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Abstract—Aspects of the duality between the information-em- I. INTRODUCTION

bedding problem and the Wyner-Ziv problem of source coding . . .
with side information at the decoder are developed and used to es- | NFORMATION embedding concerns the reliable transmis-

tablish a spectrum new results on these and related problems, with | sion of information embedded into a host signal, and has
implications for a number of important applications. The single- an increasingly wide array of applications, from digital water-
letter characterization of the informatior_l-embedding_pro_blem is marking, data h|d|ng’ and Steganography, to backward_compat_
developed and related to the corresponding characterization of the ible digital upgrading of communications infrastructure [7], [6].

Wyner—Ziv problem, both of which correspond to optimization of Likewi di ith side inf ion h .
a common mutual information difference. Dual variables and dual -/KEWIS€, source coding with side information has a growing

Markov conditions are identified, along with the dual role of noise  Spectrum of applications, ranging from new low-power sensor

and distortion in the two problems. networks to the upgrading of legacy communications infrastruc-
For a Gaussian context with quadratic distortion metric, a tyre [28], [1].

geometric interpretation of the duality is developed. From such This paper develops the natural duality between information

insights, we develop a capacity-achieving information-embedding . - .
system based on nested lattices. We show the resulting encoder—de-embedd'ng’ which can be reinterpreted as a problechafinel

coder has precisely the same decoder—encoder structure as thecoding with side information at trencode(7], and the problem

corresponding Wyner—Ziv system based on nested lattices that of sourcecoding with side information at thdecoder the most

achieves the rate-distortion limit. _ _ important instance of which is the well-known “Wyner—Ziv”
For a binary context with Hamming distortion metric, the in- problem [34]. Exploiting this duality, several new results and

formation-embedding capacity is developed, along with its rela- . S . . . . -
tionship to the corresponding Wyner—Ziv rate-distortion function. interesting insights with practical implications are obtained, in-

In turn, an information-embedding system for this case based on cluding severalin the context of mixed analog—digital transmis-

nested linear codes is constructed having an encoder—decoder thatSion.

is identical to the decoder—encoder structure for the corresponding  Fig. 1 depicts the information-embedding scenario of interest.

system that achieves the Wyner—Ziv rate-distortion limit. . Then-dimensional vectoX is the “host” signal, and the mes-
Finally, based on these results, a simple layered joint sageM is the information to be embedded, which is indepen-

source—channel coding system is developed with a perfectly
symmetric encoder—decoder structure. Its application and per- d€nt of X. The encoder uses both the host and the message to

formance is discussed in a broadcast setting in which there is a Create a “composite” sign&¥ that is suitably close to the host
need to control the fidelity experienced by different receivers. X. The composite signal passes through a probabilistic channel,
Among other results, we show that such systems and their mul- the output of whichY’, is reliably decoded to retrieve the em-
tilayer extensions retain attractive optimality properties in the bedded messagd .1 In our model for information embedding
Gaussian-quadratic case, but not in the binary-Hamming case. ' . . . 2
. o ' o - each element of the haXt is drawn in an independent and iden-
Index Terms—Coding with side information, data hiding, digital  tically distributed (i.i.d.) manner from the distributign (z),
watermarking, hybrid coding and transmission, information 5. the channel is memoryless and characterized by the transi-
embedding, joint source—channel coding, Slepian—Wolf coding, ,. . ) PR . .
Wyner—Ziv coding. tion densitypy | (y|w).? The specific information-embedding
problem is as follows: if the distortion between the host and
composite signal is constrained to be at mhsthat is the max-
imum rateR of reliable communication that can be supported
by the embedding given a particular transmission channel?
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i lems that arises out of the duality, as we will disctig=or the
: w Y . moment, it suffices to observe that the information-embedding
X ——— encoder channel decoder M . .
encoderhas exactly the same input variabléé and M) and
output variable W) as thedecodeifor the Wyner—Ziv problem.
M Furthermore, the information-embeddidgcodethas the same
input variable ¥') and output variable/) as theencoderfor
Fig. 1. The information—embedding model. The sign’él,s’\l,W, andY are, the VVyner_ZiV prob|em_ AS we i”ustrate in some key contexts

respectively, the host, embedded information, composite signal, and chanpgl . . . .
output. The dashed line represents side information at the decoder, which rﬁfﬂnterest this is not a coincidence: the two problems are, in

or may not be present, depending on the application. fact, duals in the sense that an optimal encoder—decoder for one
problem is an optimal decoder—encoder pair for the other.

In developing the deeper connection, we show that, in gen-
eral, the capacities and rate-distortion limits for the two prob-
Y channel ! decoder ——W lems are closely related, and can be expressed in terms of an

optimization over the same mutual information difference with

: respect to the free parameters in each problem. Moreover, we
encoder show that distortion and channel noise play dual roles in the two
problems.

In addition to our own work [1], [6], [2], there has been
Fig. 2. The source coding with side information model. The sighalsl/, growing interest in aspects of the subject of this paper in recent
X, andW are respectively the source, digital encoding, channel output, aﬂ(?nes' and an expanding set of results and insights. Su, Eggers,
decoded source. The dashed line represents side information at the encoder . . . . .
which may or may not be present, depending on the application. and Girod [30] consider the Gaussian-quadratic special case

and have a similar geometric interpretation to ours. Chiang
) and Cover [9], [17], [16] expand the scope of the duality
paper, we refer to the case where the host is also known attheggy()nd the information-embedding context. Chou, Pradhan,

coder as “private” information embedding, and to the case whefgy Ramchandran describe aspects of the duality in [10] and
the host is not also known at the decoder as “public” '”form%vestigate it further in [24], [25].

tion embedding. While we examine both forms of embedding, pp, gutline of the paper is as follows. After establishing

we emphasize public information embedding in our develogyme pasic notation in Section II, we develop and relate the
ment, and when there is no risk of confusion we use the teffisjc single-letter characterizations for the two problems
“information embedding” generically to refer to this case. i gection 111, For the information-embedding problem, we
Fig. 2 depicts the source coding with side informatiogeneralize a result of Gelfand and Pinsker to include a
problem of interest. The-dimensional source vectdf passes djstortion constraint and an arbitrary metric; other versions
through a probabilistic channel, producing the side informatiqst this problem are considered by Moulin and O’Sullivan
X. The encoder produces the messadefrom the source [23]. In Appendixes | and II, we provide the proofs for the
Y that the decoder uses in conjunction wi¥hto produce a coding theorems for public and private information embedding,
suitably accurate reconstructid of Y. In our model for respectively, emphasizing the duality with the corresponding
source coding with side information, the source is drawn i-i-v\/yner—Ziv problem. We then discuss the duality between
from py(y), and the channel is memoryless with transitiofhe resulting mutual information optimization and Markov
densityp x|y (z|y). For this problem, the question is: given &onditions for the information-embedding and Wyner—Ziv
particular side information channel, what is the minimum raggroblems. We further examine the dual relationship between
R that is required at the output of the encoder to ensure thftortion and channel noise in the two problems, developing
distortion between the source and reconstruction is at #®st the correspondence between the noise-free and distortion-free
The dashed line in Fig. 2 represents a less interesting varigpecial cases of each problem. Among other insights, we
of the source coding with side information problem wherelyiscuss the resulting duality between a version of Slepian—Wolf
the side information is also known to the encoder. When tle@&icoding and information embedding for noise-free channels.
side information is also known to the encoder, achievable perfor-Section 1V examines the duality further in the case of
mance is easily characterized in terms of a familiar conditionglaussian contexts with a quadratic distortion metric. In this
rate-distortion function [5], [21]. When the side information igase, we relate the information embedding capacity and Wyner—
not also known to the encoder, we have the problem consigly rate-distortion function geometrically, which emphasizes
ered by Wyner and Ziv [34]. While we develop dualities assodihe dual relationship between distortion and channel noise
ated with both forms of the source-coding problem, we emphia-the two problems. We then proceed to build deterministic
size the Wyner—Ziv version, and when there is no risk of confinformation-embedding systems based on nested lattices that
sion we describe both versions generically as the “Wyner—Zichieve capacity at high signal-to-distortion ratio (SDR). Such
problem.” systems are also developed independently by Erez, Shamai, and
As Figs. 1 and 2 suggest, there is a one-to-one correspdamir in [18]. We show how the resulting encoder—decoder pair
dence between variables in the information-embedding anq_rh . . .
roughout this paper it will be clear through context whether a variable

Wyngr—Ziv problems. Indeed, our nOtatiQn is Chosen SO asQyhich we refer corresponds to the information-embedding problem or the
identify the correspondence between variables in the two prokyner—ziv problem.
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has theidentical structure as the associated decoder—encoder X U u

. L . . IX w
pair for a deterministic Wyner—Ziv embedding system based f pyw—Y
a nested lattices, which achieves the rate-distortion limit at
high signal-to-noise ratio (SNR), and which is a nondithered
version of the Wyner—Ziv solution developed by Zamir anélig. 3. lllustration of the variable relationship in the single-letter
Shamai [36] We further develop in Appendixlll a\NyneI._Zi\Fharacterization of information embedding, wheté is the auxiliary

’ . - . . ' . random variable.

code based on nested lattices with dithering that achieves the
rate-distortion limit at any SNR.

