
Approaching the Dirty Paper Limit for Canceling Known

Interference

Uri Erez

EECS, MIT
uri@allegro.mit.edu

Stephan ten Brink

Realtek, Irvine, CA
stenbrink@realtek-us.com

Presented at
41th Ann. Allerton Conf. on Commun., Control, and Computing

Oct. 1–3, 2003

Abstract

Costa’s “writing on dirty paper”–channel model offers an information theoretic frame-
work for precoding techniques for canceling arbitrary known interference. Using lattice
strategies and MMSE scaling, lossless precoding is theoretically possible at any SNR. Fol-
lowing this approach, we report an end-to-end coding realization of a system materializing
a significant portion of the promised gains. We employ iterative detection and decoding of
capacity approaching codes, where code design is done using the EXIT chart technique.
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Figure 1: The generalized Costa channel

1 Introduction

It has recently been shown [10] that an information theoretic framework for the study of efficient
known interference cancellation (precoding) techniques may be found in Costa’s “Writing on
dirty paper” [8]. The (generalized) dirty paper channel model is depicted in Fig. 1.

Y = X + S + N, (1)

where S is arbitrary interference known at the transmitter (noncausally) and N is a statistically
independent Gaussian random variable with variance PN , and where the encoder has power PX .
This channel model was proposed by Cover with Gaussian S and N and in [8]. Costa showed
that in this case the capacity is equal to 1

2 log(1 + PX/PN ). Therefore the noise S does not
incur any loss in capacity. We treat the generalized model where S can be an arbitrary signal,
deterministic or random, for which this result holds as well [10].

Willems suggested schemes for coding for the dirty paper channel (for causally known inter-
ference) in [16]. In [10] it was shown that the full capacity may be achieved using a scheme based
on lattices and MMSE scaling. Related schemes were developed in the context of information
embedding in [7, 9]. In [15] a realization of the necessary lattice transmission scheme based
on trellis shaping [12, 11] and “syndrome dilution” was proposed. In this work we extend this
approach by employing capacity approaching codes and using iterative detection and decoding.
We design a complete end-to-end dirty paper transmission system which attains a significant
portion of the promised gains. The system incorporates a check–biregular, repeat–irregular
nonsystematic repeat–accumulate (RA) code [14, 3] concatenated with a trellis shaping code.
The variable node decoder (VND) of the RA code is designed for iterative quantization detec-
tion and decoding using the EXIT chart technique. We note that, in principle, a low–density
parity–check code could be used in a similar set–up as well. However, RA codes exhibit a nice
linear encoding complexity.

1.1 Lattice precoding

We review the lattice precoding approach proposed in [10]. Let Λ denote an n-dimensional
lattice and let V denote its fundamental Voronoi region. Also let U ∼ Unif(V), that is U is a
random variable (dither) uniformly distributed over V. The scheme is given by,

• Transmitter: The input alphabet is restricted to V. For any v ∈ V, the encoder sends:

x = [v − αs − u] mod Λ. (2)

• Receiver: The receiver computes

y′ = [αy + u] mod Λ. (3)

The resulting channel is a mod-Λ additive noise channel described by the following lemma:



Lemma 1 ([10]) The mod-Λ channel defined by (1),(2) and (3) satisfies

Y′ = v + N′ mod Λ (4)

with
N′ = (1 − α)U + αN mod Λ. (5)

The mutual information of the channel is maximized by a uniform input, giving

1

n
I(V;Y) =

1

n
h(Y′) −

1

n
h(N′) =

1

2
log

PX

G(Λ)
−

1

n
h(N′), (6)

where G(Λ) = 1
n

∫

V
‖x‖2dx

|V |1+2/n is the normalized second moment of Λ. Taking α = PX
PX+PN

we have

Var((1 − α)U + αN) = (1 − α)2
1

n
Var(U) + α2 1

n
Var(N) = αPN . (7)

Since for a given second moment a Gaussian random vector has the greatest entropy it follows
that

1

n
h(N′) ≤

1

n
h((1 − α)U + αN) ≤ log

(

2πeαPN

)

(8)

where the first inequality follows since the modulo operation can only decrease the entropy.
Substituting (8) in (6) we obtain the following lower bound on the achievable rate as a function
of G(Λ),

I(V;Y) ≥
1

2
log(1 + SNR) −

1

2
log 2πeG(Λ). (9)

Thus, in principle, for a given lattice Λ, the gap to capacity of a precoding system may be made
smaller than log 2πeG(Λ). This is depicted in Fig. 2 from which the gap in dB may be inferred.
For optimal lattices for quantization we have G(Λ) → 2πe, and the gap goes to zero.

