Substituting (5.13) into (5.14), we obtain

IX̃ = J (σX̃) (5.15)

where the function J (·) is defined as

J (σ) = 1−
∫ ∞

−∞
1√
2πσ

e−(t−σ
2/2)2/2σ2

log2(1 + e−t)dt. (5.16)

The function J (·) is monotonically increasing in σ with

lim
σ→0

J (σ) = 0 (5.17)

lim
σ→∞J (σ) = 1, (5.18)
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Figure 5.5: Relationship between mutual information IX̃ and the probability of bit error
Pr(ε).

and thus the inverse function J −1(·) exists. Since we are dealing with binary variables, it
makes sense that the maximum mutual information is equal to one.

The mutual information IX̃ , which measures the quality of the L-values at the receiver,

can be explicitly translated into the more physically meaningful metric of bit-error rate.

For an L-value variance of σ2
X̃
, the mutual information is IX̃ = J (σX̃) and the probability

of bit error is

Pr(ε) = Q


√

σ2
X̃

4


 , (5.19)

where we have used (5.11) and the error-rate formula for binary signalling over AWGN

channels [51]. The relationship between the mutual information IX̃ and the probability of

bit error Pr(ε) is plotted in Fig. 5.5.

5.1.3 Transfer Characteristic of the Detection Block

In this section, we characterize the input/output relationship between the L-values A1 and

E1 of one iteration of the iterated-decision detector when mode-interleaved precoding is

present.
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We approximate the a priori L-values A1 of the detection block as independent Gaus-

sians conditioned on x, but this requires some justification. Since A1 = E2, we need

to examine the validity of the independent Gaussian assumption for E2, the extrinsic in-

formation of the decoder. First, increasingly Gaussian-like L-value distributions for E2

can be observed by successive simulated decoder iterations [69], a possible result of the

Gaussian-like a priori distribution for A2 and of the large number of variables involved in

the computation of E2. Second, the independence assumption is reasonable because the

extrinsic information E2 about a variable x is not influenced by a priori knowledge A2 of

the same variable, and mode-interleaved precoding and codes of long block length further

reduce any correlations.

With this approximation, A1 can be modelled as

A1 = µA1x+ wA1 (5.20)

where wA1 is an independent Gaussian random variable with variance σ2A1
and mean zero,

and

µA1 =
σ2A1

2
(5.21)

because A1 is an L-value modelled on Gaussian distributions, as in the case of (5.9) and

(5.12). The relationship (5.21) can be alternatively derived using the symmetry condition

pA1(t|x) = pA1(−t|x)etx [53], where

pA1(t|x) =
1√
2πσA1

e
−(t−(σ2

A1
/2)x)2/2σ2

A1 . (5.22)

The mutual information between the channel input x and the a priori information A1 of

the detector is thus IA1 = J (σA1) where J (·) is given by (5.16).

We now turn to the mutual information between the channel input x and the extrinsic

L-values E1. As discussed in Section 3.1, the parameter ρ appears in the optimal filters,

and the effect that A1 has on the quality of E1 is through ρ. From (4.37) and (4.27), the

reliability corresponding to each L-value A1 is

ρ

(
2A1

σ2A1

)
=
∣∣∣∣tanh

(
A1

2

)∣∣∣∣ . (5.23)
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The constant value of ρ that is used in the detection block is then the expected value of

ρ(2A1/σ
2
A1
) with respect to the distribution of A1:

ρ =
∫ ∞

−∞

∣∣tanh (A
2

)∣∣ (1
2
· 1√

2πσA1

e
−(A−σ2

A1
/2)2/2σ2

A1 +
1
2
· 1√

2πσA1

e
−(A+σ2

A1
/2)2/2σ2

A1

)
dA

= 1− 2Q


√

σ2A1

4


 . (5.24)

From Theorems 3.1 and 3.2, we know that with mode-interleaved precoding, the parameter

ρl−1 leads to the soft output

x̃l = x+ ul, (5.25)

where ul is a marginally Gaussian uncorrelated noise process with variance

σ2ul =
1
γl

. (5.26)

The associated L-values for x̃l−1 can be taken as extrinsic information El−1,

The L-values associated with x̃l are taken as the extrinsic information E1, since the

filtering that produces x̃l does not take into account the a priori information A1 via the

corresponding bit x̂l−1. and the mutual information between the channel input x and E1 is

thus IE1 = J (σE1) where

σ2E1
= 4/σ2ul = 4γl. (5.27)

Thus the relationship between IA1 and IE1 is characterized by (5.24), the channel-

specific relationship between γl and ρl−1, (5.27), and (5.16). For the iterated-decision

equalizer and the three-tap ISI channel of (3.112) with frequency-interleaved precoding, the

relationship between γl and ρl−1 is given by (3.88), (3.87), and (3.34), and the resulting

transfer characteristic is plotted in Fig. 5.6 at different SNRs. For the iterated-decision

equalizer and the asymptotic random ISI channel, the relationship between γl and ρl−1 is

given by (3.103) and (3.34), and the resulting transfer characteristic is plotted in Fig. 5.7.

There are several things to note about Figs. 5.6 and 5.7. First, IE1 is a monotonically

increasing function of IA1 , meaning that the more information there is in A1, the more

information there will be in E1. Mathematically, this is due to the monotonicity of (5.24),

(5.27), (5.16), and the relationship between γl and ρl−1. Second, for a fixed IA1 , the value

of IE1 increases with the SNR of the channel. Third, when IA1 = 1, it is interesting that
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Figure 5.6: Transfer characteristic for the iterated-decision equalizer at various SNRs, with
frequency interleaving and the three-tap ISI channel of (3.112).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A

I E

SNR = 10 dB

8 dB

6 dB

4 dB

2 dB

0 dB

Figure 5.7: Transfer characteristic for the iterated-decision equalizer at various SNRs, with
the asymptotic random ISI channel.
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IE1 < 1 for all finite SNRs. In other words, the extrinsic information E1 contains less

knowledge of x than the perfect a priori knowledge of x that is input to the detection

block. The reason for this phenomenon is that the perfect a priori information is used

only to cancel out the interference. The extrinsic information E1, which is then based on

the received signal with all the interference removed, cannot be perfect because of noise

originating from the channel. Fourth, when IA1 = 1 all interference is cancelled, so IE1

is equal in both Figs. 5.6 and 5.7 for the same SNR, emphasizing the fact that channels

with the same Frobenius norm have the potential to perform the same. However, the slopes

of the transfer characteristics of different channels at the same SNR indicate the degree

of “difficulty” with which the iterated-decision detector removes interference. The steeper

slopes in Fig. 5.6 show that the iterated-decision detector cancels more interference for the

channel corresponding to Fig. 5.7.

5.1.4 Transfer Characteristic of the Decoding Block

This extrinsic information E1 of the detector is taken to be the a priori information A2 for

the message-passing decoder. The transfer characteristic of the decoding block describes the

relationship between A2 and the decoder extrinsic output E2 in terms of mutual information.

In this section, we focus on LDPC codes because not only do they give fairly high coding

gains, but the transfer characteristic for sum-product decoding (described in Section 4.1) is

easily computed using density evolution with Gaussian approximations [18].

Let us consider a regular binary (dv, dc)-LDPC code, where dv is the number of neighbors

a variable node has and dc is the number of neighbors a check node has. Under sum-product

decoding, messages are sent back and forth between variable and check nodes. Typically,

messages are sent alternatingly in parallel from variable to check nodes and back from check

to variable nodes. A variable node receives messages from its dv neighbors, processes them,

and sends messages back to all the neighbors. Similarly, a check node receives dc from its

neighbors, processes them, and sends messages back. Each output message that is sent

from a node is a function of all incoming messages to that node, except for the one that

arrived on the edge over which the output message is sent. This restriction is necessary to

produce the correct marginal a posteriori probabilities on cycle-free graphs. This two-step

procedure is performed repeatedly. After n iterations, the information at each variable node

summarizes information collected from its depth-2n subgraph.

147



We use the “local tree assumption” that the girth of the graph is large enough so

that the subgraph associated with a variable node is cycle-free. The incoming messages to

every node can then be taken to be independent. The assumption is valid because of the

concentration theorem of [53], which states that for almost all randomly constructed long

codes and for almost all inputs, with high probability the decoder performance will be close

to the performance one can observe on the corresponding cycle-free graph.

When all variables in the code subgraph are binary and all functions (except single-

variable functions) are parity checks, the node processing in Fig. 4.3 can be greatly simpli-

fied. LDPC codes and RA codes both fall within this category, as depicted in Figs. 5.2 and

5.3 respectively. The simplification comes from being able to parametrize binary probability

mass functions using a single parameter, typically the log-likelihood ratio (L-value). If v is

the L-value message sent from a variable node to a check node, then

v =
dv−1∑
i=0

ui (5.28)

where ui, i = 1, 2, . . . , dv − 1 are the incoming L-values from all of the neighbors of the

variable node except for the neighbor to receive the message, and u0 is the L-value received

from outside of the code subgraph. (For coding over AWGN channels, u0 is the L-value

associated with the noisy channel observation. For coding over interference channels, u0 is

the L-value associated with the output of a detection iteration.) The corresponding rule

for computing the messages sent from a check node to a variable node, known as the “tanh

rule,” is

tanh
u

2
=

dc−1∏
j=1

tanh
vj
2

(5.29)

where vj , j = 1, 2, . . . , dc−1 are the incoming L-values and u is sent on the remaining edge.

Density evolution [53] is a tool that analytically determines the convergence behavior

of ensembles of asymptotically long codes. First, without loss of generality, the all-zero

codeword is assumed to be sent. The observed L-value u0 is considered a random variable

whose density is determined by fixed channel parameters (e.g. noise variance). Then the

densities of subsequent messages are iteratively computed from the relationships between

the random variables given in (5.28) and (5.29). Eventually, the density of the L-value v

converges to a density with a finite probability of error, or to a “point mass at infinity,” with
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Figure 5.8: The density of the message from a variable node converges either to (a) a density
with a finite probability of error or (b) a “point mass at infinity.”

zero probability of error, as illustrated in Fig. 5.8. For binary erasure channels (BECs) the

message densities are one-dimensional and analysis is tractable, but for most other channels

including the AWGN channel, the message densities are infinite dimensional and density

evolution is too complicated to perform.

Density evolution is made tractable in [18] by approximating the message densities as

Gaussians for regular LDPC codes or Gaussian mixtures for irregular LDPC codes using

reasoning similar to that in Section 5.1.3. A Gaussian is specified by its mean and variance,

so those are the only two parameters that need to be tracked. Furthermore, we can enforce

the symmetry condition that f(x) = f(−x)ex where f(x) is a message density for an L-

value [52], which is preserved under density evolution for all messages. This condition

translates to σ2 = 2m for an N (m,σ2) Gaussian variable. Thus, only the mean needs to be

tracked. From (5.28), the mean of v during the lth iteration is

ml
v = mu0 + (dv − 1)ml−1

u (5.30)

where mu0 is the mean of u0 and mu is the mean of the i.i.d. random variables ui for

1 ≤ i < dv. The initial value m0
u is set to zero. From (5.29), the update rule for mu is [18]

ml
u = φ−1

(
1− [1− φ(ml

v)]
dc−1
)

(5.31)

where

φ(x) =


 1− 1√

4πx

∫∞
−∞ tanh

(
u
2

)
e−

(u−x)2

4x du for x > 0

1 for x = 0
(5.32)
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An infinite number of decoding iterations is assumed.

is a continuous and monotonically decreasing function on [0,∞), with φ(0) = 1 and φ(∞) =
0. A good approximation of φ(x) that we use is [18]

φ(x) ≈

 e−0.4527x0.86+0.0218 for x < 10√

π
xe

−x
4 (1− 10

7x) for x ≥ 10.
(5.33)

Figure 5.9 shows the transfer characteristic for various regular LDPC codes. Each point

of a curve is generated by fixing the variance 2/mu0 of the noise in which x is observed. By

(5.11), this translates to a variance of 2mu0 for the initial L-value density of u0. Thus, the

mutual information between the channel input x and the L-values A2 is IA2 = J (
√
2mu0),

where J (·) is given in (5.16). After using (5.30) and (5.31) iteratively until convergence, the
mutual information between the transmitted bits x and the L-values E2 is IE2 = J (

√
2m∞

v ).