Section V examines the duality further in the case of bina#. Public Information Embedding Capacity

contexts with a Hamming distortion metric. In this case, The capacity of public information embedding subject to
we use our results in Section Il to compute the informag, empedding distortion constraint is denotet(d). It is
tion-embedding capacities (Appendix 1V), and highlight thgefined as the maximum achievable rate for communicating
close relationship—between both the proofs and the ﬁ”é"messageM such thatPr(M # M) is arbitrarily small and

expressions—to the corresponding Wyner—Ziv rate-distortiqfl[; S r_, D(Xi, Wy)] is arbitrarily close tal for sufficiently

function developed in [34]. We then proceed to build deterargen_

ministic information-embedding systems for this case basedyyg following result is a generalization of that of Gel'fand

on nested linear codes that achieve capacity, and show howy pinsker [20] and Heegard and El Gamal [22], which con-
the resulting encoder—decoder pair has the identical structd[ger the problem without a distortion constraint.

as the associated decoder—encoder pair developed in [28] for
achieving the Wyner—Ziv rate-distortion limit. In the noise-free Claim 1: For general distortion measurds(-, -), the ca-
special case, the information-embedding system we constrRagity C'(d) can be expressed in the form
is the dual of Wyner’s Slepian—Wolf code construction [32].
Finally, in Section VI, we exploit our results in the devel- C™(d) =sup I(Y; U) — I(U; X) 1)
opment of a new class of layered joint source—channel coding
systems from the interconnection of information embeddirghere the supremum is taken over all distributipgsy (u|z)
and Wyner—Ziv subsystems. The new systems can be usedgl functionsf: U/ x X' + W satisfying
a broadcast setting in which one wants to control the fidelity
available to different groups of users. We show that, with our E[D(X, W) <d  whereW = f(U, X) (2)
construction, no price need be paid for this extra functionality
in the Gaussian-quadratic case, but that there is a cost in WereU is an auxiliary random variable.
binary-Hamming case. A unique feature of our coding system
is that the encoder and decoder shdemnticalstructure.
Section VII contains some concluding remarks.

The relationship between the primary and auxiliary random
variables in this single-letter characterization is depicted in
Fig. 3. To prove Claim 1, we begin by using an extension of
the reasoning in [20] to show that the rdi@”; U) — I(U; X)
is achievable. The basic encoder and decoder construction is
as follows. A random codeboakis generated witl2" 1 i.i.d.

In terms of general notation, the components of a lemgthcodewordsU' ~ [[i_, pu(U;), where Ry = I(Y; U) + e.
random vectoV’ are denoted’, ..., V.. In turn, we use/} The codewords are distributed randomly iatd® bins, where
to denote a vector comprised of tjt throughith components 12 = I(Y; U) — I(U; X) — 2. Atthe encoder, the embedded
of V, where if the subscript is omittegjs implicitly 1; whence information M specifies the bin which is used to code the
V = V" = V™. A scriptV is used to denote the alphabet ofOurce. The encoder finds the codewdfdn that bin that is
the random variablé’. Except when otherwise indicated (i.e.JOintly distortion typical with the hosX' and transmits it.
in Gaussian scenarios), all random variables in this paper take decoder looks for the code vector in allbfhat is jointly
on values from finite alphabets. We uBgu, ) > 0 to denote tyPical with the channel outpdf’. The bin index of that code
a general distortion measure. The expressigns), H(-),and Vector is the decoded informatioll. That this encoder and
H(-|-) denote Shannon’s mutual information, entropy, and coA€coder structure has the requisite properties is straightforward

ditional entropy, respectively. All logarithms in this paper are t8S Shown in [1]. It remains only to show the converse, which is
be interpreted base- provided in Appendix | and relies on the concavity@f (d).

Finally, observe that sindg is an auxiliary random variable,
the characterization of the physical channel in this problem is
ll. SINGLE-LETTER CHARACTERIZATIONS OF CAPACITY such that/ — (W, X) — Y form a Markov chain, whence
AND RATE DISTORTION

Il. NOTATION

I(Y; UIW, X) =0. (3)
In this section, we describe the single-letter expressions for
the distortion-constrained public information embedding ca-

pacity and the Wyner—Ziv rate-distortion function. We compare o , R _
4The main difference between this achievability proof and that of [20] is that

these expressions to those when the host (respectively, sou &ﬁ’[)distortion typicality—not just joint typicality—is required to meet the em-

X is known at the decoder (respectively, encoder). bedding distortion constraint.
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B. Private Information Embedding Capacity Y puy u

The corresponding result to Claim 1 for private information f—w
embedding subject to a distortion constraint with arbitrary P X
metric is summarized as follows. XY

Slgg]«mz: The private information embedding capacity, deIfig. 4. lllustration of the variable relationships in the single-letter charac-
note

priv(d), is given by terization of source coding with side information, whéreis the auxiliary
random variable.

CE (d) =sup I(Y; W|X) (4)

priv

. Thei i It is the following:
where the supremum is taken over ajl;|x (w|z) such that eir main result is the following

E[D(X, W)] < d. Ry (d) = inf I(Y; U) — I(U; X) (10)

A proof is provided in Appendix Il. The construction forwhere the infimum is taken over ady |y (uly) and functions
achievability involves the use of a set of codebooks, each pfi/ x X — W such that

which is a capacity-achieving codebook for a particular host _ )

valueX = x € X. The total achievable rate is thus the ex- U —Y — X isaMarkov chain (11)
pected value of the conditional capacities osgrand the av- 44

erage distortion is the expected value of the distortions over all

the codebooks. The converse exploits the concavi€yigf, (d). E[D(Y, W)] <d, whereW = f(U, X) (12)
The public and private information embedding capacities are
related by whereU is an auxiliary random variable. The relationship be-
tween the primary and auxiliary random variables in this single-
C™(d) < CLE(d) (5) letter characterization is depicted in Fig. 4.

Note that the objective functions on the right-hand sides of
where equality in (5) holds if and only if the maximizing distri10) and (1) are identical, as occurs in the case of the duality
bution for X, Y, U, W in (1) also maximizes the argument ometween source and channel coding without side information
the right-hand side of (4), and if with this distribution [15]. Condition (11), i.e.X andU are conditionally indepen-

I(X: UlY) =0 ©6) dent givenY’, implies (c.f. (6))

i.e., U — Y — X form a Markov chain. I(X;UY) =0 (13)
To verify (6), we first obtain, by expanding(Y, X; U),two which using (7) simplifies (10) to

different ways using the chain rule R%%{(d) _ i IV UIX). ”

IY; U) = I(U; X) = 15 UIX) = I(U; X]Y) (7)o achievability proof [15] and that used for the informa-

whereU is any auxiliary random variable such that (2) is sation-embedding problem [1] are mirrors of each other. Indeed,

isfied. Likewise applying the chain rule f(Y; U, W|X) we the Wyner-Ziv encoder (respectively, decoder) is used in pre-
obtain cisely the same manner as the information-embedding decoder
(respectively, encoder). Likewise, whereas the converse for in-
IV;UIX)-1(Y;WIX) = I(Y; UW, X)-I(Y; W|U,X).  formation embedding relies on the concavity @f®(d), the
(8) converse for the Wyner—Ziv problem relies on the convexity of
WZ
However, from (3), the first term on the right-hand side of (8) is YIX( )
zero, and sincéV is a deterministic function off and X, the D. Conditional Rate-Distortion Function

_seco_nd term on the right-hand side of (8) is also ZE10. Thus, (S)Source coding with the side information known at the decoder
impliesI(Y'; U|.X) = I(Y; W|X) and (7) can be rewritten as 5,4 encoder is the dual of private information embedding. As
I(Y; WIX) = [I[(Y; U) — I(U; X)]+I(X; U]Y). (9) shown by B(_arger [5] and_Gray_ [21], thg achievable rate is given
by the conditional rate-distortion function
Comparing (9) with (1) and (4), we obtain the stated necessary .
and sufficient conditions for the public and private embedding Ry|x(d) = inf I(Y; W|X) (15)
capacities to be equal. where the infimum is taken over all distributiops;| x (w|z)
such thatE[D(Y, W)] < d.
The proof of this result mirrors the proof of private informa-
tion embedding described in Appendix Il. In particular, achiev-
In[34], Wyner and Ziv define the rate-distortion function withability of the conditional rate-distortion function is proven by
side information at the decoder, denoﬂéﬁ’&(d), as the min- a “switching” argument; for each € X, an optimal rate-dis-
imum data rate at which/ can be transmitted such that wherortion codebook is used to code the source samyjléar all ¢
n is large the average distortidii{2 >, D(Y;,, Wy)] is ar- such thatX; = =. The total rate is thus the expectation over
bitrarily close tod. of the marginal rate-distortion functions, and the distortion is the

C. Rate-Distortion Function With Side Information at the
Decoder
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expected value of the distortions over all the codebooks. Like-The minimum rate R®"V%(0) required for distortion-free
wise, in the same way that the converse for private informatiddyner—Ziv coding follows immediately from an application of
embedding exploits the concavity Gﬁv(d), the converse for the Slepian—-Wolf source-coding theorem [29]. In particular,
the conditional rate-distortion problem exploits the convexity dhe source can be reproduced exactly at the decdtler=(Y)

Ry x(d). if and only if [15, Sec. 14.4]
The Wyner—Ziv and conditional rate-distortion problems are e
related by R>H(Y|X)=R"%(0) 19

where the underlying densityy-| x (y|=) is prescribed by the
problem, so no infimum in (19) is required.