Note that when Λ is one-dimensional, the lattice precoding scheme is based simply on scalar
quantization (SQ) and is an extension of Tomlinson-Harashima precoding. For this case, the
achievable mutual information of the mod-Λ channel (4) may be easily computed and is depicted
in the Fig. 2. Note that while the gap to capacity of a scalar system is 1.53dB at high SNR,
the lowest possible Eb/N0–operating point is at 2.4dB. This means that the gap to capacity
approaches 4dB at zero spectral efficiency (see Fig 2). For this reason we concentrate our efforts
on the low SNR regime.

In the next section we describe coding for the scalar case. This will serve as a baseline
reference for our main results, reported in Section 3. See also [6].

2 One–Dimensional Quantization

We briefly describe a one-dimensional lattice transmission system. The effective noise channel
(4) now takes the form

Y ′ = X + (1 − α)U
︸ ︷︷ ︸

uniform in interval
[−A(1−α),A(1−α)]

+ αN
︸︷︷︸

Gaussian
N(0,α2PN)

mod [−A,A].

Coding for this channel is essentially not much different than for an AWGN channel. As our
focus is on the low SNR regime we chose our target operating spectral efficiency (passband) to
be 1bit/s/Hz. A SQ transmission system is depicted in Fig. 3.

We use an off–the–shelf parallel concatenated (turbo) code (PCC, [2]). Fig. 4 depicts a
typical effective noise channel and the respective log–likelihood ratio values (L–values [13]).
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Figure 2: Lower bound (9) on achievable rates as a function of G(Λ). From left to right: AWGN
capacity limit; lower bound for shaping gains 1.5, 1.45, 1.4, 1.35, 1.3, 1.2, 1.1 and 1.0dB; mutual
information of one-dimensional scheme.
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The L–values are the input to the turbo decoder. For a spectral efficiency of 1bit/s/Hz we use
a PCC of rate Rch = 1/2 and BPSK modulation per dimension. The code is of memory 4, and
has generator polynomials 0378 (feedback) and 0218 (feedforward). With α = 0.65, we obtain
a turbo cliff at about 3dB (length K = 105 systematic bits, 20 iterations) which is just about
0.4dB from the performance predicted by the mutual information limits of the scalar quantizer,
and 3dB away from the AWGN capacity limit (see Fig. 9). Similarly, for a spectral efficiency of
0.667bit/s/Hz, we use a PCC of rate Rch = 1/3, memory 4, and polynomials 0258 (feedback),
0378 (feedforward). Setting α = 0.55, we get the turbo cliff at about 2.8dB which is 0.4dB from
the mutual information limit, and 3.4dB away from the respective AWGN capacity limit.

3 Multidimensional Quantization

3.1 Background: Obtaining lattices from linear codes

The modulo operations performed at both transmission ends mean that we may equivalently
view a message selection as specifying a coset t + Λ. The actual transmitted signal is the dif-
ference between αS+U and the nearest point of the coset. As S is arbitrary (unbounded) this
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Figure 4: Left: Conditional probability density functions (convolution of Gaussian and uniform
densities) after scalar quantizer (modulo). Right: Corresponding log–likelihood ratio values
(L–values); modulo interval from −2, ...,+2; α = 0.65; Eb/N0 = 3dB at code rate Rch = 1/2.

means that we have to search over the infinite lattice. Similarly, while we may closely approxi-
mate the “unfolded” effective noise (1−α)U+αN as Gaussian noise of variance αPN = PXPN

PX+PN
,

the modulo operation (folding) at the receiver means that we have to compute the metrics
∑

λ exp
{
−‖y − v + λ‖2/αPN

}
. Again, this involves a summation over the infinite lattice. For-

tunately, a standard method for constructing lattices from linear codes, i.e., Construction A,
yields lattices that are also periodic in the cubic lattice pZ

n (p prime). Furthermore, lattices
which are optimal for shaping, i.e., having log 2πeG(Λ) as small as desired, may be obtained
having this structure (although one would have to use non–binary codes). This reduces the
search to that of first performing one dimensional quantization, and then performing a search
over the finite set of coset representatives of the quotient group Λ/pZ

n. The separation of the
search into these two stages is done in trellis precoding in [11] and in the context of dirty paper
coding in [15]. Fig. 5 illustrates the construction by example. To visualize this construction
the example is over the prime field Z11.
Example:
We take block length n = 2 and field Z11. We use a rate 1/2 block code (k = 1) given by the
generating matrix (vector) G = [2, 3] so that

C = {x · [2, 3] mod 11 : x ∈ Z11}

We embed the code “as is” in Euclidean space as depicted in Fig. 5 (left). Then using this
“finite lattice” we tessellate the whole of R

2 giving the lattice

Λ = C + 11Z
2

The eleven points contained in the fundamental Voronoi region serve as coset representatives
and correspond to the choice of the vector v in Section 1. The next step is to choose a code,
i.e., use a subset of these coset leaders and map the messages onto them.

