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Abstract

We study the fundamental limits of decoding delay in providing reliable commu-
nication for real-time applications. After presenting a simple example to illustrate
the difficulties in using traditional block codes, we propose a new communica-
tion model to study decoding delay for streaming broadcast channels. We prove
a coding theorem establishing that, for certain collections of channel ensembles,
delay-universal codes exist which simultaneously achieve the best delay for any
channel in the collection. Such codes can reduce the latency in video conferencing,
tele-medicine, remote monitoring, control, and related scenarios.

1 Introduction

Real-time applications such as voice and video conferencing, tele-medicine, remote mon-
itoring, and control are highly sensitive to delay. Traditional methods of providing re-
liable communication usually rely on powerful error correcting codes, interleaving, or
other forms of diversity to achieve robustness. While such traditional methods are highly
suited to minimizing the resources required to deliver long, non-causal messages (e.g.,
file transfers), they are not necessarily suitable for minimizing delay in streaming appli-
cations.

Consider the difference in transmitting a file versus broadcasting a lecture in real-time.
One portion of a file may be useless without the rest. Hence, in sending a file, delay is
naturally measured as the time between when transmission starts and ends. Performance
for file transfers can thus be measured as a function of the total transmission time e.g.,
as studied in the analysis of error exponents.

By contrast, a lecture is intended to be viewed or heard sequentially. Hence, delay is
naturally measured as the lag between when the lecturer speaks and the listener hears.
The minimum, maximum, or average lag is thus a more appropriate measure than the
total transmission time. Furthermore, the best possible lag may be different for each
user, depending on the received channel quality. Even for a single user, the best possible
lag may vary throughout the transmission as the channel varies. Although traditional
codes may be applied to real-time systems, they may be far from optimal.

Our goal is to compute the best possible lags and design systems which achieve them.
Essentially, we wish to study transmission of a single message which can be received over
a collection of channel ensembles denoted by {Θi} and defined in detail in Section 3. The



decoding delay will of course depend upon the particular channel conditions encountered.
But, codes which minimize delay for Θ may be poor for Θ′. Therefore, achieving good
overall performance depends on designing codes which perform well for each Θ ∈ {Θi}.
For example, in a multicast scenario, user i may receive the signal over channel ensemble
Θi. Similarly, even with only a single receiver, there may be some uncertainty about the
channel or the channel may act differently at different times and each Θi may correspond
to one such possible channel. Ideally, we would like a system which achieves the minimum
possible decoding delay for each possible channel condition.

To illustrate the shortcomings of using traditional block codes, consider a packet loss
channel which behaves in one of two possible modes. In the first mode, denoted Θ1, no
more than 1 packet is lost within a given window of time. In the second mode, Θ2, up
to 3 packets may be lost in the time window of interest.

With a traditional block code, the transmitter could encode each group of 9 source
packets, s [0], s [1], . . ., s [8] into 12 coded packets, x [0], . . ., x [11] using a systematic
(12, 9) Reed-Solomon (RS) code (or any other equivalent Maximum Distance Separable
code). With this approach, any pattern of 3 (or less) packet losses occurring for channel
Θ2 can be corrected. But, on channel Θ1, if only x [0] is lost, the soonest it can be
recovered is when 9 more coded packets are received. Evidently the system may incur a
decoding delay of 9 packets just to correct a single packet loss.

To decrease the delay, instead of using a (12, 9) code, each block of 3 source packets
could be encoded into 4 coded packets using a (4, 3) RS code. Since one redundant packet
is generated for every three source packets, this approach requires the same redundancy
as the (12, 9) code. With the (4, 3) code, however, if the channel is in mode Θ1 and only
x [0] is lost, it can be recovered after the remaining 3 packets in the block are received.
Thus the (4, 3) system incurs a delay of only 3 to correct one lost packet. While this
delay is much smaller than with the (12, 9) code, if more than one packet in a block is
lost on channel Θ2, then decoding is impossible with the (4, 3) code.