where, as shown in [34], equality in (16) holds if and only if the To see the duality to noise-free information embedding, we

minimizing distribution forX, Y, U, W in (10) also minimizes d€velop the associated capacity in the sequel.
the objective function on the right-hand side of (15), and if with 1) Noise-Free Information Embedding Capacityhe max-

Ry|x(d) < Ry%(d) (16)

this distribution we have (c.f. (3)) imum rate that can be attained for noise-free information em-
bedding is closely related [6]. In particular, the dual result is as
I(Yy; Uw, X)=0 (17) follows: one can reliably embed a messadén the host signal
for transmission over an error-free channel if and only if

ie., U — (X, W) — Y form a Markov chain.
R S maxH(Y|X) = CIIllgise-free(d) (20)

E. Duality of Necessary and Sufficient Conditions

. : . . : . where the maximum in (20) is over all distributiops| x (y|z)
The relationships described in the preceding subsections & thatE[D(X, W)] < d.

veal an important aspect of the duality between information em'Equation (20) is verified as follows. W first show that, even

bedding and source _cod_mg W'th.S'de |nforme_1t|on. . with the constraint/ = W in (1), the rateH (Y| X) is achiev-
To summarize, with information embedding (respectwel%ible

source coding with side information), for the embedding

capacity (respectively, rate-distortion function) to be the same C=supl(Y;U)-I1I(U; X)
whether or not the host (respectively, side information) is >I(Y;Y) - I(Y; X)
known at the decoder (respectively, encoder), the optimizing :H(Y) CH(Y) = HY|X)]
distributions for X, Y, U, W must first be the same with -
or without the signalX known at the encoder (respectively, =H(Y|X) (21)

decoder). where we have used = W =Y in the second line. Now, we

The duality manifests itself in the remaining necessary CODRall show that the capacity (1) cannot excés@’ | X)
dition. For information embedding this is the Markov condition

(6), which for the Wyner—Ziv problem is automatically satisfied(Y;U) — I(U; X) =H(U) - H({U|Y) - H{U) + H(U|X)
(c.f. (13)). Similarly, for the Wyner—Ziv problem, the remaining =H(U|X)— H(U|Y)

necessary condition is the Markov constraint (17), which for the < _

case of information embedding is automatically satisfied (c.f. <HU|X) - H{UY, X)

3): =I1(U; Y|X)
The Markov condition not automatically satisfied by the =H(Y|X)-H(Y|U, X)
problem construction may or may not be satisfied. Indeed, <H(Y|X).

in Section IV, we will see that its for both problems in the
Gaussian-quadratic case, while in Section V we will see thatlife third line follows since conditioning decreases entropy. The
is notfor either problem in the binary-Hamming case. final line arises since entropy is nonnegative.

Unless otherwise noted, for the remainder of this paper, welt remains only to maximize this resulting rafe= H(Y'|X)
restrict our attention to the problems of source coding with si@¥er all possible choices qfy;|x (ulx). Equation (20) is ex-
information known only at the decoder, and information embe@ressed in terms of the equivalent maximization guer (y|2)
ding with side-information known only at the encoder. sinceY = W = U.

F. Noise-Free/Distortion-Free Duality IV. GAUSSIAN-QUADRATIC CASE

In this subsection, we examine important limiting cases of In this section, we examine the information embedding ca-
the duality between information embedding and Wyner—Zjyacity and rate-distortion function in the case of a (continuous-
coding, corresponding to noise-free and distortion-free scaliphabet) Gaussian host and source, respectively, a memoryless
narios. First, we observe that distortion-free information enGaussian channel, and a quadratic distortion metric. Our devel-
bedding and noise-free Wyner—Ziv encoding are trivial dualsopment reveals the duality in the derivations of these bounds and

RWZ (d) = 0 = CT5(0). (18) in the codes that achieve them.

noise-free

In the other limiting case—noise-free information embeddirfy Gaussian-Quadratic Information Embedding Capacity

and distortion-free Wyner—Ziv coding—the duality is more in- Consider an i.i.d. Gaussian haXt ~ N(0, o%I) and a
teresting. channel that adds white Gaussian ndise- \(0, o3.1) that is
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independent ofX, whereN (m, A) denotes Gaussian random
vector with meann and covariance matriX.5 The messagé/

is embedded intX, creating a composite sigril such that the
mean-square embedding distortion is minimizédz, w) = Vn(o2+d)
(z — w)?. The capacityC"™" (d) of this system is given by [14] / !

Vnd

C™(d) = % log (1 + %) . (22)

Costa proves this result in the context of coding for a channel -
with a random state known at the encoder. Using a convenien
super-channel interpretation of information embedding, Chen
and Wornell [7] cite Costa’s expression as the information-em-
bedding capacity for the Gaussian case. N
Costa first proves that the information-embedding capacity "
with X known at the encoder and decoder equals the expres
sion in (22). He then proceeds to show that with no host at the
decoder, there is a test channel which achieves this capacity. pX (p=1)
The test channel used to determine capacity defines the aux
iliary random variabld/ = o X + E for some constant and
with £ zero-mean, Gaussian, and independenY ofmplying
that the encoding function 8’ = f(U, X) = U + (1 —a)X. Fig. 5. Geometric interpretation of information embedding as sphere packin
Solving forI(Y; U) — I(U; X) and maximizing with respect in%he'Gaussian_quadrat?c case. g as sphere packing
to « yields (22).

also a linear function. For the special case of an additive white

] ) ] ] ) Gaussian channel with SNR oo, the decoder function is
The Wyner-Ziv rate-distortion function for a Gaussian source

with jointly Gaussian side information at the decoder is a dual to W= f(U,X)=U+(1-a)X. (24)
the distortion-constrained information embedding capacity with T

Gaussian host and Gaussian channel. Note that this special-case decoder is the same as the informa-

For jointly GaussianX and Y whose element pairs areyjon_empedding encoding function for the Gaussian case.
all drawn i.i.d. from the Gaussian densiffx y(z, y) ~

N(0, Axy), the Wyner—Ziv rate distortion function is [33]

B. Gaussian-Quadratic Wyner—Ziv Rate-Distortion Function

C. Geometrical Interpretations

1 Jg,lx . , The du_ality betvx_/een _the inforrr_latiqn—embedding capacity and

Wz _J3 log d ) if0<d< Oy |x Wyner—Ziv rate-distortion function in the Gaussian case has

Ryjx (d) = (23)  a convenient geometrical interpretation, which we illustrate in
0, if d> 012,|X this subsectiof. In particular, we show how information em-

bedding is sphere packing about the host in signal space, while
wheres?.  is the error variance in the minimum mean-squard/yner—Ziv encoding is sphere covering about a source estimate
error (MMSE) estimation ot” from X. We can always write thatis a linear function of the side information.
the relationship betweeki andY in the formX = gY +V for 1) Geometry of Information Embeddingnformation em-
somes, whereV is Gaussian with varianeg?. and independent bedding can be viewed as a sphere-packing problem, as depicted
of Y. Without loss of generality, we restrict our attention to th# Fig. 5 in the high distortion-to-noise ratio (DNR) regime. To
casel = 1. understand this figure, note that the distortion constraint implies

Wyner [33] proves (23) by first showing that the conditionaihat all composite signal¥” must be contained in a sphefg
rate-distortion function equals the expression in (23), mirrorir@f radius v/nd centered abouX . In coding for the channel,
the approach used by Costa in the corresponding informatiate use2™® codewords (signal points) that must be contained
embedding problem. He then proceeds to show that with Kéthin Sx such that smaller spheres of radiys.o{, about all
side information at the encoder, there is a test channel whiehthe signal points have negligible overlap—each symbol will
achieves the same rate-distortion function, thereby finding thé uniquely distinguishable at the decoder. We emphasize that
Wyner—Ziv rate-distortion function. this must be true for alX, so that ifX changes by some amount,

In Wyner’s formulation, the test channel encoder simply aghe positions of signal points may change, but the number of
signs the auxiliary random variablé to be a linear combi- Signal points will stay the same. Signal design corresponds to
nation of the source and an independent zero-mean Gaus$ifng a sphere of radius/n(d + o3-) with smaller spheres of
variable:U = aY + E. The test channel decoder function isadius/noy .

SWe usel to denote the identity matrix. A similar geometrical interpretation is given in [30].
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and this lower bound is met by a code that achieves the rate-
distortion bound given by (23).

N D. Geometrical Duality
X
The geometric interpretation of the Gaussian case shows that
the encoder (respectively, decoder) operation for information

embedding is the same as the decoder (respectively, encoder)
operation for Wyner—Ziv coding. At the information-embedding
encoder, the digital information/ specifies a signal point in

a sphere about a signil, and similarly, at the Wyner—Ziv de-
coder the digital informatiod/ from the coded source specifies

a signal point in a sphere about the signXl. A minimum-dis-
tance decoder for the information-embedding problem finds the
nearest neighbor code vector to the channel observation, which
corresponds to a decoded message index. The corresponding
Wyner-Ziv encoder finds the nearest neighbor code vector to
the source, and transmits the associated index.

