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Abstract— Diversity techniques often arise as appealing
means for improving performance of multimedia communi-
cation over certain types of channels with independent par-
allel components (e.g., multiple antennas, frequency bands,
or time slots). Diversity can be obtained by channel coding
across parallel components at the physical layer. Alterna-
tively, the physical layer can present an interface to the par-
allel components as separate, independent links thus allow-
ing the application layer to implement diversity in the form
of multiple description source coding. We compare these two
approaches in terms of average end-to-end distortion as a
function of channel signal-to-noise ratio (SNR). When spe-
cialized to the case of an independent, identically distributed
Gaussian source over Rayleigh fading channels, our results
suggest that parallel channel coding at the physical layer is
more efficient than independent channel coding combined
with multiple description source coding. More generally, we
provide intuitive guidelines for allowing system designers to
identify which types of systems are preferable under differ-
ent scenarios of practical interest.

I. INTRODUCTION

In wireless links, effects such as fading, shadowing,
interference from other transmitters, and congestion can
cause the channel quality to fluctuate dramatically poten-
tially introducing distortions into the received multime-
dia stream. When channel fluctuations are ergodic, it is
well-known that limiting performance can be achieved by
averaging over channel variations provided suitably long
delays are allowed. Since long delays are generally unac-
ceptable in multimedia communication, a wide variety of
techniques have emerged to combat channel uncertainty
in delay-constrained, or non-ergodic, settings.

The source-channel separation theorem does not apply
to non-ergodic channel models. Hence separate design of
source and channel coding is generally sub-optimal and
achieving the best performance requires a joint source-
channel coding approach. While a number of special
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Fig. 1. Diagram for a system with single description source coding
combined with parallel channel coding.
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Fig. 2. Diagram for a system with multiple description source coding
combined with independent channel coding.

cases such as progressive and multiple description source
codes [1], [2], broadcast channel codes [3], and hybrid
analog-digital codes [4, Chapter 3], have been studied,
the general problem remains unsolved.

Practical systems have often been designed to com-
bat channel uncertainty by exploiting diversity ei-
ther at the physical layer via channel coding (e.g.,
space/time/frequency diversity) [5] or at the application
layer via source coding (e.g., multiple descriptions cod-
ing) [2], [6]. To investigate the benefits possible with
these different approaches, we consider two systems com-
municating over a parallel channel which could, for ex-
ample, represent separate frequency bands or time-slots.

A. System Configurations

In the single description system of Fig. 1, a source s is
encoded into ŝ by the source coder. Next ŝ is jointly en-
coded into (x1, x2) by the channel coder and transmitted
across a parallel channel. Each channel is represented by
a family of probability distributions p(yi|xi; ai) parame-
terized by ai; here, ai might model fading, shadowing, in-
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terference, or congestion. The channel decoder attempts
to decode ŝ from the channel outputs (y1, y2).

In the multiple description system of Fig. 2, a source
s is encoded into ŝ1 and ŝ2 by the source coder. Each ŝi

is then separately encoded into xi and transmitted across
the appropriate channel. The channel decoders receive
the channel outputs yi and attempt to decode ŝi. If only
one of the ŝi’s can be recovered, the resulting codeword
is used to produce a low fidelity source reconstruction ŝ .
If both ŝi’s are successfully decoded they are combined to
form a high fidelity reconstruction again denoted by ŝ .

Single description systems achieve diversity in the
sense that if one channel is bad, ŝ can still be recovered
provided the composite channel is good enough. By con-
trast, multiple description systems achieve diversity in a
different manner. If one channel is bad the source code-
word for that channel might be lost, but the source code-
word for the other channel can still be recovered and a
low fidelity reconstruction of the source can be obtained.

B. Overview of Results

While the delay constraints of the system might allow
us to approach performance limits in the source coder, we
consider the scenario in which these constraints are strin-
gent enough that the channels exhibit only a single real-
ization of the parameters ai (e.g. the fading coefficients)
during the channel coding interval. Thus, we cannot guar-
antee a priori that any fixed transmission rate R > 0
can be reliably received. We measure channel quality for
channel i using Shannon’s mutual information I (xi; yi).
Due to the strict delay constraint relative to channel vari-
ations, we treat the mutual informations as random vari-
ables with distributions determined by the channel model.

For a single description system, the source codeword,
ŝ , can be reliably decoded only if the total channel qual-
ity is high enough to support the transmission rate. One
the other hand, for a multiple description system, each
source codeword ŝi can be decoded if the quality of the
corresponding individual channel is high enough. Specif-
ically, in terms of the mutual informations, ŝ can be suc-
cessfully decoded in a single description system when
I (x1; y1)+ I (x2; y2) > Rsd and ŝi can be successfully de-
coded in a multiple description system when I (xi; yi) >
Rmd,i.