Figure 5.9 clearly shows the well-documented threshold phenomenon, in which an arbitrarily

small error probability can be achieved if IA2 is above (i.e. the noise level is below) a certain

threshold as the block length goes to infinity [30, 31, 45, 53].
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5.1.5 EXIT Charts

Since information is iteratively passed from the output of the detector to the input of the

decoder and then from the output of the decoder to the input of the detector, it is helpful

to plot the transfer characteristic of the detection block on the same graph as the transfer

characteristic for the decoder, except with the axes swapped. The presence of both curves

on the same graph allows visualization of the exchange of extrinsic information. This kind

of graph is called an extrinsic information transfer (EXIT) chart [58].

To compute the trajectory that represents the exchange of information, we initialize to

IA0
1
= 0 and l = 1 and repeatedly perform the following sequence of computations:

IEl
1
= T1(IAl−1

1
) (5.34)

IAl
2
= IEl

1
(5.35)

IEl
2
= T2(IAl

2
) (5.36)

IAl
1
= IEl

2
(5.37)

where l is increased to l+1 after each iteration and T1(·) and T2(·) are the transfer charac-
teristics of the detector and decoder respectively. Thus, the relationship between IEl+1

2
and

IEl
2
is

IEl+1
2

= T2(T1(IEl
2
)). (5.38)

On the EXIT chart, this relationship corresponds to successively moving upwards and then

to the right between the two curves characterizing the detection and decoding blocks, with

each “step” of the trajectory being one iteration of the iterated-decision detector followed

by decoder iterations until convergence of densities. The mutual information continues to

increase until IEl+1
2

= IEl
2
or, equivalently, T−1

2 (IE2) = T1(IE2).

Figure 5.10 shows an EXIT chart for the iterated-decision equalizer combined with a

sum-product decoder, for a (5, 10)-regular LDPC code and the asymptotic random ISI

channel at a rate-normalized SNR of SNRnorm = 3 dB. Rate-normalized SNR allows us to

compare systems with different modulations schemes; the definition we use here is the one

for systems in which the transmitter does not do water pouring, discussed in Appendix D.

The EXIT chart predicts that codewords are decoded with only two iterations. In compar-

ison, ten simulated trajectories for coded block lengths of N = 10000 and random channels
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Figure 5.10: EXIT chart for the iterated-decision equalizer and an iterative decoder, for a
(5, 10)-regular LDPC code and the asymptotic random ISI channel at an SNRnorm of 3 dB.

of length 1024 are shown in Fig. 5.11, superimposed on the theoretical transfer characteristic

curves. These simulated trajectories are plotted by translating simulation results into mu-

tual information values. We compute IAl
2
= IEl

1
from J (σEl

1
), where J (·) is given by (5.16)

and σEl
1
is computed by (5.27) and (3.26). The values IAl

1
= IEl

2
are computed by taking

the simulated probability of bit error Pr(εl) at the decoder output, numerically solving for

σ2
El

2
in the equation (5.19), and then computing J (σEl

2
). Note that it is not practically

feasible to alternatively compute σ2
El

2
by taking the sample mean or variance of El

2 because

of the possibility of L-values at infinity. Looking at Fig. 5.11, we note that there is some

variance amongst the trajectories—a few of the trajectories show that the codeword was

decoded on the first iteration, while the rest show that the codeword was decoded in two,

as predicted by Fig. 5.10. Nevertheless, the theoretical trajectory is a fairly good indicator

of what to expect experimentally.

Figure 5.12 plots the transfer characteristic for the iterated-decision equalizer at different

SNR for the asymptotic random channel, along with the characteristic for the decoding of a

(5, 10)-regular LDPC code. These curves indicate that an arbitrarily small error probability

can be achieved if the SNR is larger than a certain threshold—in this example, the threshold
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Figure 5.11: Ten simulated trajectories for the iterated-decision equalizer and an iterative
decoder, for a (5, 10)-regular LDPC code and a random ISI channel of length 1024 at an
SNRnorm of 3 dB.
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Figure 5.12: EXIT chart for the iterated-decision equalizer and an iterative decoder, for a
(5, 10)-regular LDPC code and the asymptotic random ISI channel.
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Figure 5.13: Simulated performance of the iterated-decision equalizer and an iterative de-
coder, for a (5, 10)-regular LDPC code and a random ISI channel of length 1024.

is slightly larger than an SNRnorm of 2 dB. By numerical simulation, the exact threshold

is determined to at an SNRnorm of 2.03 dB. At SNRs lower than this threshold, the curves

intersect or “pinch-off,” corresponding to a final error probability that is bounded away

from zero. The simulated performance of the iterated-decision equalizer and a decoder for

a (5, 10)-regular LDPC code for coded block lengths of N = 10000 and random channel

lengths of 1024 is shown in Fig. 5.13 as a function of SNRnorm. The simulations show that

the bit-error rate begins to drop significantly at an SNRnorm slightly greatly than 2 dB.

With block lengths longer that N = 10000, we would expect the curve to drop even more

steeply. Interestingly, the corresponding pinch-off for a (5, 10)-regular LDPC code over an

AWGN channel is 2.01 dB when normalized to the capacity of the AWGN channel [18].

The iterated-decision detector for uncoded systems, discussed in Chapter 3, corresponds

to the degenerate case in which the decoder is the identity operator E2 = A2. Thus,

IE2 = IA2 and the a priori information A1 used in the next iteration is simply equal to the

extrinsic information E1 from the previous iteration. Figure 5.14 shows the EXIT chart for

the iterated-decision equalizer operating at an SNR of 6 dB in an uncoded system. We have

already noted that with perfect a priori information A1, the extrinsic mutual information
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IE1 < 1. Thus in this uncoded case, the mutual information value at which both curves

intersect is always less than unity for finite SNR.

5.1.6 Comparison to Turbo Equalization

The combination of iterated-decision detection and decoding is similar to turbo equaliza-

tion [20], but there are some intriguing differences. First, interleaving is almost always a

component of turbo equalization to decorrelate error events introduced by the equalizer so

that the decoder effectively sees an AWGN channel. The counterpart to interleaving in

the combined iterated-decision detector and decoder is mode-interleaved precoding, which

creates an effective AWGN channel for the decoder as shown in Chapter 3. Second, separate

likelihoods are kept for different symbols in the equalization portion of turbo equalization.

However, for the iterated-decision detector, the same likelihood is kept for all symbols be-

cause each symbol effectively sees the same statistical AWGN channel. While it would be

interesting in future to investigate the performance loss of the iterated-decision detector in

keeping only hard decisions and an average symbol reliability instead of individual sym-

bol reliabilities, we suspect that with mode-interleaved precoding the loss is asymptotically
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negligible. This would make the iterated-decision detector attractive not only in applica-

tions where low complexity is required, but also in applications where memory to store

symbol reliabilities is limited, or where the message-passing algorithm is distributed and

communication between nodes is costly.

The turbo equalization method in [33] contains a soft ISI canceller that has similarities

to the combined iterated-decision detector and decoder, but is not optimized to perform

as well. First, while soft information is indeed supplied to the filter in [33] corresponding

to dl[n], the soft information is not incorporated into the design of the filters bl[n] and

dl[n]. Like the multistage detection of Fig. 1.15, the filter bl[n] is simply a matched filter

and the noncausal filter dl[n] is the cascade of the channel and matched filter, the implicit

assumption being that perfect hard decisions, not soft information, are supplied to dl[n].

Second, a scaling factor is chosen in [33] to minimize the mean-square error between the

transmitted symbols x[n] and the equalizer outputs x̃l[n]. The resulting soft equalizer

output x̃l[n] is taken directly in [33] as the a priori L-value that is input to the decoder

component. As shown in Section 4.4.1, the L-value should be related to x̃l[n] by a scaling

factor that is inversely proportional to the effective noise variance. Moreover, the bias of the

MMSE scaling factor needs to be taken into account. This second difference was corrected

in [60].

The authors in [60] additionally propose a turbo equalization method that uses a soft

ISI canceller whose filter is time-varying, because the coefficients are based on separate

reliabilities for each symbol.

5.2 Multilevel Codes

For channels with high SNR, high rate codes are required to approach fundamental in-

formation theoretic limits. Furthermore, for interference channels, detection and decoding

have to integrated at the receiver. In this section, we discuss the combination of iterated-

decision detection with multilevel codes [68]. In Sections 5.2.1 and 5.2.2, we review mul-

tilevel coding and decoding for AWGN channels. For interference channels, the similarity

between iterated-decision detection and multistage decoding inspires us to merge the two

together in Section 5.2.3, and the message passing interpretation in Section 5.1 is extended

to iterated-decision detection with multilevel codes in Section 5.2.4.

156



5.2.1 Multilevel Encoding

Multilevel codes are high-rate, nonbinary codes that result from the combination of multiple

binary codes. The multilevel encoder is depicted in Fig. 5.15. A vector of information

bits p is partitioned into L smaller vectors p1,p2, . . . ,pL. These vectors are input to a

corresponding set of encoders, producing a set of coded vectors q1,q2, . . . ,qL. The encoders

may be for different types of codes (block, convolutional, turbo, etc.) with different rates,

but the length of all the ql’s must be equal for l = 1, 2, . . . L. To satisfy this constraint, p

must obviously be partitioned into the pl’s according to the different encoder rates. The

code rate R of the overall scheme is equal to the sum of the individual code rates Rl, i.e.,

R =
L∑
l=1

Rl. (5.39)

The final stage of the encoder maps q1,q2, . . . ,qL to a vector of 2L-ary symbols. Each

set of L bits that are located in the same position within the ql’s forms a binary address

(b1, b2, . . . , bL) that is uniquely mapped to a symbol x in the 2L-ary alphabet X . Many
different mappings are possible, and Fig. 5.16 shows six different mappings for the 8-PAM

constellation. Usually, the mapping is derived by successively partitioning the signal set

X into subsets. Block and Ungerboeck partitioning of the 8-PAM signal constellation are

depicted in Figs. 5.17 and 5.18 respectively. Let us define the subset X (b1, · · · , bl−1) �
=

{x|b1, · · · , bl−1}. Then in the first step, at partition level 1, the signal set X is divided into

X (b1 = 0) and X (b1 = 1). At each subsequent level i ≤ L, the signal set X (b1, · · · , bl−1) is
further partitioned into X (b1, · · · , bl−1, 0) and X (b1, · · · , bl−1, 1). After the Lth partition,
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Figure 5.15: A multilevel encoder.
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Figure 5.17: Block partitioning for 8-PAM.
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Figure 5.18: Ungerboeck partitioning for 8-PAM.
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all subsets contain only one signal point. As we shall discuss later, the choice of partitioning

scheme affects the properties of the coded modulation system.

5.2.2 Decoding for AWGN Channels

If we turn to information theory, not only do we discover a convenient decoding algorithm,

but we also gain insight on how to design multilevel codes. The physical channel is char-

acterized by the set {f(r|x)|x ∈ X} of conditional probability density functions of the
received point r given the transmitted symbol x. Since the mapping from binary addresses

(b1, b2, . . . , bL) to symbols x is reversible, the mutual information between (b1, b2, . . . , bL)

and the AWGN channel output r is equal to the mutual information between x and r.