Another aspect of the relationship between the infor-
mation-embedding and Wyner—Ziv problems is the duality
between the roles of noise and distortion in the two problems,
which is readily seen in our geometric interpretation of the
Fig. 6. Geometric interpretation of Wyner-Ziv coding as sphere covering f8aussian case. In particular, from Fig. 6 we see that in the
the Gaussian-quadratic case. Wyner-Ziv problem the radius of the large sphere is propor-

tional tooy|x, which characterizes the noisiness of the channel

With this geometrical interpretation, clearly the maximunn the Wyner—Ziv problem, and the radius of the smaller sphere
number of spheres that can be used is upper-bounded by igheroportional to/d. In contrast, from Fig. 5, we see that in the
ratio of the volumes of the large to the small spheres. Thus, tb&se of information embedding the radius of the large sphere
number of codewords is bounded is essentially proportional t¢/d, and the radius of the smaller

W n n/2 sphere is proportional to the standard deviation of the nojse
( n(d+ o) ) _ <d + 05) (25) Note that this dual relationship between noise in one problem
(Vno? )"

and distortion in the other is consistent with our observations in
From (22), we see that a capacity-achieving code will meet thistes between the noise-free and distortion-free scenarios in the

Vnd

pX

onit <

o2

Section llI-F of the duality in the characterizations of achievable

upper bound as two problems with finite alphabets.
d+ o2 n/? ; ;
onC _ ( . V) (26) E. Nested Lattice Code Constructions
v Nested lattices can be used to construct optimum codes for
for largen. the information-embedding and Wyner—Ziv problems in the

2) Geometry of Wyner—Ziv EncodingMyner—Ziv coding Gaussian-quadratic scenario, as we describe in this section in

can be viewed as a sphere-covering problem, as depictedtg dual cases of high SDR and high SNR, respectively. The
Fig. 6 in the low DNR regime. Given a side information vectofesulting codes are duals of one another.

X at the decoder, an MMSE estimate of the sour@é is pX,  Our notation is as follows. An (unbounded)dimensional
wherep is the associated MMSE estimator gain. The remainingttice £ is a set of codeword§l;} such that
mean-square error about the estimatf:?j?\., implying that the
L 7 2 LeR", ly=0, Li+l,eL, Vi, j. (28)
source must lie in a sphefg-| x of radius noy| x aboutpX.
Moreover, the noisier the channel frofhto X, the larger this A minimum (Euclidean) distance decoder, which quantizes an
sphere. A Wyner—Ziv codebook for a distortidrwill contain ~ arbitrary signalX to the nearest (in a Euclidean sense) code-
2nR(d) code vectors ifk™, and is designed so that most sourc&ord, takes the form
sequences of lengthlying in Sy x are within a distance/nd )2 1T — 1112 29
of a codeword. Rate-distortion coding for the Gaussian case, AT = ar%erzun | | (29)
therefore, amoynts to covering the spthgX W'th smaller where|| - || denotes the (usual) Euclidean norm. The associated
spheres of radius/nd, which we illustrate in Fig. 6. Clearly ot :

. . quantization error is then
the number of codewords is lower-bounded by the ratio of the

volumes of the large to the small spheres E=U-QU). (30)
o2 n/2 The quantizer specifies the characteristic Voronoi region
2nR(d) > Y|X (27)
4 Vi ={U: Q(U) = 0}
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for the lattice. A Voronoi region is conveniently described imvith
terms of its volumeV, second moment2, and normalized - s
second momert, which are given by, respectively, W = Q3 (X) (36)

o? whereq is another parameter. The associated decoder produces

1
_ 2 _ _* 2 _
V= /vdU’ T /v Wwi"av, - & v2/n’ (1) the message estimate as the index of the closest coset to its ob-

When £ is a good lattice (i.e., constitutes a goodervationy,i.e.,M = k(Q:(Y)).

source—channel code, in the sphere-covering/packing semnse)l We first verify that the embedding rat& is arbitrarily
is sufficiently large, and we are operating in the limit of higff/°S€ to capacity, which follows from the lattice properties.

resolution (high signal-to-quantization-ere, /o2), we have Indeed, with the me_ssagd drawn uniformly from the indexes
the following properties. {1, 2, ..., 2"F}, using Property (GQ-3) and (33), the rate of
the system is withirl /» bits of

(GQ-1) The quantization error (30) is white and Gaussian 1 17 1 o2 Gy
with zero mean and varianeé, and independent of R =~ log <7> =5 log <—§ G_>
(29), the codeword to which the vector is quantized 711 ) i o1 2
[35]. > log (”V j ) —0(¢) = C™(d) — O(¢)  (37)
UV

(GQ-2) Forevery > 0, the probability of a decoding error,

. where the last equality follows from (22).
Pr{Q( + Z) 7& I} <e yvhenl < 'C andZ is a Furthermore, with the right choice of the parametere can
zero-mean white Gaussian vector independerdt of

whose elements have variang®— ¢ [13] ensure the encoder meets the distortion constraint in the regime
¢ ' of interest. Indeed, defining the quantization error

(GQ-3) Foralle > 0, log(2meG) < € [35]. E,=X— Q‘g(X) (38)

We make use of two good lattice®; and L5, whereLs is  and lettinga = 1 — b we have that

nested inq, i.e.,Ls C £1.8 The associated quantizer, Voronoi
. W =X — bE,. (39)

cell, volume, second moment, and normalized second moment . .
for the latticeC; are denoted);(-), V;, Vi, 02, andG;. Applying Property (GQ-1) in the context of the latticg, we

The lattice £; can be partitioned int@"? = V5/V}; obtain that the embedding distortion is, using (39), as desired
cosets corresponding 6, and its translates. As in [36], for l _ 2 12 2
l € £y, we refer to the quantityy = I — Q»(l) as the coset n BX =W = b0y = d. (40)
shift of L with respect to the lattic&,. The functionk(L): Finally, it is straightforward to verify that the decoder

L1 — {1,2, ..., V,/V;} indexes the coset shifts, and theachieves arbitrarily low error probability. Indeed
invve\/:a-s?eftugg tg)(annic)giu(a')thiée.c'()gs(g( lgz)r?ei;;ochjzi(rwlg);. to coset s$ijft Y=W+V (41)
2 p—
and we note that the quantizer for this coggj, takes the form = (Ig —E)+(1-b)E+V) (42)
Q3U)=Q(U—-8)+8 (32) =Q§(X) +((1-D)E2 +V) (43)
2 — Y2 . W N e (44)

1) Ngsted Lattice Codes forlnforma}t|on Embeddlngims where (42) follows from (39), where (43) follows from (38),
subsection, we construct a nested lattice implementation of diSsoreW is as defined in (36), and whe= (1 — b)E» + V.
tortion-compensated quantization index modulation (DC-QII\/lQOW, using Property (GQ-1) in the context of lattics, we
[7]. The codes achieve information embedding capacity in the )\, that B, and henceZ, is Gaussian and independent of
limit of high SDR (2. /d). For this version we avoid the use oW Thus using Property (GQ-2) in the context of lattiéewe
dither; versions that exploit dither are given in [1] and [18].  paye from (44) tha@ (Y) — W with probability at least — ¢

We choose our nested lattices such that sincevarZ = o — .2 But k(W) = k(S) = M, so the decoder
o2=(1-b22+0%+e and of= a4 (33) estimatesls(Ql(Y)) asM with probability at least — €
b? 2) Nested Lattice Code for Wyner—Ziv Encodingnal-
where ogously, nested lattices can be used to build Wyner—Ziv codes
d for the Gaussian-quadratic case, as Zamir and Shamai develop
b (34) with a dithered construction in [36] in the limit of high SNR

=g 2
d+oy (03-/o%).10 A generalization of this construction that achieves
Our information_embedding encoder using these |att|cgge rate-distortion limit for all SNRs is outlined in Appendix 11|

takes the form of DC-QIM [7], i.e., the composite sig#&l and also appears in [1] and [37]. A version of this construction

is constructed from the hosX and the (unique) coset shiftthat avoids dither, which we summarize here, is the dual of that

S = g(m) of the message: according to we consider in Section IV-E1. As the solution will reveal, the

. Wyner-Ziv encoder (respectively, decoder) has the same form

W =aX + bW (35)

9That the overalZ can, for good lattices, be effectively treated as Gaussian
"These properties are true only in the asymptotic sense, which makes theith the indicated variance is also justified by more formal treatment of the
somewhat hypothetical for any. See [18] for a more rigorous treatment. underlying limits, as shown in [19].

8The existence of pairs of good nested lattices is shown in [19], [37]. 10such constructions are explored further by Servetto [27].
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as the information-embedding decoder (respectively, encoder). V. BINARY-HAMMING CASE
It suffices to restrict our attention to the cabec o2, .

; ) In this section, we consider the scenario where the signals of
For this problem, the nested lattices are chosen such that

interest—the host in the information-embedding problem and
o2 — do?, the source in the Wyner—Ziv problem—are Berndull2) se-
N () guences, where Bernouylli) denotes a sequence of i.i.d. binary

A suitable encoder using these lattices transmits the indx(0 1}) random variables, each of which is takes on the value
of the closet coset to the sourd ie.. it transmitsM = 1 With probabilityp. In both problems, the associated channel of

k(Q1(Y)). The decoder observeX and M, calculates the interest is the binary-symmetric channel with crossover proba-
coset shiftS = (M), then produces a source estimate of tHility p. The distortion metrid)(-, -) is Hamming metric, corre-

and o3 =0} + 0% + e (45)

form sponding to bit-error rate. In this section, we h$e) to denote
the entropy of a Bernoulliv) source, i.e.,
W =X +iW (46) h(q) = —qlog(g) — (1 - q) log(1 — q)
where andp x ¢ to denote binary convolution, i.e.,

W = Q5(X). (a7) pxqg=p(l—q)+q(l-p).