3.2 Designed system

Our system follows this line of construction, replacing lattices with trellis codes as is often done
in practice. The system model is depicted in Fig. 6.

Transmitter: The transmitter is a concatenation of a nonsystematic repeat–accumulate
(RA) code [3], performing the “coset dilution”, and a trellis shaping code (i.e. the vector
quantizer). The RA encoder is composed of an outer mixture of repetition codes of different
rates (variable nodes), an edge interleaver, and an inner mixture of single parity check codes
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Figure 5: Construction A: Linear code is embedded in R
n (left), then space is tessellated (right).
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of different rates (check nodes), followed by a memory one differential encoder (accumulator,
ACC). Code design is performed by appropriately choosing repetition and check node degree
distributions. The encoded bits are grouped into triplets (c1, c2, c3)ACC and demultiplexed into
“upsampler” bits uup = cACC,1 and unsigned bits cACC,2, cACC,3. The upsampler (replacing
the inverse syndrome former in trellis shaping) has rate Rup = 1 − RV Q = 1/2. The sign–bits
cup,1, cup,2 generated by the upsampler, and the unsigned bits are mapped onto 4-PAM symbols
using natural labeling. After adding the scaled interference and a uniformly distributed dither
signal, the vector quantizer determines the minimum energy sequence, and the quantization
error vector is transmitted over the communication channel.

Channel: On the channel, white Gaussian noise is added, with double–sided noise power
spectral density PN = N0/2 and mean zero. Interference is added. For 16-QAM (4-PAM
per dim.) and RV Q = 1/2, we have Es/N0 = 2(1 + 0.5)RchEb/N0. Thus, for simulation we
set PN = Es/(3Rch2Eb/N0), whereby Es is the average energy per complex output symbol
measured after the VQ at the transmitter.

Receiver: At the receiver, MMSE α–scaling is applied, and the dither signal u is removed;
a one-dimensional modulo is performed prior to putting the signal into a soft in/soft out vector
quantizer which performs an a posteriori probability (APP) detection of the sign–bits and the
unsigned bits respectively, using the BCJR algorithm [1] on an appropriately defined trellis
structure. The vector quantizer, thus, can be viewed as an APP detector, computing extrinsic
information on the sign–bits and unsigned bits respectively, which is forwarded to the RA
decoder. The RA decoder is composed of an inner accumulator decoder (ACC), check node
decoder (CND), and an outer variable node decoder (VND), which, in turn, provides a priori
information for the APP VQ detector to improve the quantization result (“iterative quantization
and RA decoding”). The structure is close to the scheme presented in [3]. As we merge the
APP vector quantizer with the inner accumulator decoder of the RA code, we obtain a variant
of “trellis detection”, similar to [4].

Fig. 7 aids in understanding the structure of the joint trellis processing over accumulator trel-
lis (memory νACC = 1), vector quantizer trellis (memory νV Q), upsampler, and modulo symbol
metric based on two 4-PAM symbols per three hypothesized accumulator bits (u1, u2, u2)ACC .
One trellis column comprises 2νACC = 2 states of the memory one accumulator, and 2νV Q

vector quantizer states per accumulator state, i.e. in total 2νACC+νV Q states. One state tran-
sition is labeled by the three input bits to the accumulator (u1, u2, u3)ACC , the virtual input
bit to the VQ uV Q, and by the two 4-PAM output symbols s1, s2. The intermediate outputs
are the hypothesized coded bits of the accumulator (c1, c2, c3)ACC , the output of the rate 1/2
upsampler cup,1, cup,2, the hypothesized coded bits of the VQ cV Q,1, cV Q,2, and the sign–bits
cs,1 = cup,1 + cV Q,1|mod 2, cs,2 = cup,2 + cV Q,2|mod 2. Thus, with inputs (u1, u2, u3)ACC and uV Q,
there are 24 = 16 state transitions entering and leaving each state of the trellis. A priori in-
formation is provided by the outer variable node decoder on the inner information bits with
respect to the accumulator, i.e., on (u1, u2, u3)ACC .

Note that the information bit uV Q of the vector quantizer is “virtual”: By keeping uV Q

undetermined (“floating”), all VQ–codewords are allowed. Of course, since the VQ at the
transmitter has taken the liberty to change the sign–bits to its liking (according to its codebook),
namely, to find/shape the minimum energy sequence, all VQ–codewords are equally likely and
have to be “overlayed” in the trellis structure to perform appropriate detection of the sign–bits
and unsigned bits respectively. This corresponds to the summation over the coset specified in
Section 3.1.