Both practical block codes as well as traditional information theoretic arguments are
not designed for real-time systems. Thus we see that minimizing delay for minor losses
from Θ1 and maximizing robustness for major losses from Θ2 are conflicting objectives. Is
this trade-off fundamental to the nature of the problem, or is it an artifact of choosing a
poor code structure? We show that in many cases of practical interest, there exist better
code structures which are universally optimal for all channel conditions. Specifically, for
the packet loss example, there exist codes with both the low decoding delay of the (4, 3)
code and the robustness of the (12, 9) code. After discussing related work in Section 2,
we motivate and define a new system model in Section 3 and present our main results
on the existence of such codes in Section 4.

2 Previous Work

Researchers have explored channel uncertainty and transmission to multiple users by
studying the broadcast channel, compound channel, and arbitrarily varying channel, [1]
[2]. In these problems, each Θi represents a different channel probability law and the
focus is on finding the capacity region. Usually there is a trade-off and increasing the
rate received for a particular channel, Θi, requires decreasing the rate received over a
different channel, Θi′. In certain cases, however, universal systems exist [3].

In contrast to these static models where the goal is to find various capacity regions,
we consider a dynamic model and study the delays or lags. Since we analyze the intra-



message delays appropriate for real-time applications as opposed to the overall message
delay appropriate for non real-time applications, we require a communication model
where small chunks (or packets) of information are generated, sent, received, and decoded.
We let each Θi represent an ensemble of channel conditions, and study the lag between
when packets are generated and decoded.

An alternative model also concerned with delays in a somewhat different setting has
been recently studied by Sahai [4]. Also, Shulman and Feder have considered a static
broadcast channel where multiple receivers listen for a single long message (e.g., a file
transfer) [5]. They derive the trade-off between decreasing total delay for one receiver
at the cost of increasing delay for another by studying the delay region. Similarly, Luby
et al. construct codes to allow transmission of a file over a packet network such as the
Internet [6] [7]. Once a number of bits corresponding to the total length of the file
have been received, their codes allow the receiver to successfully recover the file with
low computational delay. Techniques from this work may also prove useful for real-time
applications (especially in the construction of practical codes).

3 Stream Coding System Model

We consider a streaming model where at each time step i a new source packet s [i] is
revealed to the transmitter and encoded into a channel packet x [i]. Each source packet
consists of ns samples from the alphabet S and each channel packet consists of nc samples
from the alphabet X . A memory M packet encoder, C, consists of a causal mapping from
the past M source packets, s [i − M], s [i − M + 1], . . ., s [i − 1] and the current source packet
s [i] into the current channel input packet x [i]:

C : (Sns)M+1 7→ X nc. (1)

For ease of analysis, we allow M and nc to be as large as required. We define the rate of
the system as

R = (ns/nc) log |S|. (2)

where | · | denotes cardinality of a set. Throughout the paper log refers to the natural
logarithm and thus rate is measured in nats.

To study systems where the channel state changes relatively slowly we use a piece-
wise constant or block-interference model [8] [9] [10]. Specifically, the channel output
packet, y [i], obtained by the receiver is determined according to the channel law

∞
∏
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�
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∞
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where θ [i] denotes the channel state for packet i.
A packet decoder, C−1, is a mapping from a delayed sequence of channel outputs

y [i + T], y [i + T− 1], . . ., and the corresponding channel states θ [i + T], θ [i + T− 1],
. . ., to an estimate of a source packet, s [i]. For a particular channel state sequence, θ, an
encoder, C, and the associated decoder C−1, we define the decoding delay, T (θ, C, nc, ε),
as the minimum lag which guarantees successful decoding with probability of error at
most ε when using packets of length nc:
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(3)

where we use the notation a[ j

i
] to denote the subsequence a[i], a[i + 1], . . ., a[j].



3.1 The Achievable Delay Region

In a broadcast or multicast scenario, different users receive the signal over different chan-
nel conditions. Similarly, even with only a single receiver, there may be some uncertainty
about the channel. Traditionally in a static problem, this is modeled by defining a dif-
ferent channel probability law for each user or each possible channel. Instead, to obtain
a dynamic model, we define a channel ensemble Θi as a set of possible channel state
sequences, θ [i]. The packet loss channel in the introduction provides one example of
such a model. For another example, the channel ensemble Θ1 could consist of all channel
state sequences where five of the received packets have a signal-to-noise ratio up to 10 dB
below nominal. Similarly, the channel ensemble Θ2 could consist of all sequences where
seven of the received packets have a signal-to-noise ratio up to 3 dB below nominal.