That the system operates at the target rate follows from tﬁ\e Binary-Hamming Information-Embedding Capacity

lattice properties. Indeed, Property (GQ-3) and (45) prescribeThe information-embedding capacities in the binary-Ham-

the rate of the code to be withiryn bits of ming case are as follows.
no 1 log iy _1 o oGy Claim 3: For the binary-Hamming case, the distortion-con-
—n B Vo) 2 o2Go strained information-embedding capacit§®(d) is the upper
1 o2 concave envelope of the function
< 3 log <7> + O(e) JE(d) = {07 if 0 <d<p, (54)
= lim  RY&(d)+O(e) (48) ? h(d) = h(p), ifp<d<1/2,
SNR— oo b ie.
where the last equality follows from (23) together with the fact IE (g )
thatU%,IX =oiol /(0% + 0%) — of asoi ot — oo. - I ) d, if 0<d<d,,
Next, to verify that the decoder reconstructs the so¥fde C™(d) = dp (55)
within distortiond, we first define the quantization error 952 (d), ifd, <d<1/2,
E =Y - Q.(Y) (49) whered, = 1 —27"®),
and express the received d&ain the form Claim 4: For the binary-Hamming case, the distortion-con-
X=QuY)+E+V =Q(Y)+Z (50) strained information-embedding capaaﬂgg‘fiv(d) is given by

where we have definedd = E; + V. Now applying (GQ-1) in CII’ﬁV(d) = h(pxd) = h(p), 0<d<1/2. (56)
the context oft £,, and exploiting thaV is independent oY prqofs of Claims 3 and 4 are developed in Appendixes IV-A
and,.thereforte(Y), we have thaZ is (effectively) Gaussian gnq |v-B, respectively? Fig. 7 illustrates0™ (d) andC™%._(d)
and independent ap; (Y). In turn, sinceQ(Y) € £5, we can  4q 4 function of the distortion constraint for a channel transition
use (GQ-2) in the context a5 to obtain that, with probability probability of p = 0.1. Note thatC™E_(d) > CE(d) for all

I
priv
at leastl — ¢ 0 < d < 1/2. This is not surprising: it is easy to verify that (6)

is not satisfied fowl in this range.

W =Q5(X) = Qu(Y) (51)
sincevarZ = o2 — . In turn, substituting (51) into (46), we B. Binary-Hamming Wyner—Ziv Rate-Distortion Function
have that with probability — ¢ The Wyner—Ziv rate-distortion function for this scenario is
W = aX + 501 (Y). (52) Sig:]ermmed in [34] to be the lower convex envelope of the func-

Choosinge andb so as to minimize the mean-square distor- — h(p = d) — h(d), if0o<d<yp
tion betweerW andY’, we obtain, using basic linear MMSE 9p (d) = {0 if d=p (57)
estimation theory, that the optimuirandb yield a mean-square i '

e.
estimation error of '
Lew-v|P =d+0 53 o) tosdsd
- — =d+ Wz _
22l ’ v °Y mh@ - a7y (1 - =) ifd, <d<p
which confirms the distortion constraint is met. L (p—dy) )’ P -

(58)
11Since Wyner—Ziv coding is nontrivial only wheh < af,‘x, and since
af,‘x < 0%, then our operating in the high-SNR regime implies we are also 12The proof of Claim 3 mirrors that for the corresponding Wyner—Ziv rate-
operating in the high-SDR regime. distortion function in [34].
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Fig. 7. The information-embedding capacities for the binary-Hamming case with channel transition propability . The dashed line is the functig” (d)
from (54). The successively lower solid lines &&= (d) and C""(d), the information-embedding capacities with and withdlitknown at the decoder,
respectively.

whered, is the solution to the equation where® denotes modul@-addition, and wher¢(-) is the as-
gWVZ(d,) ) sociated decoding function. The resulting quantization error is,
= gV (dy) (59) therefore,

d, —p

with " denoting the differentiation operator. For comparison, we E=UsQU)=f (HUT) . (63)

show the conditional rate-distortion functioX (known at the

encoder and decoder) for the binary symmetric case [5] Let0 < ¢ < 1/2 be determined from the code rate via

h(p) — h(d), ifo<d<p m/n = h(q). Then wherC is a good code and is sufficiently
Ry |x(d) = {0 td>p (60) large, we have the following properties.

for channel (BH-1) The guantization error (63) is Bernoudj distributed

Fig. 8 shows an example &' (d) and Ry x (d
g P YlX( ) vix(4) and independent of (62), the codeword to which it is

transition probabilityp = 0.25, which can be compared to

Fig. 7. quantized.
. . (BH-2) For all codeword®C € C, the probability of a de-
C. Nested Binary Linear Codes coding errorPr{Q(C+ Z) # C?} is small whenZ is
Optimum information embedding and Wyner—Ziv coding in Bernoulli(q) distributed and independent 6%,

the binary-Hamming case can be realized using a pair of neste
binary linear codes, as we develop in this subsection.

Our code notation is as follows. A binary linear catief 2™
codewords having length is defined by a parity-check matrix

of H dimensionm x nTWIth the property that spectively. Note that because of the nesting, we can write
HC =0, vCecC (61) H,
where™ denotes the transpose operator. The syndrome of an H, = [Ha] (64)

arbitrary vectorX is HX". A minimum (Hamming) distance whereH , has dimensiofim; — m,) x n. Furthermore¢; can

decoder, which quantizes an arbitrary sighieb the nearest (in pe partitioned int@™2-™ cosets corresponding & and its
a Hamming sense) codeword, takes the form shifts.

QNe make use of two good binary linear codgsand(Cs,
whereCs is nested irCy, i.e.,Cy C C1.13 The associated code
rate, parity-check matrix, quantizer, and decoding function for
codeC; are denotedn;/n = h(q;), H;, Q:(-), and f;(-), re-

Q(U) =U® / (HUT) (62) 13The existence of pairs of good nested linear codes is shown in [19], [37].
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Fig. 8. The Wyner-Ziv rate-distortion functions for the binary-Hamming case with channel transition prohab#ity.25. The dashed line is the function
g7 %(d) = h(p * d) — h(d) from (57). The successively lower solid lines &&'% (d) and Ry x (d), the rate-distortion functions with and withait known

at the encoder, respectively.

1) Nested Binary Codes for Information Embeddirg:

To confirm that the encoder meets the distortion constraint it

formation embedding for the binary-Hamming case again takssffices to note that by using Property (BH-1) in the context of

the form of QIM [7]. However, in this binary-Hamming case
no distortion compensation is involved.

To develop the appropriate QIM scheme, we chogse p
andg, =d, so our code rates are; /n="h(p) andms /n="h(d).
It suffices to restrict our attention to the regian> d,,, since
lower distortions can be achieved through time sharing.

We let the rate of the information signad be
m2 — M1

R = C™(d) = h(d) — h(p) = (65)

and associate with each messddea (unique) coset shiff e
C; via the relation

H,S™ = Bin(M) (66)

whereBin(M) denotes a vector of length whose elements
are the binary expansion @f . The encoder then generates th
composite signalW € C; according to QIM

W=0Q:(XoS8)oS (67)
=Xa f, (H:X" 0 HyS") (68)

where (68) follows from applying (62), and where

H,S" = [Bin(()M) } (69)

using (66) and the fact th& e C;.

the codebook’,, we obtain that the (quantization) error
E=WaoX=XaS)aQ:(X®S) (70)

is Bernoullid).

The associated decoder operates as follows. The received
signalisY = W&V, whereV is Bernoullip). Using Property
(BH-2) in the context of codebook,, we obtain that# can
be recovered via

W =.(Y) (71)

with high probability. In turn, we us& to recoverBin(M)
(and thusM) via

Bin(M)=H,8" = H,W" (72)

where the first equality is due to (66), and where the second is
a consequence of (67), sin€e(-) produces codewords @b.

a) Noise-free caseUsing (20), we easily determine that
under the constraint that the composite signdle within Ham-
ming distancel of the hostX, the binary-Hamming embedding
capacity is

Onoise-free = max H(Y|X) = H(d) (73)
PY\X(UW)
To achieve rates arbitrarily close to the capacity (73), it therefore
suffices to use the nested linear coding method for information
embedding described in Section V-C1 wijth= 0.



1170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003
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" joint source—channel encoder | joint source—channel decoder
Fig. 9. A layered joint source—channel coding system.
2) Nested Binary Codes for Wyner—Ziv Codinghe corre- b) Distortion-free case:When we setl = 0 in the nested

sponding nested codes for the Wyner—Ziv problem are devebde construction of Section V-C2, the code not surprisingly
oped by Shamai, Verdu, and Zamir [28] by settipg = d specializes to the well-known practical Slepian—Wolf code de-
andg: = h x d, so the code rates are;/n = h(d) and veloped by Wyner [32}4 From this perspective, we can see
ma/n = h(p = d). To illustrate the duality with the informa- that the nested linear code for information embedding in the
tion-embedding solution, we summarize the salient featuresrafise-free case described at the end of Section V-C1 is the dual
the construction in [28] here, again, restricting our attention td Wyner’s Slepian—Wolf code, i.e., the encoder in one case is
bit-error rated) < d < d,,, as time sharing with no coding canthe decoder for the other, anite versa

achieve all other operating points on the capacity curve.