Furthermore, using the chain rule of mutual information, we have that

I(R;X) = I(R;B1, B2, . . . , BL)

= I(R;B1) + I(R;B2|B1) + · · ·+ I(R;BL|B1, B2, . . . , BL−1). (5.40)

The terms of the equation give the interpretation that the physical channel can be decom-

posed into L parallel theoretical subchannels. The lth theoretical subchannel is responsible

for the transmission of bl, provided that b1, . . . , bl−1 are known. Figure 5.19 compares the

physical channel to the set of theoretical subchannels for block labelling. By the chain rule

of mutual information, both scenarios have the same mutual information. However, the

physical channel in Fig. 5.19(a) maps the entire binary address to a signal point x that is

transmitted over the noisy channel, whereas the lth theoretical subchannel in Fig. 5.19(b)

maps the bit bl to one of the signal points in X (b1, . . . , bl). Thus, the mapper for the lth

theoretical subchannel depends upon the bits b1, . . . , bl−1 of lower levels. For example, the

mapper for b3 in Fig. 5.19(b) is determined by b1b2 = 10.

Assuming all symbols in X are equiprobable, the mutual information of the lth theoret-

ical subchannel can be computed as

I(R;Bl|B1, B2, . . . , Bl−1) = Eb1···bi−1 [I(R;Bl|b1, b2, . . . , bl−1)]
=

1
2l−1

∑
b1···bl−1

I(R;Bl|b1, b2, . . . , bl−1). (5.41)
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Each term in the sum can in turn be computed as [43]

I(R;Bl|b1, b2, . . . , bl−1)
=

1
2

∫ ∞

−∞
f(r|b1 · · · bl−10) log f(r|b1 · · · bl−10)

1
2f(r|b1 · · · bl−10) + 1

2f(r|b1 · · · bl−11)
dr

+
1
2

∫ ∞

−∞
f(r|b1 · · · bl−11) log f(r|b1 · · · bl−11)

1
2f(r|b1 · · · bl−10) + 1

2f(r|b1 · · · bl−11)
dr (5.42)
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Figure 5.20: A multistage decoder.

where

f(r|b1 · · · bl) = 1
2L−l

∑
x∈X (b1···bl)

f(r|x). (5.43)

The chain rule of mutual information in (5.40) suggests a method of decoding multilevel

codes. Multistage decoders, depicted in Fig. 5.20, decode the component codes one at a

time, generating decisions in the order of q̂1, q̂2, . . . , q̂L. The lth decoder processes not

only the received vector r but also the decisions q̂1, q̂2, . . . , q̂l−1 of previous stages. Since

the mutual information I(R;X) of a 2L-ary modulation scheme is equal to the sum of the

mutual information of the theoretical parallel subchannels, the rate I(R;X) is achievable

via multilevel encoding and multistage decoding if and only if the individual rates are chosen

to be equal to the mutual information of the corresponding theoretical subchannels, i.e.,

Rl = I(R;Bl|B1, B2, . . . , Bl−1). (5.44)

Although multistage decoding does not take into account higher levels when decoding lower

levels, it suffices to achieve I(R;X) as longer as the rates are appropriately chosen. Note

that both the value I(R;X) and the achievability of I(R;X) are not affected by the mapping

scheme selected; the choice of mapping scheme affects only the rates Rl of the theoretical

subchannels. This can be observed in Figs. 5.21 and 5.22, which plot the various rates for

block and Ungerboeck partitioning respectively. To achieve an overall rate of 2.5 bits/dim,

the optimum individual rates for block partitioning are R1 = 0.71, R2 = 0.86, and R3 =

0.93, and the optimum individual rates for Ungerboeck partitioning are R1 = 0.52, R2 =

0.98, and R3 = 1. Figure 5.23 shows I(R;X) using PAM constellations of different sizes,

corresponding to codes with different numbers of levels. This plot, which is similar to one

appearing in [62], shows that the SNR gap between the achievable rate I(R;X) and capacity

asymptotically approaches 1.53 dB.
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A much wider variety of rate combinations can be used to achieve the rate I(R;X) pro-

vided that joint maximum-likelihood decoding is used instead of low-complexity multistage

decoding. From well known results in multiuser information theory, the rate I(R;X) is

achievable via multilevel encoding and joint maximum-likelihood decoding if and only if the

rates Rl satisfy the following conditions:

L∑
l=1

Rl = I(R;B1, B2, . . . , BL) (5.45)

∑
l∈S

Rl ≤ I(R; {Bl|l ∈ S}|{Bj |j ∈ S̄}) (5.46)

for all S ⊂ {1, 2, . . . , L} of indices, where S̄ is the complementary set of S. The achievable
rate region for two-level coding is shown in Fig. 5.24. The dot corresponding to the rate pair

(R1, R2) = (I(R;B1), I(R;B2|B1)) corresponds to multistage decoding in which the first

component code is decoded first, while the dot corresponding to the rate pair (R1, R2) =

(I(R;B1|B2), I(R;B2)) corresponds to multistage decoding in which the other component

code is decoded first. The diagram clearly shows that while multistage decoding can achieve

two rate pairs that add up to the maximum rate I(R;X), an infinite number of alternative
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Figure 5.24: Achievable rate region for two-level coding.

rate pairs in between the two dots can also sum up to I(R;X). These other rate pairs

can be achieved with multistage decoding via time sharing, in which part of the time

(R1, R2) = (I(R;B1), I(R;B2|B1)) and part of the time (R1, R2) = (I(R;B1|B2), I(R;B2)).

Without time sharing though, the first stage of a multistage decoder is always unsuccessful

because R1 > I(R;B1) and R2 > I(R;B2), and these other rate pairs are only achievable

with joint ML decoding.

5.2.3 Iterated-Decision Detection and Multistage Decoding

A comparison of Fig. 5.20 with Fig. 3.2 suggests a natural way to combine multistage

decoding with iterated-decision detection when dealing with an interference channel rather

than an AWGN channel. Figure 5.25 shows a version of the iterated-decision detection in

which the symbol-by-symbol slicer has been replaced by the decoder for the lth component

code. The decisions from the previous stages or iterations of the receiver, q̂1, . . . , q̂l−1, are

assumed to be correct and are used to form x̂l−1(q̂1, . . . , q̂l−1), an estimate of x. In turn,

x̂l−1(q̂1, . . . , q̂l−1) is used to form an estimate of the interference to be subtracted from the

lth decoder input. For example, if the block partitioning of Fig. 5.17 is used to map the
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Figure 5.25: Multistage decoding combined with iterated-decision detection.

bits in q1, . . . ,qL to 2L-PAM symbols in x, then

x̂l−1(q̂1, . . . , q̂l−1) ∝
l−1∑
k=1

2L−k(2q̂k − 1). (5.47)

Similarly, if the Ungerboeck partitioning of Fig. 5.18 is used, then

x̂l−1(q̂1, . . . , q̂l−1) ∝
l−1∑
k=1

2k−1(2q̂k − 1). (5.48)

We focus on block and Ungerboeck partitioning in this section because the mappers can

be expressed as linear combinations of q1, . . . ,qL, which is naturally compatible with this

version of a combined receiver.

With this definition for x̂l−1, the optimal filters Bl and Dl have to be modified slightly.

We define the normalized correlation between x and x̂l−1 as

E[x · x̂l−1† ]√Es
√Eŝl−1

= ρl−1 �
= diag{ρl−11 , ρl−12 , . . . , ρl−1P } (5.49)

where the energy of the symbols in x and x̂l−1 are Es and Eŝl−1 respectively. The variance

of the effective noise at the slicer input in (3.7) becomes

var uli

= N0bl
†
i b

l
i + Es

(
dli − ρl−1

†
√

Es
Eŝl−1

(bl
†
i H− e†i )

†
)†(

dli − ρl−1
†
√

Es
Eŝl−1

(bl
†
i H− e†i )

†
)

+Es(bl†i H− e†i )(I− ρl−1ρl−1
†
)(bl

†
i H− e†i )

†. (5.50)
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The expression for the optimal filter Dl is thus

Dl = ρl−1
†
√

Es
Eŝl−1

(
Bl†H− I

)†

=
E[x · x̂l−1† ]
Eŝl−1

(
Bl†H− I

)†
=

(
E[(x− x̂l−1) · x̂l−1† ]

Eŝl−1

+ I

)(
Bl†H− I

)†
=
(
Bl†H− I

)†
(5.51)

where we have used (5.49) and the fact that the correlation between the error x− x̂l−1 and

x̂l−1 is zero for both block and Ungerboeck partitioning, the reason being that x− x̂l−1 is a

function of ql, . . . ,qL and x̂l−1 is a function of q1, . . . ,ql−1. The expression (3.23) for the

optimal filter Bl remains the same, but the expression Es(I − ρl−1ρl−1
†
) can be simplified

to

Es(I− ρl−1ρl−1
†
) = Es

(
I− E[x · x̂l−1† ](E[x · x̂l−1† ])†

EsEŝl−1

)

= EsI− (E[(x− x̂l−1) · x̂l−1† ] + Eŝl−1I)(E[(x− x̂l−1) · x̂l−1† ] + Eŝl−1I)†

Eŝl−1

= (Es − Eŝl−1)I (5.52)

where again we have used (5.49) and the fact that the correlation between the error x− x̂l−1

and x̂l−1 is zero for both block and Ungerboeck partitioning.

These modifications make intuitive sense under the assumption that decoder l perfectly

decodes ql. With perfect knowledge of q1, . . . ,ql−1 at the receiver, Dl creates a perfect

estimate of the interference caused by q1, . . . ,ql−1. With the interference subtracted off,

it is then as though the transmit vector x is a function only of ql, . . . ,qL; i.e., for block

partitioning

x ∝
L∑
k=l

2L−k(2qk − 1) (5.53)

and for Ungerboeck partitioning

x ∝
L∑
k=l

2k−1(2qk − 1). (5.54)
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The energy of the symbols in x is then Es−Eŝl−1 , where the value of Eŝl−1 depends on which

partitioning scheme is used. An iteration of the combined multistage decoder and iterated-

decision detector in Fig. 5.25 is thus equivalent to the unbiased MMSE linear detector Bl†

in cascade with the lth decoder.

We now investigate the rate achievable with this detection/decoding scheme. From

Theorem 3.1, we know that the effective noise process at the input to the lth decoder is

marginally Gaussian. Assuming all symbols in X are equiprobable, the achievable rate of

the lth iteration can be computed as

I(X̃;Bl|B1, B2, . . . , Bl−1) = Eb1···bl−1

[
I(X̃;Bl|b1, b2, . . . , bl−1)

]
=

1
2l−1

∑
b1···bl−1

I(X̃;Bl|b1, b2, . . . , bl−1). (5.55)

Each term in the sum can in turn be computed as [43]

I(X̃;Bl|b1, b2, . . . , bl−1)
=

1
2

∫ ∞

−∞
f(x̃|b1 · · · bl−10) log f(x̃|b1 · · · bl−10)

1
2f(x̃|b1 · · · bl−10) + 1

2f(x̃|b1 · · · bl−11)
dx̃

+
1
2

∫ ∞

−∞
f(x̃|b1 · · · bl−11) log f(x̃|b1 · · · bl−11)

1
2f(x̃|b1 · · · bl−10) + 1

2f(x̃|b1 · · · bl−11)
dx̃ (5.56)

where

f(x̃|b1 · · · bl) = 1
2L−l

∑
x∈X (b1···bl)

f(x̃|x). (5.57)

To gain insight into the rates achievable using the combined multistage decoder and

iterated-decision detector, we look at a couple of representative channels. These examples

demonstrate that the combination of multistage decoding and iterated-decision detection

at the receiver does not necessarily achieve the maximum possible information rate for all

channels and, in fact, may be quite far from the maximum rate.