Fig. 3 compares the two systems when the multiple de-
scription system is designed to achieve the same distor-
tion as a single description system if all source codewords
are successfully decoded (i.e., in region III). Furthermore,
in region I, both systems fail to decode and again have the
same distortion. In regions II and V the single descrip-
tion system is superior since the channel conditions are
such that zero or one source codeword is decoded in the
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Fig. 3. Diagram of successful decoding regions for single and multiple
description systems designed to have the same distortion when all code-
words are received. The region above the solid line represents channel
conditions where the total channel mutual information is greater than
the source coding rate for the single description system and thus the sin-
gle description codeword is received. The regions above and to the right
of the vertical and horizontal dashed lines represent channel conditions
where the channel mutual information exceeds the source coding rate
for the multiple description source codewords ŝ1 and ŝ2 respectively
resulting in successful decoding of ŝ1 and ŝ2.

multiple description system, while the single description
source codeword is reliably received. Conversely, in re-
gion IV the multiple description system is superior since
one source codeword is received while the single descrip-
tion system fails to decode.

Intuitively, we expect the shape of the probability dis-
tributions of I (xi; yi), i = 1, 2 to influence which of the
two systems offers better performance. If regions II and V
are more probable, the single description system will be
superior; on the other hand, if regions IV are more likely,
the multiple description system will be superior.

As a specific example, in the classic multiple descrip-
tion problem modeling link failure or packet erasure [2],
each channel is either off, in which case no information
can be communicated, or supports a particular rate R.
The four channel conditions for this scenario are indi-
cated by �’s in Fig. 3 for an example packet erasure chan-
nel. For such discrete models, multiple description coding
is clearly superior since both the single and multiple de-
scription systems achieve the same distortions in regions I
and III, but the single description system fails completely
in region IV. In this region, the multiple description sys-
tem recovers one source codeword and produces a low
fidelity reconstruction of the source.

In the sequel, we study the important case of a white
Gaussian source transmitted over parallel independent
Rayleigh fading channels corrupted by additive white
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Gaussian noise. Specifically we show that at high signal-
to-noise ratios, obtaining diversity at the physical layer
via parallel channel coding in a single description system
is superior to obtaining diversity at the application layer
via multiple description source coding in a multiple de-
scription system. However, the multiple description sys-
tem is superior to single description systems with repeti-
tion coding.

II. SYSTEM MODEL

For simplicity, we model the source as a zero-mean,
unit-variance circularly symmetric complex Gaussian
random process, s(t), band-limited to S Hz. As a rea-
sonable model for a system employing, e.g., extra band-
width to exploit diversity in two sub-bands, the chan-
nels we consider consist of ideal band-limited filters with
bandwidth W Hz and attenuation ai corrupted by additive
white Gaussian noise (AWGN). We denote the ratio of
channel bandwidth to source bandwidth (i.e., processing
gain) as L = W/S.

A baseband equivalent, discrete-time model for the
channel has

y1[n] = a1 x1[n] + z1[n] (1)

y2[n] = a2 x2[n] + z1[n] , (2)

where ai captures the effects slow, frequency non-
selective multipath fading in the respective sub-band, and
zi captures the effects of additive noise and other interfer-
ence in the system. Statistically, we model ai as com-
plex Gaussian random variables, and zi[n] as complex
Gaussian random sequences, all being zero-mean, mu-
tually independent, and circularly-symmetric. This im-
plies, for example, that |ai| is Rayleigh distributed, and
|ai|2 is exponentially distributed. Without loss of gen-
erality, we normalize E

[
|ai|2

]
= E

[
|zi[n]|2

]
= 1, and

E
[
|xi[n]|2

]
= SNR/2, where SNR is the signal-to-noise

ratio (SNR), a key parameter of the channel model.

A. Source Coding Schemes

We consider two possible source coding techniques:
single description coding and multiple description cod-
ing. In both cases distortion is measured according to
mean-square error.

1) Single Description Source Coding: As is well-
known, the rate (in nats/channel sample) required for
single description source coding is given by the rate-
distortion function of a Gaussian source [3]

Rsd(D) =
1
L

log
1
D

. (3)

The rate (3) can be achieved using long Gaussian random
codebooks achieving distortion D.