The encoder computes VI. LAYERED JOINT SOURCE-CHANNEL CODING

S=Y)et (74) The relationship between information embedding and
and sends the length, — m; vector (syndromeH S, which Wyner—Ziv coding developed in this paper can be exploited in
describes the nearest coseCpfto Y. The rate of the encoderthe development of a variety of novel systems. As one illustra-
is thus tion, in this section we introduce a layered joint source—channel

me—mi h(p + d) — h(d) = R§5]?y(d)- (75) coding system. _ _
Such a system can be formed from the interconnection of
The associated decoder obser#gsS™ and X, and recon- Wyner-Ziv and information-embedding subsystems. A simple
structs an estimate of the source as (c.f. (67), (68)) two-layer implementation is depicted in Fig. 9. As this figure
W=Q:(Xa8 a8 (76) reflects, in this system the bits comprising the Wyner—Ziv rep-
resentationV of the sourceX are embedded into the source

=X® f2 (H2XT © H2ST) (77) using information embedding to produce a transmitted signal
whereH,S™ is constructed from the received side informatioM ; where the Wyner—Ziv encoding takes into account the ad-
via ditional degradation of the source (beyond that introduced in
the channel) that will result from the embeddiaglhe associ-
H,ST = [HO T} . (78) ated decoder operates on both layers of the received Sgaal
oS also shown in Fig. 9. It extracts the bits of the Wyner—Ziv rep-

Following Shamakt al. [28], the reconstructio® can be resentationV using the information-embedding decoder, and

shown to meet the distortion constraint as follows. First, usirtges them in the Wyner—Ziv decoder to reconstruct the estimate

Property (BH-1) in the context of the codeboBk we obtain of the source. Note the interesting property that encoder and
that the quantization error if, i.e. decoder for this system have identical structure, which follows

from the fact that the structure of the information-embedding

E=SeY=Q:(Y)oY (79) encoder is the same as that for the Wyner—Ziv decoderyiaed
is Bernoull{d). Next, expressing the channel output in the formersa
X=YoV (80) Such a system has the feature that can be used in a broadcast

; . : - ; setting involving two classes of receivers: private receivers, to
whereV’is Bernoullip), we obtain, combining (79) with (80) which the Wyner—Ziv and information-embedding codebooks
XeS=EoV (81) are revealed, and public receivers, which have no codebook
which is, therefore, Bernoul(lp+d). But then applying Property information. Thus, public receivers construct an estindjg,
(BH-2) to (81) in the context of the codebodk, we have that of the base layer, without decoding the embedded information,
with high probability while private receivers construct the estimaefrom both
W=0Q:(Xa8)eS=Q:(EaV)eS=008=_5. (82) layers. o N
Thus, we obtain that the reconstruction error is with high prob- I_3y varying the. Wyner—Ziv bit rate within the encher (and
ability adjusting the private decoder parameters accordingly), one

14There has been renewed interest in implementations of Wyner’s construc-
WaoY=SaY =E, (83) tion lately; see, e.g., [26].

o . ) 15Note that implicitin our assumption of a discrete-time source, all such codes
which is Bernoulli¢) as required. we develop use the same bandwidth as the source.
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can control the quality of the public estima¥e the higher which upon substitution of (87) fofi.ly is easily verified to be

the Wyner—Ziv bit rate, the lower the quality of the publigyiven by (88) independent of the embedding lewé! for all
estimate. In the sequel, we examine how the quality of the< o2 < o%.

private estimate varies as this bit rate is varied. We refer to aEfficiency follows immediately. In particular, note that the
system as “efficient” when the quality of the private estimate shoices? = o% corresponds to a single-layer, fully private
independent of the chosen public estimate quality. Two systeg¥parate source and channel coding system, which by the
will be examined: one for the Gaussian-quadratic scenario, asslirce—channel separation theorem we know is the lowest

one for the binary-Hamming scenario. possible distortion achievable by any system. That (88) is
independent ofr%, means, therefore, is that this layered joint
A. The Gaussian-Quadratic Case source—channel coding system is efficient falt choices

. . .. of o%. Consistent with our analysis, this includes the other
In this subsection, we construct a layered joink,

. - . treme caséoz = 0), which corresponds to single-layer
source—channel code that is efficient for the Gaussmn—quadr%cmded (fully public) transmission, whose efficiency in the
case. Let our i.i.d. Gaussian soutkehave elements distributed '

ding toA(0. 02). let the ind dent additi hit Gaussian-quadratic scenario is well-known [5, Sec. 5.2].
according 1o. (0, o), le € Independent additive white Multilayer Joint Source—Channel Code3he two-layer
Gaussian nois% = Y — W in the channel have element

o . 9 . . S]oint source—channel coding scheme just described generalizes
distributed according {@V(0, oy,). Our implementation uses naturally to a multiple-layer scheme involving successive

the information-embedding and Wyner-Ziv_subsystems g}nbeddings at the encoder. Such a system can be used to

precisely the forms developed in Sec‘uo_ns IV.'A and IV-B. support nested classes of private users, each able to recover a
When we embed under an embedding distortion ConStraB}togressively better estimate of the source

S . o )
03 using a capacity-achieving code, the embedding adds NOIS& o encoding for d¢ + 1)-layer system is generated from

E ~N(0, o}]) thf"‘t isindependent dX.. In order to normalize t successive embeddings at distortion levels producing the
the overall transmitted power t&;, the hostX must be scaled sequence of composite signd&;, i = 1, 2, ..., t. In partic-
by ular, at each layei, the composite signdWV; is generated by
embedding the bits of the associated Wyner—Ziv encoding of
= ox — 0% (84) the preceding composite sigrid;_; into itself. The final com-
o3 posite signaW = W, is transmitted over the channel. In each
embedding, the amplitude is renormalized to keep each com-
prior to embedding. posite signal at power?. The composite signals thus created
At the receiver, the observed signal is can, therefore, be expressed in the form

Wo=X
W;=uW; 1+ E;, 1=1,2,...,¢ (90)

2 2

Y=W+V=uX+E+V (85)

from which we see using MMSE estimation theory that the beghere
public receiver estimate is

0% — o?
R 2 i = - _ 91
Xpub = % . (86) : Og( ( )
ox + oy, , _ -

and yields distortion ;_nfj,?.lt,N N(0, 071), independent oW ,;_,, for i = 1,

) s 0403 The received signal is decoded as follows. Theref aede-
dpub = 0|y = 0x - o s o (87) booksC;,i =1, 2, ..., t, of which the last are available to the
v ~ rth class of (private) decoders. Th# embedding is extracted
Thus, asr% is varied from0 to %, dpun Varies from from the channel outpl = W, by the information-embed-
s ding decoder using codebodk, and the bits are used to form
doi = X0V (88) an estimatd¥,_; of W,_, via the associated Wyner-Ziv de-

0% + oy coder. By the analysis in Section VI-A, the distortion in the es-

ti[nate so produced is given by (88). We proceed to form an
ul . < 4 o .
(public) information abouf’ estimateW;_» from the preceding composite signal estimate

To obtain the distortioni of the private decoder, we noteWt‘l’ where the distortion in this estimate remains (88). This

that with o fixed, the maximum achievable embedding rate i%g%%%sosoz continued unt’, . is formed by decoding with
t—r-

IE( 2 i i i _Ziv-
O™ (o). Given this supplied data rate, we Wyner—Ziv-encodé If all ¢ codebooks are available to the decoder, i.e., the de-

for minimum distortion at the decoder subject to the available L : .
embedding rate, i.e., the resulting distortiis the solution to coder is in theth class, it follows that the source reconstruction
T X = W, achieves the best possible fidelity, i.e., (88). Thus,

to o3, corresponding to the observation carrying no usef

2 2

1 log( 1+ 9\ _ CIE(02 ) = RWZ (d) = 1 lo x|y 16Note that this result is consistent with the broadcast channel result in [7]

2 g o2 ) E) = XY 9 g d showing that the layered digital coding method involving the embedding of bits
v into a host that is itself a coded bit stream achieves capacity for the Gaussian

(89) channel.
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the multilayer embedding continues to be efficient in the seniethe source corrupted by a Berno(li p) process. Thus, the
that no other alternative coding scheme for the channel couldlsiest (public) estimate of the source in this casXjs, = Y,

better. and the associated distortion is
It remains only to analyze the performance experienced by
the other classes of decoders. To simplify the exposition, we dpub =P+ q (98)
restrict our attention to the case of equal embedding distortigg that ag; is varied from0 to 1/2, dyu, varies from
at each layer, i.eg? = o% fori = 1,2, ..., t, so that, via
(84), we have min = p (99)
i = = \/(0% — 0%) /0%, i=1,2,...,t (92) 1 1/2, corresponding to the observation carrying no useful

. (public) information aboufX .
The rth class of decoders, which can decode down to they aanhile, the achieved private distortidris the solution

(t — r)th layer, obtair,_,., which can be expressed using the,
results of Section VI-A as