We first study the case of the random ISI channel, for which the variance of the effective

noise process at the decoder input is given by (3.102). In Fig. 5.26, we plot the theoretical

rates supported by each iteration of the combined multistage decoder and iterated-decision

equalizer for an 8-PAM constellation addressed using block partitioning. Figure 5.27 shows

the rates achievable using PAM constellations of different sizes, corresponding to codes with

different numbers of levels. From the figure, the SNR gap between the achievable rate and
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the mutual information of the ISI channel (with no water pouring at the transmitter) is

approximately 2.8 dB. Although 1.53 dB of the gap can be attributed to shaping loss due

to the use of a discrete constellation rather than a continuous Gaussian distribution [26],

the remaining 1.3 dB indicates that the combined multistage decoder and iterated-decision

equalizer with block partitioning does not achieve the maximum information rate possible

over the random ISI channel. The reason why the combination of multistage decoding and

iterated-decision detection in Fig. 5.25 does not asymptotically get to within 1.53 dB of

Iint is as follows. As mentioned earlier, an iteration of the combined receiver is equivalent

to an unbiased MMSE linear detector in cascade with the lth decoder. However, with an

MMSE linear detector, an excessive amount of residual interference is treated as noise by

the decoder, so information in the structured interference is lost.

We also study the corresponding rates for the random ISI channel with Ungerboeck

partitioning in Figs. 5.28 and 5.29, and an interesting observation can be made. Unlike

the AWGN channel case in which I(R;B1B2B3) is equal for both block partitioning and

Ungerboeck partitioning, in the ISI channel case a comparison of Figs. 5.27 and 5.29 reveals

that I(X̃;B1B2B3) is not equal. In fact, the SNR gap between the achievable rate of the

proposed scheme and the mutual information of the random ISI channel is at least 10 dB

for Ungerboeck partitioning, making it significantly worse than block partitioning. Unger-

boeck and block partitioning differ in the order the component codes are decoded, which

affects the achievable rate. Block partitioning treats the less significant bits as interference

and decodes the most significant bits first, while Ungerboeck partitioning treats the most

significant bits as interference and decodes the least significant bits first. Thus, Ungerboeck

partitioning loses more information since more interference is treated as unstructured noise

by the decoder than with block partitioning.

We next look at the case of the square i.i.d. Gaussian matrix channel, for which the

variance of the effective noise process at the decoder input is given by (3.58). Figure 5.30

shows the rates achievable using block partitioning with PAM constellations of different

sizes, corresponding to codes with different numbers of levels. The SNR gap between the

achievable rate and the mutual information of the channel is approximately 7–8 dB, which

reiterates the fact that the combined multistage decoder and iterated-decision detector

generally does not achieve the maximum possible rate for a given channel.
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partitioning over the limiting random ISI channel.

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

SNR (dB)

R
at

e 
(b

its
 p

er
 d

im
)

I
int

 →

1−Level Code

2−Level Code

4−Level Code

6−Level Code

8−Level Code

10−Level Code

Figure 5.29: Information rates supported by the combined multistage decoder and iterated-
decision equalizer for Ungerboeck partitioning over the limiting random ISI channel.
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Figure 5.30: Information rates supported by the combined multistage decoder and iterated-
decision detector for block partitioning over the limiting i.i.d. Gaussian matrix channel with
β = N/Q = 1.

5.2.4 A Class of Iterative Detection/Decoding Algorithms

The previous section showed that rates close to the mutual information of an interference

channel can be achieved with multilevel codes and the combined multistage decoder and

iterated-decision detector. Since this combined receiver achieves high rates by simply decod-

ing each component code exactly once and in sequence, even higher rates may be attainable

with joint ML detection and decoding.

As an extension to Section 5.1, consider the a posteriori joint probability mass function

for x given the fixed observation r:

p(x|r) ∝ p(x)f(r|x)
∝ [x ∈ C]f(r|x)
= [q1 ∈ C1][q2 ∈ C2] · · · [qL ∈ CL]f(r|q1q2 · · ·qL) (5.58)

where C is the multilevel code and Cl is the lth component code. Thus, the corresponding

factor graph consists of L component code subgraphs and an interference subgraph, con-
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nected together via L sets of binary variable nodes, one for each component code. This

factor graph defines a class of message-passing algorithms that improve upon the combined

multistage decoder and iterated-decision detector of the previous section by allowing bits in

all coding levels to be iteratively decoded, rather than decoded only once in sequence. Since

the graph has cycles, the class of algorithms approximate joint optimal detection and de-

coding. Although an infinite number of message-passing schedules are possible, we restrict

attention to ones in which message-passing is essentially limited to within the subgraphs,

with information exchanged periodically between the interference subgraph and the L code

subgraphs.

To implement this message-passing detector and decoder, we can use the iterated-

decision detector to implement message passing on the interference subgraph and L standard

message passing decoders to implement message passing on the code subgraphs.

When extrinsic L-values for all the bits are passed from the decoders to the iterated-

decision detector, the L-values can be summarized into a single parameter ρ and a set of sym-

bol decisions x̂. The symbol decisions can be made by making hard decisions b̂1, b̂2, · · · , b̂L
on the bits b1, b2, · · · , bL of each symbol in the multilevel code. The computation of ρ, how-
ever, is less straightforward. To compute ρ, we compute the individual symbol reliability

for every symbol and then take the average over all symbols. A variation of the individual

symbol reliability expression (4.56) is

ρ(L(b1), L(b2), . . . , L(bL)) =
E [X (b1, b2, . . . , bL)|L(b1), L(b2), . . . , L(bL)]X (b̂1, b̂2, · · · , b̂L)

Es ,

(5.59)

where L(bl) denotes the extrinsic L-value of the bit bl from the lth decoder, and Es is the
average symbol energy of the multilevel symbols. For the special case of block partitioning,

the Bayes’ least squares estimate of X (b1, b2, . . . , bL) given L(b1), L(b2), . . . , L(bL) is

E [X (b1, b2, . . . , bL)|L(b1), L(b2), . . . , L(bL)]

= E

[
L∑
l=1

2L−lbl|L(b1), L(b2), . . . , L(bL)
]

=
L∑
l=1

2L−lE [bl|L(b1), L(b2), . . . , L(bL)]

=
L∑
l=1

2L−lE [bl|L(bl)] . (5.60)
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If the L-value distributions are approximated as Gaussian as in Section 5.1.3, then we can

use (4.35) and (4.37) to write

E [X (b1, b2, . . . , bL)|L(b1), L(b2), . . . , L(bL)]

=
L∑
l=1

2L−l
∣∣∣∣tanh

(
L(bl)
2

)∣∣∣∣ sgn(L(bl)). (5.61)

Substituting back into (5.59), we have

ρ(L(b1), L(b2), . . . , L(bL))

=

(∑L
l=1 2

L−l
∣∣∣tanh(L(bl)2

)∣∣∣ sgn(L(bl)))X (b̂1, b̂2, · · · , b̂L)
Es

=

(∑L
l=1 2

L−l
∣∣∣tanh(L(bl)2

)∣∣∣ sgn(L(bl)))(∑L
l=1 2

L−lsgn(L(bl))
)

Es . (5.62)

Similarly, for Ungerboeck partitioning

ρ(L(b1), L(b2), . . . , L(bL))

=

(∑L
l=1 2

l−1
∣∣∣tanh(L(bl)2

)∣∣∣ sgn(L(bl)))(∑L
l=1 2

l−1sgn(L(bl))
)

Es . (5.63)

By taking the average of all the symbol reliabilities ρ(L(b1), L(b2), . . . , L(bL)), we obtain

the parameter ρ used by the iterated-decision detector.

The slicer of the iterated-decision detector is eliminated as in Section 5.1, and extrinsic

information for all the bits in the form of the vector x̃, which would otherwise have been

the slicer input, is passed from the iterated-decision detector to the decoders. There are a

number of different ways in which the decoders can use the extrinsic information x̃, and it

is currently unclear without further research the best strategy for the decoders to exploit

knowledge of x̃. We conclude this section by outlining some of the possible strategies.

From the Theorems 3.1 and 3.2, the vector x̃ can be modelled as the output of an

AWGN channel with mode-interleaved precoding. Thus, one simple strategy is to treat

x̃ as if it were the output of an AWGN channel and to perform multistage decoding as

described in Section 5.2.2. While the lth decoder depends only on the hard decisions

b̂1 = sgn(L(b1)), . . . , b̂l−1 = sgn(L(bl−1)) of the lower-level decoders, the decoders pass to

the iterated-decision detector the soft L-values L(b1), . . . , L(bL) for each symbol. While
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a simple strategy, the fact that the decoders exchange only hard information amongst

themselves suggests that performance can be improved by exchanging soft information

instead. Furthermore, incorporating incorrect hard decision from lower-level decoders can

cause errors to propagate in higher-level decoders, possibly leading to divergence of the

overall detection and decoding scheme. A more sophisticated decoding strategy would have

the lth decoder depend on the soft decisions L(b1), . . . , L(bl−1) of the lower-level decoders

rather than hard decisions, but it is not clear how such a decoder would incorporate the

soft decisions of other decoders into its own message-passing algorithm.

Rather than have the decoders depend sequentially on each other, each decoder can

process the vector x̃ from the iterated-decision detector independently. For example, mod-

elling each symbol x̃ as the output of an AWGN channel, we can compute the L-value for

bl based on x̃ as

L(bl|x̃) = log
Pr(bl = +1|x̃)
Pr(bl = −1|x̃)

= log
f(x̃|bl = +1)Pr(bl = +1)
f(x̃|bl = −1)Pr(bl = −1)

= log
f(x̃|bl = +1)
f(x̃|bl = −1)

= log

∑
x∈X (b1···bl−11bl+1···bL) f(x̃|x)∑
x∈X (b1···bl−10bl+1···bL) f(x̃|x)

. (5.64)

Computing these L-values directly from x̃, each decoder can operate independently. Extrin-

sic information from each decoder can then be passed back to the iterated-decision detector

for another round of processing. Since each decoder receives information implicitly through

x̃ rather than directly from other decoders, performance can be improved by exchanging

soft information directly amongst the decoders.

Ideally, decoders that can incorporate knowledge of the vector x̃ from the iterated-

decision detector and soft information from all the other decoders would be very useful.

Message passing on the interference and component code subgraphs of the joint factor

graph could then be implemented by the iterated-decision detector and such decoders, and

optimal joint detection and decoding would be well-approximated. Moreover, the detection

and decoding schedule would be very flexible, since different components could operate in

parallel or sequentially in any order. The challenge remains, though, of developing such

decoders that operate with good performance and low complexity.
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5.3 Lattice Codes

An alternate coding strategy for channels that support high rates is to use lattice codes.

Unlike the random codes discussed in Section 1.2, lattice codes are highly structured and

are thus of great practical interest. Moreover, it has been shown that lattice codes can

achieve the capacity of the AWGN channel [23, 63].

An N -dimensional lattice Λ is a discrete infinite subset of R
N that satisfying the group

property. If the lattice spans R
N , then it can be described by a set of linearly independent

generators such that the lattice consists of the set of all integer linear combinations of the

generators:

Λ = {Gy =
∑
i

yigi|y ∈ Z
n}. (5.65)

Because of the group property, the lattice is “geometrically uniform,” meaning that each

point of the lattice has the same number of neighbors at each distance, and all decision

regions of a minimum-distance decoder (Voronoi regions) are congruent and tesselate R
N .

In fact, any lattice translate Λ + t is also geometrically uniform.

A lattice code C is the finite set of points of the lattice translate Λ + t that lie within a

compact bounding region R ∈ R
N , i.e.,

C = (Λ + t) ∩R. (5.66)

5.3.1 Decoding for AWGN Channels

There are two main kinds of decoders for lattice codes over AWGN channels. Minimum-

distance decoding minimizes the probability of error by finding the nearest point of C to the
received signal. In [63], it was shown that lattice codes can be used to achieve the capacity of

the AWGN channel with minimum-distance decoding. Lattice decoding takes full advantage

of the underlying lattice structure and decodes the received signal to the nearest point of

Λ + t, whether or not it lies within the bounding region R. Though considerably simpler
than minimum-distance decoding, it was shown in [23] that lattice decoding could also be

used to achieve the capacity of the AWGN channel.
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5.3.2 Generalized Iterated-Decision Detection

The iterated-decision detector in Section 3.1 for uncoded systems can be generalized in

a natural way to accommodate lattice-coded systems. The modified system, depicted in

Fig. 5.31, uses either a minimum-distance decoder or lattice decoder instead of a symbol-

by-symbol slicer. The optimal filters (3.78) and (3.82) remain the same, but the algorithm in

Section 3.1.4 to compute the set of correlation matrices ρl changes. With mode-interleaved

precoding, the SINRs γli for i = 1, 2, . . . , N are asymptotically equal, so the algorithm

becomes:

1. Set ρ0 = 0 and let l = 1.

2. Compute the SINR γl at the slicer input on the lth decoding pass from ρl−1 = ρl−1I

via (3.26) and (3.27).