One natural performance measure for a code C on the channel ensemble Θ is the
maximum decoding delay for C on any state sequence in Θ:

Tmax (Θ, C, nc, ε)
∆
= max

θ∈Θ

T (θ, C, nc, ε) . (4)

To model scenarios where the channel may behave in one of N distinct modes (e.g., N
users each receiving the transmission over different physical conditions), we can consider
a collection of N channel ensembles {Θ1, Θ2, . . . , ΘN}. In this case, performance can be
measured by the delay tuple (T1, T2, . . . , TN ) where Ti = Tmax (Θi, C, nc, ε).

We define the set of all possible delay tuples as the achievable delay region, as illus-
trated in Fig. 1 for N = 2. Determining the N -dimensional achievable delay region for
arbitrary channel ensembles would provide the most complete understanding of delay in
the packet-streaming model. Codes which achieve the best delay trade-offs character-
ized by such a region would be useful building blocks in designing practical systems. In
this paper, we focus on simpler performance measures corresponding to particular delay
tuples and defer more detailed exploration of delay regions [11].

To obtain a simple performance measure, we need to map the collection of channel
ensembles {Θi}

N
i=1 to a single measure of overall delay efficiency. How should we construct

this mapping? First, the measure should not completely ignore performance for any
channel ensemble Θi. Second, the measure should lead to the design of codes which
are good for a large collection of channel conditions. Finally, the measure should be
reasonably simple to analyze.

Worst-case performance would seem to be a natural metric. Specifically, define the
minimax-delay for a channel ensemble Θ as the worst-case delay for the best code:

Tmin
max (Θ, nc, ε)

∆
= min

C
max
θ∈Θ

T (θ, C, nc, ε) . (5)

The codes labeled C1, C2, and C12 in Fig. 1 correspond to points achieving the minimax-
delays Tmin

max (Θ1, nc, ε), Tmin
max (Θ2, nc, ε) and Tmin

max (Θ1 ∪ Θ2, nc, ε) respectively.
The drawback of using Tmin

max (Θi, nc, ε) as a performance measure is that it com-
pletely ignores performance on all channel ensembles except Θi. The drawback of using
Tmin

max

(

∪N
i=1Θi, nc, ε

)

is that this quantity is essentially determined by the worst channel
in the collection ∪N

i=1Θi. Hence codes designed to optimize Tmin
max

(

∪N
i=1Θi, nc, ε

)

will not
necessarily perform well on most of the ensembles in the collection.

To illustrate the drawback of worst-case delay for a concrete example, consider a
congestion model where packet losses may occur. Let each Θi represent the ensemble
of packet loss patterns with exactly i lost packets. The worst-case delay will always be
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Figure 1: A Possible delay region. The axes represent delay for two channels ensembles
Θ1 and Θ2. Points above and to the right of the solid curve correspond to achievable
delays. The points marked C1 and C2 correspond to codes achieving the minimum delay
for Θ1 and Θ2, while the code C12 minimizes the maximum delay. The code C∗ minimizes
the maximum difference between the delay for a fixed code and the best code for each
channel ensemble.

determined by a packet loss pattern consisting of the maximum number of lost packets,
i.e.,

max
θ∈∪N

i=1
Θi

T (θ, C, nc, ε) = max
θ∈ΘN

T (θ, C, nc, ε) . (6)

Hence Tmin
max

(

∪N
i=1Θi, nc, ε

)

completely ignores performance for every channel ensemble
except ΘN and only focuses on the worst channel conditions. Specifically, the worst-case
delay does not consider performance when fewer losses occur: if only N/2 packet losses
occur, then C could have a much lower decoding delay than C ′, but this is not captured
by our performance metric. Ideally, we desire a code which can correct the loss of fewer
packets with correspondingly shorter delay.