3.3 Mutual information

With the chain–rule of mutual information [5], we can compute the mutual information of an
“equivalent bit channel”, i.e. the channel that, effectively, is experienced by the channel decoder
after VQ APP detection. For this, we compute the mutual information transfer curve of the
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VQ APP detector using a priori knowledge that is modeled as stemming from a binary erasure
channel (BEC). Examples of such curves are depicted in Fig. 8 (left) for different VQ memory;
observe that the S–shape is more pronounced for bigger memory. An integration over the area
under these curves gives an estimate of the mutual information that is available to the channel
decoder, provided that perfect iterative decoding over detector and decoder could be performed.
In the figure, the area under the memory 4 and 6 VQ curves is a little greater (for fixed Eb/N0)
if compared to the memory 2 VQ, since the shaping gains for memory 4 and 6 are bigger.
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If we include the accumulator decoder into the inner detector, and use the joint trellis
processing discussed in the previous section, we obtain the curves on the right, which, now,
go up to (1, 1). For the same VQ memory, the area under the curves stays about the same.
Changing the upsampler has little influence on the shape of the VQ transfer curve as the vector
quantizer “undos” any code protection offered by, e.g., a convolutional upsampler with memory,
since it can freely flip the sign–bits at the transmitter. The upsampler is part of the VQ mapping
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process (mapping input bits to points in the Voronoi region), its role being to match the rates.
Thus, we fixed it to the simplest possible code, i.e., a repetition code.

By computing transfer curves over different α– and Eb/N0–values, and numerically evalu-
ating the corresponding area, we obtain the mutual information limits given in Fig. 9 (right),
plotted in the spectral efficiency chart.

As can be seen, the advantage of a memory 6 VQ over a memory 2 VQ is bigger for
smaller spectral efficiencies. Note that these mutual information limits are obtained using area
integration over EXIT curves. We still need to design an appropriate iterative decoding scheme
to materialize these gains. This is discussed in the next section.

3.4 Code design example

We designed an RA code of rate Rch = 1/6, to obtain an overall spectral efficiency of 0.5bit/s/Hz.
The EXIT chart technique was used to find appropriate VND degree distributions. For this,
the outer VND transfer curve is matched to the inner VQ&ACC&CND curve by means of curve
fitting. For details on RA code design using the EXIT chart, see [3]. We chose a VQ of rate
RV Q = 1/2 and memory 2, with feedforward polynomials 078 and 058. A 4-PAM constellation
was applied per dimension using natural labeling. We computed the inner detector curve (in-
cluding VQ&4PAM, ACC and CND) by Monte–Carlo simulation, assuming a Gaussian model
for the a priori information. We chose a biregular check node layer, with 80% of the check
nodes being degree 1, and 20% being degree 3. Curve fitting at Eb/N0 = 1dB yields a VND
degree distribution of 64.36% variable nodes being degree 3, 31.24% degree 10, and 4.402%
degree 76. We achieve convergence at 1.1dB (codeword length K = 6 · 104, N = 3.6 · 105 bits,
100 iterations, α = 0.4). No error floor was observed for 40 blocks simulated, which can be
attributed to the fact that there are no degree 2 variable nodes, and the lowest variable node
degree is 3. Fig. 10 shows inner and outer transfer curves, and a simulated decoding trajectory
at 1.2dB. The trajectory follows the individual transfer curves reasonably well.
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4 Summary

We presented a multidimensional dirty paper coding system that offers substantial gains over the
performance of systems based on one-dimensional scalar quantization. While for a SQ system
a simple AWGN turbo code together with a log–likelihood ratio modulo metric is sufficient to
achieve reliable communication close to its mutual information limits, the gap to capacity of
such systems is large at low SNR, and hence multidimensional quantization is required.

For the vector quantizer case, we showed how to perform iterative quantization and de-
coding, using a 4-PAM mapping, APP sign–bit and unsigned bit detection, together with a
nonsystematic RA code. The combination of vector quantizer, upsampler and 4-PAM demap-
per was regarded as a detector, computing the respective L–values to be processed by a channel
decoder. Moreover, merging this quantization detector with the inner memory one trellis de-
coder of an RA code allowed to obtain a joint inner curve which simplified code design. The
design was exemplified for 0.5bit/s/Hz using an RA code of rate Rch = 1/6. The improvement
is more than 1.6dB over the best SQ–case. Still, a gap of about 1.8dB remains to the AWGN
capacity at this spectral efficiency. However, the structure presented in this paper paves the
way to even better performing VQ and decoding schemes for the dirty paper channel.
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