A Yy = N W =W + Vo, (93) C'"(q) = R (d) (100)
whereV; . ~ N(0, oy I) is independent o, ., and where where the left-hand side of (100) is the upper concave envelope
0% of the functiong, (¢) as defined in (54), and the right-hand side
T o2 402 4 of (100) is the lower convex envelope of the functigh? (d) as
ExpandingW,_, according to the iteration (90), we have ~ defined in (57). o _
e The distortion in two limiting cases can be evaluated in closed

ATY = X 4 Z WE o i+ Vi, (95) form. In the case = 1/2, which corresponds t'o single-layer,
fully private, separate source and channel coding system, (100)
specializes to

=0
whereX, f/t_,,, andE,, E,, ... E,_, are mutually indepen-
dent and Gaussian. Thus, thih class of decoders estima¥e 1 — h(p) = C™(1/2) = RY4(d) =1 — h(d) (101)

X0
as
yieldingd = p. By the source—channel separation theorem, this

X = pTTALTTY (96) s the best distortion one can achieve using any system on this
channel. The other limiting case for whigh= 0, corresponding

and the associated distortion these users experience correspengsingle-layer, fully public uncoded system, the distortiea
to the error in the associated MMSE estimate&XofromY;_..,  p is obviously also achievable simply using the received data as
ie., the source estimate.

o2 4 o2 (1 _ Q(t_r)) More generally, the resulting (normalized) distortidnis
dy = 0% - v X2 2” (97) plotted in Fig. 10 as a function of for various values op.
oy +ox Note that while the system is efficient for the limiting cases

which decays exponentially with, the number of codebooks? = 0 andg = 1/2, itis notin between: the distortion is strictly
available to the receiver. The time constant of the decay i@reater than (99) forall < ¢ <1/2andallp < 1/2. This fact
creases linearly withog ;2. In turn, ;2 decreases linearly with 1S Proven analytically in [1].

0%, the embedding distortion for an individual layer. When Part of the reason for the inefficiency may lie in the fact that
(t —r) — oo (which requires that — o), d,, — 0% for all r. in the encoder of our system: 1) the chosen information-embed-

More generally, differend,. versusr profiles can be obtained ding encoder subsystem does not take into account the corre-

by choosing ther? to vary withi. lation between the sourc¥ and the messagk/; and 2) the
' chosen Wyner—Ziv encoder does not take into account partial
B. Binary-Hamming Case knowledge it has of the ultimate channel outfutn the form

A layered joint source-channel coding system of the forr(?fc W Clearly, in the Gaussian-quadratic case nothing can be

of Fig. 9 can also be developed for the binary-Hamming ca ined by exploiting such partial side information, since the

We consider an implementation, analogous to that for tﬁgs_tem was'eff|C|ent. However, in the bmary-Hammmg case,
Gaussian-quadratic case, in which we use the information-e King them into account could I_ead toa ?ySterT‘ that is efficient
bedding and Wyner—Ziv subsystems in precisely the for & all ¢ andp, though that remains to be investigated.
developed in Sections V-A and V-B. In the sequel, we pse
to denote the crossover probability of the binary-symmetric
channel. In this paper, we identified and developed the inherent duality
Let us evaluate the achievable distortions. As shown in Apetween information-embedding and Wyner—Ziv coding, and
pendix IV-A, the information-embedding capacity@f®(q) is  used this relationship to establish a variety of new results on the
achieved with a distortion of that acts on the sourc¥ as a performance limits of information-embedding and deterministic
binary-symmetric channel with crossover probabilityThus, nested codes for achieving them. As an illustration of other ap-
the combined effect of the embedding and the physical chanpétations of these results, a layered joint source—channel coding
will be a binary-symmetric channel with crossover probabilitgystem was developed with a symmetric encoder—decoder struc-
q * p, So that for the Wyner—Ziv encoding, the side informatioture, and evaluated in the context of a broadcast setting in which

VIl. CONCLUDING REMARKS
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Fig. 10. Performance of layered source—channel coding in the binary-symmetric case. Plotted is the reconstruction distortion (norp)azeadunyction of

embedding distortion fop = 0.05, 0.1, 0.2, 0.4.

there is a need to control the fidelity available to different resalue2 with probability 1 — X. Define Z = (@, U,) and let
ceivers. Efficiency was evaluated in the context of channels f¢tZ, X) = fo(Ug, X), implying a distortion

which the source—channel separation theorem holds, but stil} = E[D(X, W)] (102)
more interesting results may follow from examining its behavior i
in context where it does not. =AE[DX, fi(Ur, X))+ (1 = NE[DX, f>(U2, X))
More generally, in many respects, our results are simply rep- (103)
resentative examples of a considerably broader set of results= \d; + (1 — \)ds (104)
that may ultimately evolve from the relationship between the i%’nd
formation-embedding and Wyner—Ziv problems and exploring
such directions is a rich area for future research. I(Z;Y) - 1(Z; X) (105)
=H(Y)-H(Y|Z)-H(X)+ H(Y|Z) (106)
APPENDIX | =H(Y)-HY|Ug, Q)— H(X)+ H(X|Ug, Q) (107)

PROOF OF CONVERSE IN CLAIM 1
(PuBLIC EMBEDDING CAPACITY)

We show that for any rat& > C'¥(d), the maximal proba-
bility of error for a lengthn code,PES”), is bounded away from
zero. We begin with two useful lemmas.

: . . Thu
Lemma 1: The capacityC'¥(d) is a nondecreasing concave

function of d.

Proof: First, thatC'¥(d) is a nondecreasing function fol-
lows from the fact that increasingincreases the domain over
which the maximization is performed.

To establish concavity, consider any two distortiehsand
d» and the corresponding arguments,, f; and Us, fo, re-
spectively, which maximize the argument of (1) for the given
distortion. Let@) be a random variable independentXf Y,

— H(Y) = MH(Y|U1) — (1 = NH(Y[Uy) — H(X)

+ AH(X|U7) + (1= A\ H(X|Us) (108)
= AMI(Uy; Y) = I(Uy; X))
+ (L =N)I(Us; Y) = I(Uz; X)). (109)
CHd) = U,f:E[D(I)r(l,af)%U.X))]<d(I(Y; U) - 1(U; X))
- (110)
>1(Z;Y) - 1(Z; X) (111)
=ANI(Uy;;Y) = I(Uy; X))
+ (1 =N (U Y) = I(Uz; X)) (112)
=AC™E(dy) 4+ (1 — X\)C™E(dy) (113)
O

Ui, andUs, that takes on the valuewith probability A and the proving the concavity o€'¥(d).
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Gel'fand and Pinsker [20] show that in the absence of a diShus, both H(Y) and E[D(X, W)] are unchanged by
tortion constraint, one cannot do better than (1) with a nonsiswitching to the new auxiliary random variable.
gular distributionpyy |7, x. The same is true with a distortion If, in addition, the following joint distribution betwed, U,
constraint present. The following proof is due to Cohen [11]. and X is defined via

Lemma 2 (Cohen)For a fixedpx andpyw, x, ~ Lia=u}, if & eU\{uo}
pow,x (@, @) =3 o ey (119)
sup I(Y; U) - I(U; X) Cil {u=uo} U= €
PUIX,Pw|U, X, E[D(X, W)]<d hich | . ith h 7 f
_ sup I(Y;U) = I(U; X) (114) which is co_nS|stent with (117), theN <—>_U Aas U orm a
puix, FUXXsW,E[D(X,W)]<d Markov chain. Thus, by the data-processing inequality
wherepy v, x (w|u, ©) = 1iy—f(u, »)} ON the right-hand side. I(U; X) > I(U; X). (120)

Proof: To show that any nondeterministic
pwu, x (w|u, z) has at best the performance of a determinist
distribution, consider any suchyy |y, x (w|u, z). Then there n )
existsuy € U such thal) < py v, x (wlug, z) < 1 for some pyiv(yluo) = Z ciPy i (Ylug). (121)
z andw. Definen and functionsfy, ..., f, : X — W, and i=1
positive constants,, ..., ¢, with ). ¢; = 1 such that Thus, by the concavity of entropy we haw@(Y|U) <

n H(Y|U), which together with the fact thd (V") is unchanged
pwivx (wlug, ) = Zcﬂ{w:ﬁ(z)}? VweW,ze€X. yields
=1

[doreover, since from (115)—(117), we have

(115) I(Y;U)>I(U;Y). (122)
We show by a simple construction that a sufficient size
for n is |X||W|. We letW = {wi, ..., wpy} andX¥ = Combining (120) with (122) we see that

{z1, ..., 7 x}. We define the variables I f]) 3 I(U; X) > I(V: U) - I(U; X). (123)

J

bk = Z pwivx (Wim|uo, T), Thus, f]~ is an optimal choice of random variable, whose al-
mel phabetl/ has one less element thahfor which py x is
j=1,...,[W|,k=1,...,|x| nondeterministic. Recursive application of this logic forat

i , U such thatd < pyy, x(wlu, x) < 1 yields an auxiliary

and p_Iace them, along W'mj = 0, in an ordered set of nonde'random variabld’ that is optimal and for whichyy |y, x is

creasing (possibly repeating) valu@; {490, - -, qn}, Wwhere deterministic. ’

n = |X|W|. We lete; = ¢; — ¢i—1,7 = 1, ..., n. Corre-

sponding to each; is ab;;, from which we definef;(z,) = Despite the fact that the repeated application of the logic in