Intuitively, we would like a “universal” code which has the same delay as an optimal
code designed for B packet losses when B packet losses occur and has the same delay as an
optimal code designed for B′ packet losses when B

′ occur. Thus, we believe that a valuable
performance measure for a code is the codes deviation from being universal. We define
the excess delay Tex (C, {Θi}) of a code C as how much more delay C requires for each
ensemble than a minimax delay optimal code designed specifically for that ensemble:

Tex (C, {Θi}, nc, ε)
∆
= max

i

[

max
θ∈Θi

T (θ, C, nc, ε) − Tmin
max (Θi, nc, ε)

]

. (7)

The code C∗ in Fig. 1 is an example of a code which minimizes the excess delay. While
a code minimizing Tmin

max

(

∪N
i=1Θi, nc, ε

)

is found by drawing a 45 degree line from the



origin to the frontier of the achievable delay region, a code minimizing Tex (C, {Θi}, nc, ε)
can be found by drawing a 45 degree line from the intersection of the Tmin

max (Θi, nc, ε)
hyper-planes to the frontier of the achievable region.

If the excess delay for a code C is zero, we call C delay-universal over the collection of
channel ensembles {Θi}. Of course, whether such a universal code exists depends upon
the collection of channel ensembles. In the sequel, we show that in many practical cases
of interest such codes do exist and lead to systems which are good for a variety of channel
conditions.

4 Coding Theorems

In order to state our main result about the existence of delay-universal codes, we need
the following definitions.

Definition 1. A collection of channel ensembles {Θi} is defined as input compatible if

there exists an input probability distribution which simultaneously maximizes the mutual

information I(x ; y |θ[i]) for every state θ[i] in every sequence θ ∈ Θi.

A collection of channel ensembles containing additive white Gaussian noise (AWGN)
channels with different signal-to-noise ratios is an example of an input compatible col-
lection while one containing both additive white Gaussian noise channels and additive
exponential noise channels is not.1 Intuitively, this property is important if universal
codes are desired. Otherwise a code matched to one channel ensemble will have a sub-
optimal mutual information on another channel ensemble and hence fail to be universally
optimal. For non input compatible collections, techniques from the theory of compound
channels and broadcast channels will be required.

Definition 2. A channel ensemble Θ is defined as permutation invariant if, for every

state sequence θ ∈ Θ, every permutation of θ is also in Θ.

A channel ensemble where any B packets may be completely lost while the others are
received error free and an ensemble where any B packets may be received with half the
normal signal-to-noise ratio are both permutation invariant. A channel ensemble where
any consecutive B packets may be completely lost or an ensemble where any consecutive
B packets may be received with half the normal signal-to-noise ratio are not permutation
invariant.

Our main result, proved on page 10, is the following theorem:

Theorem 1. If {Θi} is a collection of input compatible, permutation invariant channel

ensembles, then there exists a delay-universal code for {Θi}. Specifically, there exists

a code, C, such that for every ε > 0, the excess delay is exactly zero for large enough

packets:

∀nc > n0(ε), Tex (C, {Θi}, nc, ε) = 0. (8)

1AWGN channels are also stochastically degraded [12]. In general, stochastically degraded channels
are not necessarily input compatible, and input compatible channels are not necessarily stochastically
degraded.



A Packet Loss Example To apply this result to streaming in a packet network, we
can choose Θi as the ensemble where at most i packets are lost. For any N , {Θi}

N
i=1 is

a collection of input compatible, permutation invariant channel ensembles and therefore
Theorem 1 guarantees the existence of a universal code. In practice the minimum packet
size, n0(ε), need not be excessively large and codes requiring packet sizes proportional to
N/ log ε with encoding and decoding times polynomial in the packet size can be easily
constructed [11]. Such lengths are well within the packet sizes used for Internet trans-
mission as well as various wireless standards. For arbitrary channel models, tools from
the traditional analysis of error exponents can be used to bound the required packet size.

The construction of the desired code is straightforward and uses standard random
coding arguments. The key variation is that the code is designed to work in a packet-
streaming model instead of a block model. The main effort required to prove the theorem
is showing that no code designed for a specific Θi can do better. To show this we need a
tool to study the decoding delay of a code as a function of the channel mutual information.