2) Multiple Description Coding: In multiple descrip-
tion coding, the source is represented by two (or more)
descriptions such that each description alone provides a
low fidelity reconstruction of the source while combining
descriptions provides a high fidelity representation. Di-
versity can then be achieved at the application layer, by
sending the separate descriptions over independent chan-
nels.

The rates and distortions achievable by coding a com-
plex Gaussian source into two equal-rate descriptions
with a total rate of Rmd nats per channel sample, (i.e.,
each description requires Rmd/2 nats) satisfy [2]

Rmd(D0,D1) =
1
L

log
1

D0

+
1
L

log
(1 − D0)2

(1 − D0)2 − (1 − 2D1 + D0)2
, (4)

where D0 is the distortion when both descriptions are re-
ceived and D1 is the description when only a single de-
scription is received.

B. Channel Coding Schemes

There are a variety of approaches to channel coding
in the context of the systems in Figs. 1 and 2. We fo-
cus on parallel channel coding for the single description
system in Fig. 1 and independent channel coding over
the two channels in the multiple description system in
Fig. 2. To examine fundamental performance and com-
pare between systems, we analyze random coding over
non-ergodic channels using outage probability [7] as a
performance measure. Briefly, because the mutual infor-
mation I , corresponding to the supportable transmission
rate of the channel, is a function of the fading coefficients,
it too is a random variable. For fixed transmission rate R
(in nats/channel use), the outage probability Pr [I < R]
measures channel coding robustness to uncertainty in the
fading coefficients.

We now summarize outage probability performance for
parallel channel coding and coding independently over
the two channels.

1) Parallel Channel Coding: Using a pair of jointly-
designed complex Gaussian random codebooks, the mu-
tual information for the parallel channels as a function of
the fading coefficients is

Ipc(SNR) = log
(
1 + (SNR/2)|a1|2

)

+ log
(
1 + (SNR/2)|a2|2

)
,

where the factor of a half in the SNR results from spread-
ing power over twice the bandwidth. In this case, the out-
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age probability is

pout
pc (SNR, R)

�
= Pr[Ipc(SNR) < R]

= Pr
[
|a1|2 + |a2|2 + (SNR/2)|a1|2|a2|2 <

eR − 1
SNR/2

]
.

(5)

A simpler, but less powerful, parallel channel code, is a
repetition code across the two channels using a common
Gaussian random codebook x1 = x2. The mutual infor-
mation for a repetition coding approach is given by

Irc(SNR) = log
(
1 + (SNR/2)(|a1|2 + |a2|2)

)
,

so that the outage probability is

pout
rc (SNR, R)

�
=Pr [Irc(SNR) < R]

=Pr
[
|a1|2 + |a2|2 <

eR − 1
SNR/2

]
. (6)

For Rayleigh fading, (6) becomes

pout
rc (SNR, R) = 1−

(
1 +

eR − 1
SNR/2

)
exp

(
− eR − 1

SNR/2

)
.

(7)
2) Independent Channel Coding: To support multiple

description source coding, we employ independent chan-
nel codes on each of the channels (1)-(2). The mutual in-
formation of either channel using Gaussian random code-
books is given by

Iic(SNR) = log(1 + (SNR/2)|a|2) ,

so that the outage probability of each one of the channels
is

pout
ic (SNR, R)

�
= Pr [Iic(SNR) < R]

= Pr
[
|a|2 <

eR − 1
SNR/2

]
. (8)

Note that because of the independence of the channels,
the probability that both the channels experience outage
is [pout

ic (SNR, R)]2. For Rayleigh fading, (8) becomes

pout
ic (SNR, R) = 1 − exp

(
− eR − 1

SNR/2

)
(9)

C. Average Distortion Performance

To compare schemes, we compute statistics on the end-
to-end distortion of the various systems. For simplicity
of exposition, we only treat the mean-distortion compu-
tations. We also optimize over target distortion levels for
each scheme, since a general relationship between sin-
gle and multiple description distortions is not presently
known.

D. Single Description System

The performance of single description systems de-
pends upon a single outage event. Choosing a target
distortion D requires a channel coding rate of Rsd(D)
given by (3). When an outage occurs (with probabil-
ity pout (SNR, Rsd(D))), the source incurs distortion 1
(more generally σ2

s ); on the other hand, when no out-
age occurs (with probability 1 − pout (SNR, Rsd(D))),
the source incurs distortion D.