3. Approximate the lattice codeword error probability Pr(εl) at the slicer output from

γl using the union bound estimate for the codeword error rate of either a minimum-

distance decoder or lattice decoder for AWGN channels [28]:

Pr(εl) ≈ Kmin(Λ)Q

√d2min(Λ)

4(σl)2


 (5.67)

where d2min(Λ) is the squared minimum distance in the lattice Λ, Kmin(Λ) is the

number of neighbors of each point at the minimum distance, (σl)2 is the effective

noise variance in one dimension computed as Es/2γl, and Q(v) is defined in (2.5).
4. Approximate ρl from Pr(εl). From Appendix E,

ρl ≈ 1− d2min(Λ)
2Ec Pr(εl), (5.68)

where Ec is the average codeword energy.
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Figure 5.31: Iterated-decision detection and decoding for lattice codes.
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5. Increment l and go to step 2.

We make some remarks on the algorithm. First, the approximation for ρl in (5.68) is

valid whether the coding is done across components of the same transmit vector, or across

components of successive transmit vectors. Second, the union bound estimate in (5.67) is

valid at high SNR. For lattice codes, the required SNR may be unrealistically high. Third,

the iterated-decision detector in Section 3.1 achieves the AWGN channel bound at high

SNR for uncoded systems with mode-interleaved precoding. An extension of this uncoded

result to lattice codes suggests that the modified iterated-decision detector can potentially

achieve the AWGN channel bound at high SNR (high compared to the Shannon limit)

for lattice-coded systems with mode-interleaved precoding. Of course, it is impossible for

the modified iterated-decision detector to achieve the AWGN channel bound at all SNRs

because the mutual information of an interference channel without water pouring is always

less than the capacity of the AWGN channel at the same SNR.

More research is required at this point to investigate both the fundamental limits and

practical implementation of this promising generalization of the iterated-decision detector

for lattice codes.
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Chapter 6

Conclusions

This final chapter summarizes the contributions of this thesis and outlines some directions

for future work.

6.1 Contributions

In this thesis, we have proposed and analyzed low-complexity strategies to approach the

information-theoretic limits of an interference channel when channel state information is

unavailable at the transmitter. These strategies have centered around the iterated-decision

detector, which cancels channel interference from received signals using tentative decisions

whose reliability improves with each successive iteration.

The iterated-decision detector works particularly well when used in conjunction with

mode-interleaved precoding at the transmitter. Mode-interleaved precoding, discussed in

Chapter 2, is channel-independent transmitter precoding that randomizes the channel in

such a way that there are two distinct benefits. First, the pairwise error probability of

two transmit vectors over an interference channel becomes asymptotically the same as the

pairwise error probability of the same two vectors over an AWGN channel at the same

SNR. While this result does not necessarily imply that the overall probability of error

of ML detection for an interference channel is asymptotically the same as the probability

of error for the corresponding AWGN channel, there are some cases in which the perfor-

mance of ML detection for an interference channel does indeed resemble performance for an

AWGN channel. For example, ML detection with mode-interleaved precoding can achieve

the AWGN channel bound at high SNR. Second, the use of mode-interleaved precoding
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justifies Gaussian approximations for the effective noise made at the slicer input of the

iterated-decision detector and enables the asymptotic performance analyses in Chapter 3.

These analyses show that with mode-interleaved precoding, the iterated-decision detector

well-approximates ML detection for uncoded systems at high SNR, and thus achieves the

AWGN bound at high SNR. The excellent performance of iterated-decision detection with

mode-interleaved precoding is not surprising in light of the analysis in Chapter 4, which

suggests that iterated-decision detection is a simplified version of an approximate message-

passing ML detection algorithm. We also discussed in Chapter 2 the implementation of

mode-interleaved precoding for a variety of communication channels that include:

• MIMO channels with many transmit and receive antennas with a rich scattering as-

sumption

• Other MIMO channels with many transmit and receive antennas

• MIMO channels with few transmit and receive antennas

• CDMA systems with many users and long user signatures that are or can be modelled

as i.i.d. Gaussian

• Other CDMA systems with many users and long user signatures

• CDMA systems with few users and/or short signature sequences

• ISI channels with impulse responses whose taps can be modelled as i.i.d. random

variables

• ISI channels with short and/or correlated impulse responses

To achieve reliable communication at rates up to the mutual information of an in-

terference channel, channel coding is required. In Chapter 5, we discussed ways in which

iterated-decision detection and mode-interleaved precoding could be incorporated into coded

systems. The main challenge is the design of a low-complexity receiver that approximates

optimal joint detection and decoding as closely as possible. Although binary codes, multi-

level codes, and lattice codes were discussed separately, the common feature of the proposed

receivers was the exchange of information between a separate detection block and one or

more decoding blocks. The iterative exchange of information between blocks can be viewed

as an approach to approximate optimal joint detection and decoding. The iterated-decision

detector was modified to implement the detection block because of its low complexity, ex-

cellent performance, and ability to accept reliability information from external sources.
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6.2 Future Work

Although in earlier chapters we have touched upon possibilities for more research, we now

discuss some of the potentially more fruitful research directions inspired by this thesis.

6.2.1 Low-Bandwidth Message Passing

It is intriguing that the iterated-decision detector, interpreted as a low-bandwidth message-

passing algorithm in Section 4.4, retains only the most significant bit plus the average

of the individual symbol reliabilities and yet approximates ML detector performance. This

observation raises a number of interesting questions about message-passing algorithms more

generally. For example, standard message-passing decoding algorithms on graphs with large

cycles may be operating with an unnecessary amount of precision. If low-bandwidth message

passing suffices to achieve essentially the same level of performance as high-precision message

passing, then low-bandwidth message passing is an attractive option. This is especially true

in applications where memory to store symbol reliabilities is limited, or where the message-

passing algorithm is distributed and communication between nodes is costly.

6.2.2 Analogy to Price’s Result

In [50], Price shows that if the ideal1 zero-forcing decision-feedback equalizer (ZF-DFE)

is theoretically used at high SNR, then the SNR gap to capacity is independent of the

interference. In particular, the SNR gap to capacity is the same for channels with and

without interference. In [16], Price’s result is generalized to the ideal minimum mean-

square error decision-feedback equalizer (MMSE-DFE) at any SNR. For example, this

generalization is consistent with Figs. 3.14 and C.2 for random ISI channels. Figure 3.14

shows that the SNR of the random ISI channel with the MMSE-DFE must asymptotically

be 2.507 dB higher than the SNR of an AWGN channel for the uncoded bit-error rate to

be the same, while Fig. C.2 shows that minimum SNR of the random ISI channel required

for reliable transmission is also asymptotically 2.507 dB higher than the minimum SNR of

the AWGN channel. Thus, the asymptotic SNR gap to capacity is the same for both the

random ISI channel with the MMSE-DFE and the AWGN channel. Furthermore, there is

a claim in [16] that if a coding method can achieve a certain coding gain over an AWGN

1An ideal DFE always feeds back correct decisions.
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channel, then that same gain can be achieved using an adaptation of that method with an

ideal MMSE-DFE over an ISI channel.

These results are meaningful only if the performance of an ideal MMSE-DFE can be

obtained. If the channel is known at the transmitter, then the feedback filter of the DFE can

be implemented using Tomlinson-Harashima precoding [59, 38] at the transmitter, leading

to ideal MMSE-DFE performance. If the channel is not known at the transmitter, the ideal

assumption is invalid and the results of [50, 16] are not applicable.

In Section 5.1.5, we showed that the pinch-off SNRnorm for the asymptotic random

ISI channel along with a (5, 10)-regular LDPC code is 2.03 dB when the iterated-decision

detector is used with a standard sum-product decoder, with the SNR normalized to the

mutual information of the interference channel without water pouring. In [18], the pinch-

off SNRnorm for an AWGN channel with a (5, 10)-regular LDPC code is 2.01 dB when a

standard sum-product decoder is used, with the SNR normalized to the capacity of the

AWGN channel. The fact that these two quantities are very close numerically suggests

that a result analogous to Price’s result may be true for the iterated-decision detector.

Specifically, it is possible that codes designed to get close to AWGN channel capacity can also

be used with iterated-decision detection to get equally as close to the mutual information

of an interference channel without water pouring. Such a result would suggest that the

iterated-decision detector could be considered a canonical detector in systems with channel

interference and coding.

6.2.3 Iterated-Decision Transmitter Precoding

As mentioned in the last section, if the channel is known at the transmitter then the feedback

filter of the decision-feedback detector can be implemented at the transmitter [14, 38, 59],

leading to ideal MMSE decision-feedback performance. However, even the ideal MMSE

decision-feedback detector does not necessarily give the best performance, as evidenced by

Fig. 3.14 where the SNR gap between the curves for the theoretical (ideal) MMSE-DFE

and the iterated-decision detector is asymptotically 2.507 dB. This observation motivates

the development of an iterated-decision transmitter precoder that implements part or all

of the iterated-decision detector at the transmitter. It is not clear at this point what the

correct structure would be for the iterated-decision transmitter precoder. One possibility

is to block-iterate the symbols to be transmitted over the channel until the average energy
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of the symbols falls within some power constraint. Each iteration would involve some kind

of noncausal filtering of the “tentative” transmit symbols from the previous iteration, and

possibly a modulo function as in [38, 59].

6.2.4 Iterated-Decision Lattice Decoding for AWGN Channels

The decoding of arbitrary lattice codes can be very complex [67], but it may be possible to

modify the iterated-decision detector as a low-complexity lattice decoder. The transmission

of a lattice codeword over an AWGN channel can be modelled with the equation r = Hx+w,

where r is the received vector, the columns ofH are the lattice generators, x is the coordinate

vector, andw is the noise vector. Given r andH, the objective is to determine the coordinate

vector x̂ that minimizes ‖r − Hx̂‖. This problem appears very similar to the detection

problem, but the use of a coordinate-by-coordinate decision slicer to determine x̂ may lead

to lattice points that lie far outside the bounding region of the lattice code. To be useful,

the iterated-decision detector must be modified somehow to take into account arbitrary

bounding regions without significantly increasing the complexity.

6.2.5 Iterated-Decision Quantizer

The problem of quantization [36] is also closely related to the problem of detection—finding

the nearest point to the source signal in quantization is similar to finding the nearest point

to the received signal in detection. In particular, if the reconstruction points of the quantizer

form a lattice, then we have a situation that can be modelled with the equation r = Hx+w,

where r is the source data, the columns of H are the lattice generators of the quantizer, x is

the coordinate vector, and w is the error between the source data r and the reconstruction

pointHx. Given r andH, the objective is to determine a coordinate vector x that minimizes

some metric involving the error. If the metric is the squared norm of w, then we indeed get

a problem that is very similar to a detection problem in Gaussian noise.

However, there are some key differences that make the application of the iterated-

decision detector to the quantization problem not so straightforward. First, the source

data is not necessarily concentrated around the reconstruction points. In some applica-

tions, the source data may be uniformly distributed over some region in R
N , making w

uniformly distributed within the Voronoi region of the zero lattice point. The iterated-

decision detector, which performs well at high SNR (i.e., when w is concentrated near the
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zero lattice point), may not lead to the same quality of performance when applied to the

quantization problem. In general, the distribution of the source must also be taken into

account. Second, as with iterated-decision lattice decoding for AWGN channels, the use of

a coordinate-by-coordinate decision slicer may lead to lattice points that lie far outside the

bounding region.