4.1 Information Debt

We define the mutual information debt at time i, Id[i, R|θ], according to the recursion

Id[i, R|θ] = nc · R− I(x [i] ; y [i] |θ[i]) + max {Id[i − 1, R|θ], 0} (9)

with the added condition that Id[istart, R|θ] = 0 where istart is the time of the initial
transmission. The information debt can be thought of as how much more information we
need to receive about the current messages before successful decoding can occur. This
interpretation can be immediately translated into the following simple bound on decoding
delay.

Lemma 1. Consider a channel state sequence where the mutual information debt becomes

positive at time is and stays positive until at least time if . If N is the largest integer

below Id[if , R|θ]/(ncR), then at least one of the packets s [is], s [is + 1], . . ., s [if − N ],
transmitted by a causal, rate R system will fail to be decoded by time if .

Proof. We have the following chain of inequalities:

N · nc · R < Id[if , R|θ] (10)

=

if
∑

i=is

[ncR− I(x [i] ; y [i] |θ [i])] (11)

= (if − is + 1)ncR− I
(

x

[

if
is

]

; y
[

if
is

]

∣

∣θ

[

if
is

])

(12)

= (if − is + 1)ncR− I
(

x

[

if
is

]

; y
[

if
−∞

]
∣

∣θ
[

if
−∞

]

)

(13)

≤ (if − is + 1)ncR− I
(

s

[

if
is

]

; y
[

if
−∞

]
∣

∣θ
[

if
−∞

]

)

(14)

≤ (if − is + 1)ncR− I
(

s

[

if−N

is

]

; y
[

if
−∞

]
∣

∣θ
[

if
−∞

]

)

(15)

I
(

s

[

if−N

is

]

; y
[

if
−∞

]
∣

∣θ
[

if
−∞

]

)

< (if − is − N + 1)ncR. (16)

Equations (10) and (11) follow from the assumption that Id[i, R|θ] > ncRN for is ≤ i ≤ if .
The chain rule for mutual information and the block memoryless structure of the channel



yield (12) and (13). Equation (14) follows from the data processing inequality and (15)
follows from the chain rule for mutual information.

Finally, we can consider s [is], s [is + 1], . . ., s [if − N ] as a message of rate (if − is −
N + 1) · R. Therefore Fano’s inequality combined with (16) implies that the decoder can
not recover this message with small probability of error.

Note that Lemma 1 is a somewhat weak characterization of the decoding delay. Specif-
ically, it tells us that as long as the information debt is positive at least some source packet
can not be decoded, but it does not tell us exactly which packet can not be decoded.
For example, imagine that a number of packets are lost starting at time is and thus the
information debt becomes positive at time is and stays positive until time if . If the
encoder somehow anticipated the packet losses it may be possible that at time if , the
decoder can reconstruct all packets except the one at time if −N and hence the decoding
delay may be only N instead of if − is.

Thus, in general, it is possible for the decoding delay required by a code to be less
than the time the information debt is positive (e.g., with burst erasure correction [13]).
For a permutation invariant channel ensemble, however, this is not the case.

Lemma 2. For any rate R code, C, and permutation invariant channel ensemble, Θ, the

worst-case decoding delay is at least the maximum possible time the information debt can

be positive:

max
θ∈Θ

min
C

T(θ, C) ≥ max
θ∈Θ

∞
∑

i=−∞

[

Id[i, R|θ]

]

1

(17)

where

[

t

]

1

is 1 for t > 0 and 0 otherwise.

Due to space constraints, we provide a sketch of the argument for Lemma 2 only for
packet loss channels. The full proof for arbitrary channels is available in [11].

Proof sketch for Lemma 2 on packet loss channels: Let Θ consist of all channel state se-
quences where exactly B packets may be completely lost and all others are correctly
received. Assume for the sake of contradiction that Lemma 2 is false and the decoding
delay for some code C is strictly less than the right hand side of (17) which we denote as
T. Consider the channel state sequence

θ∗ = θ∗[0], θ∗[1], . . . , θ∗[T− 1] = 1B0T−B

where θ∗[i] = 1 indicates packet i was erased.
By assumption, s [0] can be recovered by time T − 1 even though the information

debt is positive at time T − 1. Now imagine that θ∗[T] is erased. Since, s [0] is already
recovered, the decoding delay for θ∗ is the same as for

θ∗∗ = θ∗∗[0], θ∗∗[1], . . . , θ∗∗[T] = 01B−10T−B1.