In the case of parallel channel coding, the average dis-
tortion performance is given by

Dsd,pc(SNR) = min
D

{
(1 − pout

pc (SNR, Rsd(D))) · D

+pout
pc (SNR, Rsd(D)) · 1

}
, (10)

with Rsd(D) given by (3) and pout
pc (SNR, R) given by (5)

For the special case of repetition coding across the par-
allel channels, the average distortion performance is given
by

Dsd,rc(SNR) = min
D

{
(1 − pout

rc (SNR, Rsd(D))) · D

+pout
rc (SNR, Rsd(D)) · 1

}
, (11)

with Rsd(D) given by (3) and pout
rc (SNR, R) given by

(6).
For single description systems the target distortion D

must be chosen to balance two competing trends. Small
D (large R) reduces the distortion when there is no out-
age, but also increase the outage probability. Large D
(small R) reduces the outage probability but increases the
distortion when there is an outage. Balancing these com-
peting effects is the objective of the optimizations in (10)
and (11).

E. Multiple Description System

In contrast with single description systems, the per-
formance for multiple description systems depends upon
two outage events. Choosing a pair of target distor-
tions D0 and D1 requires a channel coding rate of
Rmd(D0,D1)/2 given by (4) for each channel. If
an outage occurs on both channels (with probability
[pout

ic (SNR, Rmd(D0,D1)/2)]2), the source incurs dis-
tortion 1 (more generally σ2

s ). On the other hand, when
an outage occurs on only one channel, which occurs with
probability

2 · pout
ic (SNR, Rmd(D0,D1)/2)

· [1 − pout
ic (SNR, Rmd(D0,D1)/2)] , (12)

the successfully received codeword provides a low fi-
delity reconstruction of the source incurring distor-
tion D1. When no outage occurs (with probability
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[1 − pout
ic (SNR, Rmd(D0,D1))]2), both received code-

words are combined to form a high fidelity reconstruction
incurring distortion D0.

Thus with independent channel coding, the average dis-
tortion performance is given by

Dmd,ic(SNR) = min
D0,D1

{
[
pout
ic (SNR, Rmd(D0,D1)/2)

]2

+ 2 · D1 · pout
ic (SNR, Rmd(D0,D1)/2)

·
[
1 − pout

ic (SNR, Rmd(D0,D1)/2)
]

+
[
1 − pout

ic (SNR, Rmd(D0,D1)/2)
]2 ·D0} , (13)

with Rmd(D0,D1) given by (4) and pout
ic (SNR, R) given

by (8).
III. ASYMPTOTIC ANALYSIS

In order to identify the benefits of various diversity
schemes we consider the limiting behavior of the average
distortion as a function of SNR as SNR → ∞. Since
the distortion for our systems of interest has the form
D(SNR) ∝ SNR−∆ for some ∆ at high SNR, we de-
fine the average distortion exponent as

∆ = lim
SNR→∞

− log D(SNR)
log SNR

. (14)

We omit a detailed analysis and present our results for
the average distortion exponents of various systems in Ta-
ble I. We compare performance of single and multiple
description diversity systems to performance of a single
AWGN channel with fading (i.e., no diversity), and a par-
allel AWGN channel (i.e., infinite diversity).

TABLE I
AVERAGE DISTORTION EXPONENTS.

Channel Source Code Channel Code ∆
Parallel AWGN SD PC 2L

Parallel Rayleigh SD PC 2L/(L + 1)
Parallel Rayleigh MD IC 4L/(2L + 3)
Parallel Rayleigh SD RC 2L/(L + 2)
Single Rayleigh SD IC L/(L + 1)

Fig. 4 shows the average distortion for various systems
where the parameters in the optimizations (10), (11), and
(13) have been numerically computed for the case L =
1. As the plot indicates, the difference in performance
suggested by the asymptotic results in Table I becomes
evident even at reasonable SNR.

IV. CONCLUDING REMARKS

We showed that single description source coding com-
bined with parallel channel coding achieves a lower ex-
pected distortion than multiple description source cod-
ing with independent channel coding when transmitting a

Fig. 4. The lines represent the average distortion performance of single
description source coding with repetition coding (top dotted line), multi-
ple description source coding with independent channel coding (middle
dashed line), and single description source coding with parallel channel
coding (bottom solid line) with a processing gain of 1 (i.e., L = 1).

Gaussian source over independent Rayleigh fading chan-
nels. For large processing gains, however, the perfor-
mance gap is small and multiple description systems may
be more desirable in practice due to other issues such as
complexity, ease of deployment, or when other channel
effects (e.g., congestion) are a concern. Topics for future
work include investigating whether qualitatively similar
results hold for sources with memory and for practical
systems as opposed to information theoretically optimal
systems for i.i.d. sources.
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