6.2.6 Approximate Solutions to Complex Problems

Although exact ML detection with mode-interleaved precoding is intractably complex, an

approximation to the solution can be obtained using the iterated-decision detector, as shown

in Chapter 4. This approximation, though not the exact solution, is asymptotically as useful

as the exact solution if bit-error rate is the primary concern. With other problems such

as lattice decoding for AWGN channels or quantization whose exact solutions may also be

very difficult to obtain, there may also exist approximate solutions that are much easier to

come by and are still meaningful in some sense.

It would be interesting to try and formalize the notion of an approximate solution

in terms of, for example, optimization theory or complexity theory, and to define more

precisely what it means for an approximate solution to be “meaningful in some sense.” One

possibility would be to define an approximate solution as the exact solution to a slightly

perturbed problem, and then to identify the perturbed problem. Understanding such ideas

could have some significant implications for complexity theory.
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Appendix A

Isotropically Distributed Vectors

and Matrices

In this appendix, we define the concept of isotropically distributed vectors and matrices and

highlight the key properties that are used throughout the thesis. A more detailed discussion

can be found in [48].

Definition A.1 An m-dimensional complex random vector φ is isotropically distributed

if its probability density is invariant to all unitary transformations; i.e., f(φ) = f(Θ∗φ)

for all Θ such that Θ∗Θ = Im.

Intuitively, an isotropically distributed complex vector is equally likely to point in any

direction in complex space. Thus, the probability density of φ is a function of its magnitude

but not its direction. If, in addition, φ is constrained to be a unit vector, then the probability

density is

f(φ) =
Γ(m)
πm

δ(φ∗φ− 1), (A.1)

and φ is conveniently generated by φ = z/
√
z∗z, where z is an m-dimensional vector of

independent CN (0, 1) random variables.

Definition A.2 An n ×m complex random matrix Φ is isotropically distributed if its

probability density is unchanged when premultiplied by an n×n unitary matrix; i.e., f(Φ) =

f(Θ∗Φ) for all Θ such that Θ∗Θ = In.

From the definition of an isotropically distributed matrix, it can be shown that the prob-

ability density is also unchanged when the matrix is postmultiplied by an m ×m unitary
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matrix; i.e., f(Φ) = f(ΦΘ) for all Θ such that Θ∗Θ = Im. Furthermore, by combining

Definitions A.1 and A.2, we can readily see that the column vectors of Φ are themselves

isotropically distributed vectors.
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Appendix B

Proof of Theorem 3.2

The proof requires the following pair of lemmas.

Lemma B.1 Let H(ω) be a complex-valued 2π-periodic function that is continuous al-

most everywhere on [−π, π]. Then the functions

S̃l
1(ω) =

(
µl

Es(1− (ρl−1)2)
)[ |H(ω)|2/ξl

(1 + |H(ω)|2/ξl)2 −
1
2π

∫ π

−π
|H(ω)|2/ξl

(1 + |H(ω)|2/ξl)2dω
]
(B.1)

S̃l
2(ω) =

(
µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1
)2

− 1
2π

∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1
)2

dω (B.2)

S̃l
3(ω) =

µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1 (B.3)

are continuous almost everywhere on [−π, π] and satisfy

1
2π

∫ π

−π
|S̃l

i(ω)|2dω <∞ for i = 1, 2, 3. (B.4)
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Proof: The proof is straightforward and follows from observing that

S̃l
i(ω) = f̃i(|H(ω)|2) for i = 1, 2 (B.5)

where f̃i(z) for i = 1, 2, 3 are real-valued continuous functions, bounded between−(µl/Es(1−
(ρl−1)2))2 and (µl/Es(1− (ρl−1)2))2 on the interval z ∈ [0,∞). �

Lemma B.2 Let S̃(ω) be a complex-valued 2π-periodic function that is continuous al-

most everywhere on [−π, π] and satisfies 1
2π

∫ π
−π S̃(ω)dω = 0 and 1

2π

∫ π
−π |S̃(ω)|2dω < ∞.

Furthermore, let FN (·) be the frequency interleaver defined by (3.94) that permutes the N

2π/N bands of the frequency spectrum. Then, if N →∞, we have that

I[n] = 1
4π2

∫ π

−π

∫ π

−π
E[S̃(F−1

N (ω))S∗(F−1
N (ν))]ej(ω−ν)ndω dν → 0 (B.6)

for each n.

Proof: In the case that n = 0,

I[n] =
1
4π2

∫ π

−π

∫ π

−π
E
[
S̃(F−1

N (ω))S∗(F−1
N (ν))

]
dω dν

=
1
4π2

∫ π

−π

∫ π

−π
S̃(ω)S∗(ν)dω dν

=
∣∣∣∣ 12π
∫ π

−π
S̃(ω)dω

∣∣∣∣2
= 0. (B.7)

In the case that 0 < n < N ,

I[n] = 1
4π2

∫ π

−π

∫ π

−π
S̃(ω)S̃∗(ν)E[ej(FN (ω)−FN (ν))n]dω dν. (B.8)

Evaluating the expectation, we have that

E
[
ej(FN (ω)−FN (ν))n

]

=


 − 1

N−1e
j[(ω mod 2π/N)−(ν mod 2π/N)]n ω, ν not in same frequency band

ej(ω−ν)n ω, ν in same frequency band.
(B.9)
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Thus

I[n]

=
N−1∑
k=0

1
4π2

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

S̃(ω)S̃∗(ν)ej(ω−ν)ndω dν

+
N−1∑
k=0

N−1∑
l=0
l �=k

1
4π2

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

∫ −π+ 2π(l+1)
N

−π+ 2πl
N

S̃(ω)S̃∗(ν)

×
(
− 1

N − 1
)

ej[(ω mod 2π/N)−(ν mod 2π/N)]ndω dν

=
N

N − 1
N−1∑
k=0

1
4π2

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

S̃(ω)S̃∗(ν)ej(ω−ν)ndω dν

− 1
N − 1

N−1∑
k=0

N−1∑
l=0

1
4π2

∫ −π+ 2π(k+1)
N

−π+ 2πk
N

∫ −π+ 2π(l+1)
N

−π+ 2πl
N

S̃(ω)S̃∗(ν)

× ej[(ω mod 2π/N)−(ν mod 2π/N)]ndω dν

=
N

N − 1
N−1∑
k=0

∣∣∣∣∣ 12π
∫ −π+ 2π(k+1)

N

−π+ 2πk
N

S̃(ω)ejωndω

∣∣∣∣∣
2

− 1
N − 1

∣∣∣∣ 12π
∫ π

−π
S̃(ω)ej(ω mod 2π/N)ndω

∣∣∣∣2 .
(B.10)

In the limit as N →∞, we have

lim
N→∞

I[n] = lim
N→∞

N

N − 1
N−1∑
k=0

∣∣∣∣∣ 12π
∫ −π+ 2π(k+1)

N

−π+ 2πk
N

S̃(ω)ejωndω

∣∣∣∣∣
2

− lim
N→∞

1
N − 1

∣∣∣∣ 12π
∫ π

−π
S̃(ω)ej(ω mod 2π/N)ndω

∣∣∣∣2

= lim
N→∞

N−1∑
k=0

∣∣∣∣ 12π S̃

(
2πk
N

)
2π
N

∣∣∣∣2 − lim
N→∞

1
N − 1

∣∣∣∣ 12π
∫ π

−π
S̃(ω)dω

∣∣∣∣2

= lim
N→∞

1
N

(
1
2π

∫ π

−π
|S̃(ω)|2dω

)
= 0. (B.11)

Thus as N →∞, I[n]→ 0 for each n. �

We now proceed to a proof of our main result.

The term ul[n] can be decomposed into

ul[n] = ul1[n] + ul2[n] (B.12)
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with

ul1[n] = bl
F−1

N
[n] ∗ w[n] (B.13)

ul2[n] = c̃l
F−1

N
[n] ∗ x[n]− dl

F−1
N
[n] ∗ x̂l−1[n] (B.14)

cl
F−1

N
[n] = bl

F−1
N
[n] ∗ hF−1

N
[n] (B.15)

c̃l
F−1

N
[n] = cl

F−1
N
[n]− δ[n]. (B.16)

Let us consider ul1[n] as defined in (B.13) first. We obtain the mean and covariance,

respectively, of ul1[n] given a frequency interleaver FN (·) as

E[ul1[n]|FN ] = bl
F−1

N
[n] ∗ E[w[n]] = 0 (B.17)

and

Rul
1u

l
1|FN

[n] =
N0

2π

∫ π

−π
|Bl

F−1
N
(ω)|2ejωndω

=
(µl)2

Es(1− (ρl−1)2) ·
1
2π

∫ π

−π

|HF−1
N
(ω)|2/ξl

(1 + |HF−1
N
(ω)|2/ξl)2 e

jωndω, (B.18)

where we have used (3.78) and (3.34). In turn, averaging over the possible frequency

interleavers FN (·), we obtain

E[Rul
1u

l
1|FN

[n]] =
(µl)2

Es(1− (ρl−1)2) ·
1
2π

∫ π

−π

|H(ω)|2/ξl
(1 + |H(ω)|2/ξl)2E[e

jFN (ω)n]dω

=
(

(µl)2

Es(1− (ρl−1)2) ·
1
2π

∫ π

−π

|H(ω)|2/ξl
(1 + |H(ω)|2/ξl)2dω

)
δ[n]

=

(
(µl)2

Es(1− (ρl−1)2) ·
1
2π

∫ π

−π

|HF−1
N
(ω)|2/ξl

(1 + |HF−1
N
(ω)|2/ξl)2dω

)
δ[n]. (B.19)

Next, we define

R̃ul
1u

l
1|FN

[n]
�
= Rul

1u
l
1|FN

[n]− E[Rul
1u

l
1|FN

[n]] = Es(1− (ρl−1)2) · 12π
∫ π

−π
S̃l
1(F

−1
N (ω))ejωndω

(B.20)
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where S̃l
1(ω) is given in (B.1). Then,

varRul
1u

l
1|FN

[n]

= E[|R̃ul
1u

l
1|FN

[n]|2]

=
(
Es(1− (ρl−1)2)

)2( 1
2π

)2∫ π

−π

∫ π

−π
E
[
S̃l
1(F

−1
N (ω))(S̃l

1(F
−1
N (ν)))∗

]
ej(ω−ν)ndω dν. (B.21)

Applying, Lemma B.1 followed by Lemma B.2 to (B.22), we then obtain, for each n,

varRul
1u

l
1|FN

[n]→ 0. (B.22)

Hence, combining (B.19) with (B.22), we have, for any particular frequency interleaver

FN (·),

Rul
1u

l
1|FN

[n] m.s.−→
(

(µl)2

Es(1− (ρl−1)2) ·
1
2π

∫ π

−π
|H(ω)|2/ξl

(1 + |H(ω)|2/ξl)2dω
)

δ[n] (B.23)

for each n.

We now consider ul2[n] as defined in (B.14). Again, for a fixed realization of FN (·) (and
hence cl

F−1
N

[n]), we have

E[ul2[n]|FN ] = c̃l
F−1

N
[n] ∗ E[x[n]]− ρl−1c̃l

F−1
N
[n] ∗ E[x̂l−1[n]] = 0 (B.24)

and

Rul
2u

l
2|FN

[n]

= Es(1− (ρl−1)2) · 12π
∫ π

−π
|C̃ l

F−1
N
(ω)|2ejωndω

= Es(1− (ρl−1)2) · 12π
∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|HF−1

N
(ω)|2/ξl

1 + |HF−1
N
(ω)|2/ξl − 1

)2

ejωndω, (B.25)
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where we have used (B.16), (B.15), (3.78), and (3.34). However, (B.25) is asymptotically

independent of FN (·). To see this, first note that

E[Rul
2u

l
2|FN

[n]]

= Es(1− (ρl−1)2) · 12π
∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1
)2

E
[
ejFN (ω)n

]
dω

=

(
Es(1− (ρl−1)2) · 12π

∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1
)2

dω

)
δ[n]

=


Es(1− (ρl−1)2) · 12π

∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|HF−1

N
(ω)|2/ξl

1 + |HF−1
N
(ω)|2/ξl − 1

)2

dω


 δ[n].