But since Θ is permutation invariant θ∗∗ ∈ Θ and hence, by assumption, for θ∗∗, s [1] can
be decoded at time T. Since the decoding delay for θ∗ must be no worse than for, θ∗∗,
s [1] can be decoded at time T for θ∗ even though

Id[T, R|θ
∗] > Id[T− 1, R|θ∗] > 0.

By continuing this argument, we can construct a channel state sequence with information
debt greater than T · nc · R at time i∗, which, by assumption, can be decoded with delay
T − 1. This contradicts Lemma 1 and shows our assumption that Lemma 2 was false is
incorrect.



4.2 Random Code Constructions

Lemma 2 provides a lower bound on the decoding delay via the information debt. We
present a random code construction which results in successful decoding whenever the
mutual information debt is non-positive. Together these results can be used to charac-
terize the connection between information debt and delay.

Encoder Construction: To construct an encoder we require a random partition, H(·),
mapping arbitrary length sequences from the alphabet Sns to random i.i.d. sequences of
length nc from the alphabet X . Specifically, H(·) is generated according to the following
procedure. For each element of the alphabet Sns , independently select nc elements from
the alphabet X using the distribution p(x). Repeat this procedure for each element of
the alphabets S2ns , S3ns , etc.

Encoding and Decoding: The initial source packet, s [0], is encoded to form x [0] =
H(s [0]). The next source packet, s [1], is encoded to form x [1] = H(s [0] , s [1]), the one
after that is encoded to form x [2] = H(s [0] , s [1] , s [2]), etc. For any ε > 0, to decode
s [i] (assuming previous packets have been already decoded), the decoder waits until
Id[i + j, R + ε|θ] ≤ 0. Then the decoder searches for a unique s [i] followed by a sequence
of packets s [i + 1], s [i + 2], . . ., s [i + j] such that . . ., x [i], x [i + 1], . . ., x [i + j] are
jointly typical with . . ., y [i], y [i + 1], . . ., y [i + j]. If no such unique s [i] is found, the
decoder declares a decoding failure.

Probability of Error:

Lemma 3. For any ε > 0, there exists an n0 such that for all nc > n0, the probability of

decoding failure is less than ε.

Proof. We prove the Lemma using standard arguments. Let E be the event that the
decoder fails. The event E can be separated into the event that the transmitted codeword
is not jointly typical with the received sequence (denoted by E1) and the event that an
incorrect codeword is jointly typical with the received sequence (denoted by E2). The
union bound implies Pr[E] ≤ Pr[E1] + Pr[E2]. By the law of large numbers, Pr[E1] → 0 as
nc → ∞, so all that remains is to bound Pr[E2].

Note that if Id[i + j, R + ε|θ] ≤ 0, then according to (9),

I
(

x
[

i+j

0

]

; y
[

i+j

0

]

|θ
[

i+j

0

])

≥ (i + j − 1) · nc(R + ε). (18)

This leads to the following chain of inequalities

Pr[E] ≤ |S|ns·(i+j−1) · exp
{

−I
(

x
[

i+j

0

]

; y
[

i+j

0

]

|θ
[

i+j

0

])}

(19)

= exp
{

(i + j − 1) · ns log |S| − I
(

x
[

i+j

0

]

; y
[

i+j

0

]

|θ
[

i+j

0

])}

(20)

≤ exp

{

(i + j − 1) ·
ns

nc

· nc log |S| − nc · (i + j − 1)(R + ε)

}

(21)

= exp {−nc · (i + j − 1) · ε} . (22)

The right hand side of (19) consists of the number of possible codewords times a bound
on the probability that any incorrect codeword is typical with the received sequence. We
obtain (21) from (18), and (22) comes from our definition of rate (2).



We can now use these Lemmas to prove Theorem 1.

proof of Theorem 1: Since the collection of channel ensembles is input compatible, the
preceding code construction yields a code where the decoding delay is given by the length
of time the information debt stays positive. According to Lemma 2, for any particular
channel ensemble, Θi, the minimax decoding delay for any code is given by the maximum
time the information debt can stay positive. Hence the preceding code construction is
universal.
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