(B.26)

Then, since

R̃ul
2u

l
2|FN

[n]
�
= Rul

2u
l
2|FN

[n]− E[Rul
2u

l
2|FN

[n]] = Es(1− (ρl−1)2) · 12π
∫ π

−π
S̃l
2(F

−1
N (ω))ejωndω

(B.27)

where S̃l
2(ω) is as defined in (B.2), we have

varRul
2u

l
2|FN

[n]

= E[|R̃ul
2u

l
2|FN

[n]|2]

=
(
Es(1− (ρl−1)2)

)2( 1
2π

)2 ∫ π

−π

∫ π

−π
E
[
S̃l
2(F

−1
N (ω))(S̃l

2(F
−1
N (ν)))∗

]
ej(ω−ν)ndω dν.

(B.28)

Hence applying, in turn, Lemmas B.1 and B.2 to (B.28), we then obtain, for each n,

varRul
2u

l
2|FN

[n]→ 0. (B.29)

Hence, combining (B.26) with (B.29), we have, for any particular frequency interleaver

FN (·),

Rul
2u

l
2|FN

[n] m.s.−→
(
Es(1− (ρl−1)2) · 12π

∫ π

−π

(
µl

Es(1− (ρl−1)2) ·
|H(ω)|2/ξl

1 + |H(ω)|2/ξl − 1
)2

dω

)
δ[n]

(B.30)
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for each n.

Since w[n] is statistically independent of x[n] and can be assumed to be independent of

x̂l−1[n],

E[ul1[n](u
l
2[k])

∗|FN ] = 0, for all n and k (B.31)

and hence

Rulul|FN
[n] = Rul

1u
l
1|FN

[n] +Rul
2u

l
2|FN

[n]. (B.32)

Finally, we need to show that for a given realization of the frequency interleaver FN (·)
that x[n] and ul[n] are asymptotically uncorrelated. Due to (B.32), it suffices to show that

x[n] is asymptotically uncorrelated with ul1[n] and ul2[n] individually.

First, using (B.13), we have

E[ul1[n]x
∗[k]] =

∑
m

E[w[m]x∗[k]]E[bl
F−1

N
[n−m]] = 0 (B.33)

where the last equality follows from the fact that the processes w[n] and x[n] are statistically

independent.

Next, using (B.14), we have

E[ul2[n]x
∗[k]] =

∑
m

E[x[m]x∗[k]]c̃l
F−1

N
[n−m]−

∑
m

E[x̂l−1[m]x∗[k]]dl
F−1

N
[n−m]

= Esc̃lF [n− k]− ρl−1EsdlF−1
N
[n− k] (B.34)

where the last equality follows from (3.35) and the fact that the symbol stream x[n] is white.

Thus, it remains only to show that c̃l
F−1

N

[n] m.s.−→ 0 and dl
F−1

N

[n] m.s.−→ 0 for all n.

To see this, we first note that

E[c̃l
F−1

N
[n]] = 0 (B.35)

E[dl
F−1

N
[n]] = 0, (B.36)

where (B.36) follows from the fact that E[dl
F−1

N

[n]] =
(

1
2π

∫ π
−π Dl(ω)dω

)
δ[n] and the fact

that dl[0] = 0. Next,

var c̃l
F−1

N
[n] =

(
1
2π

)2 ∫ π

−π

∫ π

−π
E[S̃l

3(F
−1
N (ω))(S̃l

3(F
−1
N (ν)))∗]ejωne−jνndω dν (B.37)

var dl
F−1

N
[n] =

(
1
2π

)2 ∫ π

−π

∫ π

−π
(ρl−1)2E[S̃l

3(F
−1
N (ω))(S̃l

3(F
−1
N (ν)))∗]ejωne−jνndω dν.(B.38)
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Hence applying again, in turn, Lemmas B.1 and B.2 to each of (B.37) and (B.38), we then

obtain, for each n,

var c̃l
F−1

N
[n] → 0 (B.39)

var dl
F−1

N
[n] → 0. (B.40)

Hence, combining (B.35) and (B.36) with (B.39) and (B.40), we obtain the desired results.
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Appendix C

Information Limits of Random ISI

Channels

Let us consider the quantities Iint and Cint for the limiting random ISI channel introduced in

Section 3.2.1. Recall that arbitrarily close samples of the asymptotic random process H(ω)

are independent, complex-valued, circularly symmetric Gaussian random variables with

zero mean and unity variance. Thus, arbitrarily close samples of |H(ω)|2 are independent,
real-valued, exponentially distributed random variables with unit mean.

Thus the mutual information of the channel in bits per two dimensions is [43]

Iint =
1
2π

∫ π

−π
log2

(
1 +

Es|H(ω)|2
N0

)
dω

=
1
ln 2

∫ ∞

0
ln(1 + α) · N0

Es e−
N0
Es

α dα

=
1
ln 2


−
[
e−

N0
Es

α ln(α+ 1)
]α=∞

α=0

+
∫ ∞

0

e−
N0
Es

α

α+ 1
dα




=
1
ln 2

e
N0
Es E1

(N0

Es

)
(C.1)

where we have used integrating by parts followed by (3.106).

For the purposes of determining Cint, without loss of generality we fix |H(ω)|2 determin-
istically to be the shifted and normalized version of the exponential cumulative distribution

function,
ω

2π
=
1
2
− e−|H(ω)|2 , (C.2)
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α

−π

π1 1− e−α

Pr[|H(ω)|2 < α]

|H(ω)|2

ω

0

Figure C.1: For the purposes of computing the capacity of the random ISI channel, the
magnitude squared of the channel frequency response can be derived from an exponential
distribution.

illustrated in Fig. C.1. Rearranging, we get

|H(ω)|2 = − ln
(
1
2
− ω

2π

)
. (C.3)

The transmit spectrum is given by the water-pouring formula [43]

SX(ω) = max
(
L − N0

|H(ω)|2 , 0
)

(C.4)

where L is chosen such that the average transmit energy is

Es = 1
2π

∫ π

−π
SX(ω)dω. (C.5)

If Ω is the band over which SX(ω) is nonzero (i.e., the water-pouring band), then the

capacity of the channel is [43]

Cint =
Ω
2π

log

( Es
N0
· 2πΩ + < |H(ω)|−2 >A,Ω

< |H(ω)|−2 >G,Ω

)
(C.6)

where < |H(ω)|−2 >A,Ω and < |H(ω)|−2 >G,Ω are, respectively, the arithmetic and geomet-
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ric means of |H(ω)|−2 over the water-pouring band Ω, given by

< |H(ω)|−2 >A,Ω =
1
|Ω|
∫
Ω

1
|H(ω)|2 dω (C.7)

log < |H(ω)|−2 >G,Ω =
1
|Ω|
∫
Ω
log

1
|H(ω)|2 dω. (C.8)

Note that Es/N0 in (C.6) is scaled by a factor of 2π/Ω because using only the water-pouring

band filters out noise power.

Figure C.2 compares Cint and Iint to CAWGN. As noted in Section 1.2.4, the capacity

of the asymptotic random ISI channel exceeds that of the corresponding AWGN channel at

low SNR, since transmit power can be loaded onto favorable frequencies. If water pouring is

not possible, then at low SNR the mutual information of the random ISI channel approaches

the capacity of the corresponding AWGN channel. At high SNR, the capacity of the ISI

channel becomes less than the AWGN channel capacity, and also the effect of water pouring

becomes negligible. The asymptotic slopes of all three curves are equal, implying that the

penalty of the random ISI channel is only a fixed rate loss.

This asymptotic rate loss of the random ISI channel with respect to the AWGN channel
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Random ISI
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Figure C.2: Information rates for the asymptotic random ISI channel.
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can be quantified. In the high-SNR regime, we can use the series expansion [1]

E1(t) = −Γ0 − ln t−
∞∑
k=1

(−1)ktk
tt!

(C.9)

where Γ0 = 0.57721 · · · denotes Euler’s constant, to show that Iint in (C.1) becomes

Iint → −Γ0 − ln EsN0
= ln

( Es
N0eΓ0

)
. (C.10)

Comparing to CAWGN in (1.14), we see that the SNR gap is eΓ0 or 2.507 dB. Since the

asymptotic slope of the curves is 1 bit per 3 dB of SNR, the asymptotic rate loss is log2 eΓ0 ≈
0.8327 bits per two dimensions.
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Appendix D

Rate-Normalized SNR

Given a communication system operating at a particular SNR and a particular information

rate, it is possible to normalize the SNR with respect to the maximum theoretical infor-

mation rate, allowing one to compare systems with different modulations schemes. Since

there are different information limits for different scenarios as discussed in Section 1.2, for

each scenario there is a different notion of rate-normalized SNR. In this appendix, we re-

view some of the definitions for rate-normalized SNR and also give a new definition for the

scenario in which the transmitter has no knowledge of the channel.

D.1 AWGN Channels

Consider a 4-QAM constellation and a 16-QAM constellation. At the same SNR, the signal

points of 16-QAM are denser than those of 4-QAM, and hence the probability of symbol

error is higher. In order to make the probability of symbol error approximately equal, the

symbol energy of the 16-QAM constellation needs to be increased so that the minimum

distances of both constellations are equal. Since the average symbol energy of M -QAM is

Es = (M − 1)d2min
6

(D.1)

where dmin is the minimum distance, the transmit energy must be increased by a factor of

(16− 1)/(4− 1) = 5, or approximately 7 dB.
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(a) (b)

Figure D.1: The noise balls for (a) 4-QAM and (b) 16-QAM when the normalized SNR is
equal. Normalization makes both constellations essentially the same, since they both come
from the same infinite lattice.

Rate-normalized SNR is defined as

SNRnorm
�
=

SNR
2R − 1 (D.2)

where R is the rate per two dimensions. Intuitively, 4-QAM and 16-QAM originate by

choosing different constellation boundaries from the same (shifted) infinite lattice. Rate

normalization ignores the particular constellation boundary chosen, and focuses attention

instead on the ratio of the noise energy and the squared minimum distance in the lattice.

The 4-QAM and 16-QAM constellations have the same symbol-error probability (ignoring

edge effects) when SNRnorm is the same. Figure D.1 illustrates the “noise balls” for 4-QAM

and 16-QAM when the SNRnorm is the same.

In addition to being useful for comparing the error probability of various modulation

schemes, rate-normalized SNR is convenient for comparing the gap to capacity. From

the AWGN capacity formula in (1.7), the rate R in bits per two dimensions that can be

supported with arbitrarily small error probability satisfies

R < log2 (1 + SNR) , (D.3)

so the SNR in turn satisfies

SNR > 2R − 1. (D.4)

Thus, the Shannon SNR limit varies with rate R, and it becomes difficult to compare the

gap to capacity for modulation schemes with differing rates. However, using SNRnorm, (D.4)
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can be equivalently expressed as

SNRnorm =
SNR
2R − 1 > 1. (D.5)

Thus when SNRnorm > 1, the probability of error can be driven to zero, but when SNRnorm <

1 the Shannon limits are violated and the error probability is bounded away from zero. For

any modulation scheme, the dB gap between SNRnorm and unity indicates how far the

modulation scheme is operating from fundamental limits. Moreover, since SNRnorm is a

linear function of SNR, the dB gap measures how much the SNR must be increased to

achieve a given rate R. Thus, for an uncoded system the dB gap quantifies the potential

benefit of adding error-correction coding to the system.

D.2 Interference Channels with Water Pouring

The concept of normalized SNR can be generalized to channels with interference. The way

in which normalized SNR is generalized depends upon how SNR is defined. Two natural

ways to define the SNR are at the input to the channel and at the output.

At the input to the channel, the average transmit energy is Es. If the noise spectrum
at the channel output is N0, then the equivalent noise spectrum at the channel input is

N0/λk. The input SNR is then

SNRin =
Es

N0

〈
1
λk

〉
A,K

· N
K

(D.6)

where K is the set of modes allotted transmit power via water pouring and 〈1/λk〉A,K is

the arithmetic mean of 1/λk over K, given by (1.11). Using the capacity formula (1.10),

the rate R that can be supported by the channel satisfies

R <
K

N
log2



〈

1
λk

〉
A,K〈

1
λk

〉
G,K

(1 + SNRin)


 (D.7)

where 〈1/λk〉G,K is the geometric mean of 1/λk over K as given by (1.12), so the SNRin
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required to support a rate R is thus

SNRin > 2RN/K

〈
1
λk

〉
G,K〈

1
λk

〉
A,K

− 1. (D.8)

Thus, we define the normalized SNR as

SNRnorm
�
=

SNRin

2RN/K
〈

1
λk

〉
G,K〈

1
λk

〉
A,K

− 1

=
Es
N0
· NK

2RN/K
〈

1
λk

〉
G,K

−
〈

1
λk

〉
A,K

> 1. (D.9)

In this interference case, SNRnorm is not linear with Es because the geometric and arithmetic
means of 1/λk over the water-pouring modes depend implicitly on Es. Therefore, SNRnorm in

the interference case no longer represents gap to capacity. At high SNR, however, virtually

all modes are used and SNRnorm is a linear function of Es.

Alternatively, using the water-pouring formula (1.8), the output SNR is

SNRout =
〈Es,kλk〉A,K

N0
=
〈(L −N0/λk)λk〉A,K

N0
(D.10)

where Es,k is the power allotted to the kth mode. Combining (1.8) and (1.9), we obtain the

expression

L = Es · N
K
+N0

〈
1
λk

〉
A,K

, (D.11)

which makes the output SNR

SNRout =

(
Es
N0

· N
K
+
〈
1
λk

〉
A,K

)
〈λk〉A,K − 1. (D.12)

Using the capacity formula (1.10), the rate R that can be supported by the channel satisfies

R <
K

N
log2


 1 + SNRout〈

1
λk

〉
G,K

〈λk〉A,K


 , (D.13)
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so the SNRout required to support a rate R is thus

SNRout > 2RN/K
〈
1
λk

〉
G,K

〈λk〉A,K − 1. (D.14)

The normalized SNR is then defined as

SNRnorm
�
=

SNRout

2RN/K
〈

1
λk

〉
G,K

〈λk〉A,K − 1

=

(
Es
N0
· NK +

〈
1
λk

〉
A,K

)
〈λk〉A,K − 1

2RN/K
〈

1
λk

〉
G,K

〈λk〉A,K − 1

=

Es
N0
· NK +

〈
1
λk

〉
A,K

− 1
〈λk〉A,K

2RN/K
〈

1
λk

〉
G,K

− 1
〈λk〉A,K

> 1. (D.15)

Again, SNRnorm represents gap to capacity only at high SNR.

D.3 Interference Channels without Water Pouring

As discussed in Section 1.2, the difference in achievable rates for an interference channel

with and without water pouring can be notable, especially at low SNR. It would seem

unfair, therefore, to use the versions of normalized SNR defined in either (D.9) or (D.15).

The mutual information of an interference channel without water pouring,

Iint =
1
N

N∑
k=1

log
(
1 +

Esλk
N0

)
= log

〈
1 +

Esλk
N0

〉
G

, (D.16)

suggests a new definition of SNR that is neither the channel input SNR nor the channel

output SNR. If we define the new SNR as

SNRG
�
=
〈
1 +

Esλk
N0

〉
G

− 1, (D.17)

then the rate R that can be supported by the channel satisfies

R < log2 (1 + SNRG) . (D.18)
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The SNRG required to support a rate R is thus

SNRG > 2R − 1 (D.19)

and the normalized SNR is defined as

SNRnorm
�
=

SNRG

2R − 1

=

〈
1 + Esλk

N0

〉
G
− 1

2R − 1
> 1. (D.20)

This version of SNRnorm is approximately a linear function of Es at high SNR, so in that
regime SNRnorm represents the SNR gap to the mutual information. This is the definition of

rate-normalized SNR that is used in Chapter 5 to evaluate the performance of the iterated-

decision detector with coding.
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Appendix E

The Correlation Coefficient for

Lattice Codes

With mode-interleaved precoding, the SINRs γli for i = 1, 2, . . . , N are asymptotically equal,

so the normalized correlation matrix defined in (3.5) simplifies to ρl−1 = ρl−1I. The scalar

ρl−1 can then be expressed as

ρl−1 =
E[xx̂l−1

∗
]

Es (E.1)

or more generally as

ρl−1 =
E[x†x̂]
Ec (E.2)

where Ec is the average codeword energy. The following proposition approximates ρl−1 for

lattice codes over AWGN channels, which can be used to estimate ρl−1 for lattice codes

over interference channels with mode-interleaved precoding and iterated-decision detection.

Proposition E.1 For any lattice code C whose shaping region is an N -sphere, the nor-

malized correlation ρ between a codeword x transmitted over an AWGN channel and the

decoded codeword x̂ is related to the probability of codeword error Pr(ε) by the expression

ρ ≈ 1− d2min
2Ec Pr(ε), (E.3)

where dmin is the minimum Euclidean distance and Ec is the average energy.
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Proof: By defining e = x− x̂ and using the fact that E[x†x] = Ec, we have that

ρ
�
=

E[x†x̂]
Ec =

E[x†x]
Ec − E[x†e]

Ec = 1− E[x†e]
Ec . (E.4)

It remains to determine E[x†e].

Using the theorem on total probability, we have

E[x†e] = E[x†e|e 	= 0]Pr(e 	= 0) + E[x†e|e = 0]Pr(e = 0) = E[x†e|e 	= 0]Pr(ε), (E.5)

where Pr(ε) is the probability of codeword error. Let K be the number of nearest neighbors

of a lattice point at the minimum distance. Then there are K possible minimum-distance

error events, which we label as ±e1,±e2, . . . ,±eK/2. We make the simplifying approx-

imation that any decoding error that occurs is a minimum-distance error event. Under

this assumption, Pr(e = +ek) = Pr(e = −ek) ≈ Pr(ε)/K. Using this approximation and

another application of the theorem on total probability, (E.5) becomes

E[x†e] ≈
K/2∑
k=1

(
E[x†e|e = +ek] Pr(e = +ek) + E[x†e|e = −ek] Pr(e = −ek)

)

≈ Pr(ε)
K

K/2∑
k=1

(
E[x†e|e = +ek] + E[x†e|e = −ek]

)
. (E.6)

In order to simplify (E.6) further, we introduce some additional notation. Let Se+
k
be

the set of all codewords in C that, when transmitted and decoded, cannot produce the
error event +ek. As Fig. E.1 suggests, Se+

k
roughly consists of all points in half of the

outer shell of the n-sphere, where the sphere is divided in half by an (N − 1)-dimensional
plane perpendicular to +ek. Similarly, let Se−k

be the set of all codewords in C that, when
transmitted and decoded, cannot produce the error event −ek. With this notation, we can

expand (E.6) as

E[x†e] ≈ Pr(ε)
K

K/2∑
k=1


 1∣∣∣C \ Se+

k

∣∣∣
∑

x∈C\S
e+
k

x†ek − 1∣∣∣C \ Se−k

∣∣∣
∑

x∈C\S
e−
k

x†ek


 . (E.7)

Since C \Se+
k
is approximately the union of Se−k

and C \ (Se+
k
∪Se−k

) (approximately, because

Se+
k
and Se−k

are not necessarily mutually exclusive), and C \Se−k
is approximately the union
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of Se+
k
and C \ (Se+

k
∪ Se−k

), (E.7) becomes

E[x†e] ≈ Pr(ε)
K

K/2∑
k=1


 1∣∣∣C \ Se+

k

∣∣∣
∑

x∈S
e−
k

x†ek +
1∣∣∣C \ Se+

k

∣∣∣
∑

x∈C\(S
e+
k
∪S

e−
k
)

x†ek

− 1∣∣∣C \ Se−k

∣∣∣
∑

x∈S
e+
k

x†ek − 1∣∣∣C \ Se−k

∣∣∣
∑

x∈C\(S
e+
k
∪S

e−
k
)

x†ek




=
Pr(ε)

K
∣∣∣C \ Se+

k

∣∣∣
K/2∑
k=1


 ∑

x∈S
e−
k

x†ek −
∑

x∈S
e+
k

x†ek


 , (E.8)

where we have used the fact that |Se+
k
| = |Se−k

|, and thus |C \ Se+
k
| = |C \ Se−k

|.

As a last step, we determine expressions for
∑

x∈S
e−
k

x and
∑

x∈S
e+
k

x. Due to the

roughly symmetrical distribution of Se−k
in its hemisphere,

∑
x∈S

e−
k

x can be approximated

as a scalar multiple of ek (see Fig. E.1):

∑
x∈S

e−
k

x ≈ αkek, (E.9)

where αk is a positive real number. Similarly, we can make the approximation

∑
x∈S

e+
k

x ≈ −αkek. (E.10)

From (E.9), αk can be expressed as

αk =
∑

x∈S
e−
k

x†ek
e†kek

. (E.11)

Note that the points in Se−k
define |Se−k

| exhaustive and mutually exclusive sets in C, where
each set consists of all points which differ by an integer multiple of ek. Since x†ek

e†kek
is

the projection of x ∈ Se−k
onto ek in terms of multiples of ek, there are approximately
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−ek

+ek

Se−k

Se+
k

Figure E.1: The sets Se+
k
and Se−k

are defined as the codewords that, when transmitted and
decoded, cannot produce the error events +ek and −ek respectively. The plane perpendic-
ular to the minimum-distance error event ek divides the spherical bounding region of the
lattice into two hemispheres; the black dots of the two hemispheres constitute Se+

k
and Se−k

.

2
(

x†ek

e†kek

)
+ 1 points in the set associated with x ∈ Se−k

. Thus,

|C| ≈
∑

x∈S
e−
k

[
2

(
x†ek
e†kek

)
+ 1

]
(E.12)

or, equivalently,

|C \ Se+
k
| ≈

∑
x∈S

e−
k

2

(
x†ek
e†kek

)
. (E.13)
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Comparing this equation to (E.11), we conclude that

αk ≈
|C \ Se+

k
|

2
. (E.14)

Substituting (E.9), (E.10) and (E.14) into (E.8), we obtain

E[x†e] ≈ Pr(ε)

K
∣∣∣C \ Se+

k

∣∣∣
K/2∑
k=1



∣∣∣C \ Se+

k

∣∣∣
2

e†kek +

∣∣∣C \ Se+
k

∣∣∣
2

e†kek




=
d2min
2

Pr(ε), (E.15)

where we have used the fact that e†kek = d2min. Combining this expression for E[x†e] with

(E.4), we obtain the desired result. �
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[60] M. Tüchler, R. Koetter, and A. C. Singer, “Turbo equalization: Principles and new
results,” IEEE Trans. Commun., vol. 50, pp. 754–767, May 2002.

[61] D. W. Tufts, “Nyquist’s problem—The joint optimization of transmitter and receiver
in pulse amplitude modulation,” Proc. IEEE, vol. 53, pp. 248–259, Mar. 1965.

[62] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform.
Theory, vol. IT-28, pp. 55–67, Jan. 1982.

[63] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the AWGN chan-
nel,” IEEE Trans. Inform. Theory, vol. 44, pp. 273–278, Jan. 1998.

214



[64] M. K. Varanasi and B. Aazhang, “Near-optimum detection in synchronous code-
division multiple-access systems,” IEEE Trans. Commun., vol. 39, pp. 725–736,
May 1991.
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