Wm, T = 1, ...|X|, wherem is the smallest index for which Lemma 2 will increase the cardinality of the auxiliary random

bmr > bjx. These definitions satisfy (115) and = |X||W), variable, the finalt/| is bounded above. Straightforward appli-

which is finite. cation of Caratheodory’s theorem tells us that for the original
Continuing with the proof of the lemma, we define a newvith nondeterministigyy |/, x, we havel/| < |X|+ W] + 2.

alphabef;{ =U"UU\{uo} whereld’ = {u}, ..., v}, and let Since we apply the recursive argument at mogttimes, we

a new auxiliary random variablg take values i/’ and have have

joint distributions .
} L Ul < [Un < (1X] + V] 4 2)|X[[W]

pW|U7X(w|u, ZE)./ if 4 e U\{Uo}

which is a finite upper bound on the cardinality.

pﬂﬂﬁ“YOMavi): {

1{“/.:fv(m)}7 if @ = U; eu’ . - .
: Returning to our proof of the converse, consider an infor-
(116) mation-embedding code, with an encoding functfgn X™ x
and {1,2,...,2"%} — W" and a decoding functiop,,: "
) puix (@), if @€ U\{uo} {1,2, ..., 2"} Let f, 0 A" x {1, 2, ..., 2"} s W de-
pox (i) = cipuix (uole),  if i =ul €U, note theith symbol produced by the encoding function. The dis-
tortion constraint is
(117)
It is straightforward to verify that the joint distribution on 1 E Z D(X;, fn,:(X™, M))| <d. (124)
Y, W, andX is the same under the original and new auxiliary " i=1

random variable choices, i.e., We have the following chain of inequalities:

2; pyiw.x (Ylw, ©)py i, x (W], 2)pgx (4, ©)px (x) nR=H(M)=I(M; Y")+H(M|Y™) (125)
ueu’ n ) n n
= Y oy o, 2w x (e, Dpox s px().  er YT HME XD HHMYT) (129

ueU o ) | §
G (118) < ;U(Zﬂ Yi) = I(Zi; Xi)|+ H(M[Y™) (127)
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Because distortion is a linear function of the transition proba-

IE . . n
< Z CHEID(Xs, fo,(Xiy ZD)+HMIY™) (128)  piiies the distortion fopy is

anIE<E lZ DX fi (X 2) >+H<MIY”> b= M+ (1= A (139)
n 4
=t 129 Itis easily verified that the mutual informatidiiW; Y| X = z)
(129) is a concave function of the distributiry| x (w|x). Therefore,
<nC™(d)+H(M|Y™) (130)
<nC™(d) + P"™nR + 1 (131) L (W3 Y|X =)
> M, (W Y|X =2) + (1= ML, (W; Y[X =) (136)
where
(125) follows from the fact thad/ is distributed uniformly where we subscript the mutual informations with their respec-
on{1, 2, ..., 2%} from our formulation; tive distributions. Thus, we have the following chain of inequal-

(126) follows from the fact thak(M; X™) = 0 by the inde- ities:
pendence o/ and X™ in our problem formulation;

(127) follows from [20, Lemma 4], wher&; is defined as Civie(dy) 2 I, (W3 Y [X) (137)
Zi = (M, Y'""!, XTy); Z (WYX = 2)px(a) (138)

(128) follows from (1); et

(129) follows from Jensen’s inequality and the concavity of > Z AL, (W; Y|X = 2)px (o)

C™(d) from Lemma 1;

(130) follows from (124) and the nondecreasing property of et
C™E(d) from Lemma 1; and + > (1= N, (W; Y[X = z)px(z) (139)
(131) follows from the Fano inequality. zeX
Rearranging terms in (131) we have z )‘Oﬁv(dl) (1 )\)CII,E‘ (d2) (140)
P > C™(d) 1 where (139) follows from (136), which proves the concavity of
e 2l-—p— (132) CIE (d). O
which shows forR > C, the probability or error is bounded Returning to the proof of our main result, recall the input to
away fromo. the channel is the composite signi&l”, which is an encoded
function of the hostX™ and the messag#&/. The distortion
APPENDIX I betweenX™ andW™ is constrained by

PROOFCLAIM 2 (PRIVATE EMBEDDING CAPACITY) n
In this appendix, we prove that the private information-em- Z (Xi, Wi)| < d. (141)
bedding capacity is given by (4), where the supremum is over i=1
the set The converse is proven by the following chain of inequalities:
Pivix = {pwix(wlz): E[D(X, W)] <d}.  (133) uR=H(M) (142)

I
EA

M| X™)=1(M; Y"|X™)+ HM|Y™, X™) (143)

A. Converse I(M; Y| X™, Y=Y+ HM|X", V™) (144)

M:

The proof of the converse uses a technique very similar to that i
used in Appendix I, exploiting the concavity 6% , afact

riv

which is established through the following Iemma

1

[
M:

[H(Yi|X" Y™ = HYi|M, X", YY)

i

Lemma 3: The information-embedding capacity given in
(4) is a nondecreasing, concave function of the distortion con-
straintd. <

Proof: With increasingd, the domain over which the

mutual information is maximized increases, which implies
Cl%.(d), is nondecreasing.
We prove concavity by considering two capacity—distortion = Z[H(YL‘IXi) - H(Y;|M, X", X;)]
pairs(Cy, di) and(Cs, ds), which are points on the informa- i=1
tion-embedding capacity function. These points are achieved  + H(M[X",Y™) (147)
with the distributiong (w, z, y) = px (z)py|w (y|w)p1 (w|z) -
andps(w, , y) = px (z)py|w (y|w)p2(w|r), respectively. We
define

H(M|X™, Y™ (145)

M:

[H(Y:|X;) — HY:|M, X", Y1)

s+
1§

H(M|X™, Y™ (146)

= > I(Yi; M,X"|X;) + H(M|X", V™) (148)

i=1

< I(Y; Wi X))+ HM|X™, Y™ 149
palw, z, y) = Ap1(w, z, y) + (1 = Np2(w, z, y). (134) ; ( i) + H(M| ) (149)
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scheme suffices: we embed dataXifi, a lengths block of host

IE . . n n
Cpr“ DXy, W)l) + H(M|X", Y™) (150) samples, using a different codebook for eaalvhich achieves
the rateCIE(d*) at embedding distortiod”. For eachs, we
CII)I;]“ Ell ZD(X“ w) | |+ H(M|x", v collect a]l of the sample; for eachi: guch thatX; = = anc_i
n = code using the codebook corresponding:tdrhe total rate is
(151) thus
IE n n
<nCpriv(d) + H(M|X™, Y™) (152) N CF(dpx(a) = sup Y CF(dy)px(w),
<nCE (d)+ PM™nR+1 (153) ceX {do: Eldx]=d} ; ey
P (158)
where which by the lemma equals capacity.
(142) follows from our formulation that/ is uniformly dis- !t remains only to prove Lemma 4.
tributed on{1, 2, ..., 2"7}; _ Proof of Lemma 4:We first prove thaClE_(d) is lower-
(143) follows from our formulation that/ and X™ are in-  pounded by the right-hand side of (155). To see this, choose a
dependent; fixed d, for eachz such thatE[dx] = d and a test channel

(144) follows from the chain rule for mutual information; ,, - x (w]z) € Py, Itis easily confirmed from (157) that
(146) follows from the fact that conditioning reduces en-

tropy; E[D(X, W)] < Eldx] =d (159)
(149) follows from the data processing inequality, using the

fact that(M, X™) — W; — Y; is a Markov chain;  Whichimpliespy|x(w|z) € Py  as defined in (133). For any
(150) follows from (4); test channel
(151) éﬁ)llov(\/s)fgfonl%Jf:;?as?:nequallty and the concavity of Z I(W: YIX = 2)px(x) = I(W; Y|X) < C;I)E\ (d)

riv

(152) follows from (141) and that~. (d) is nondecreasing red (160)
from Lemma 3; _ _ so that choosingyy|x (w|z) to satisfy the maximization in
(153) follows from the Fano inequality. (156) yields
Rearranging terms in (153) we have
- sup Y O (da)px(2) < CFF(d) - (161)
(n) Cprlv(d) 1 I’W\X(wlz)ep‘If x zEX
) SO [ i A (154) !
’ R nR o
. . . for any set ofdx satisfyingFE[dx] = d.
which shows forR > C, the probability or error is bounded

Itremains only to show that";  (d) is upper-bounded by the
right-hand side of (155). To see this, we choose a test channel
. . pwix(wlz) € leﬁx’ which results in a set of conditional dis-
B. Achievability tortionsd!, = E[D(X, W)|X = z] that satisfyE[d] < d. For

For our proof, it is convenient to express the capacity (4) #émy such test channel
terms of C!¥(d,), the capacity of a channel when the hast

away from0.

is some constant valueknown at the encoder and decoder, as  I(W; Y|X) = > I(W; Y|X = z)px(x) (162)
developed in the following lemma. rEX
IE
Lemma 4: The information-embedding capacity with host < Z G (d)p (163)
known at the encoder and decoder satisfies rex Z =
< sup C.7(dy)px(z). (164)
Clu(d)= sup Y CF(d,)px(z)  (155) {d.: Eldx]<d} fey

{d.: Eldx]=d} Sy

Choosingpyy| x (w|x) to achieve the maximum in (4) yields
where, by the conventional channel capacity theorem

CE (d C™(d)px () 165
O3 (dy) = sup I(Y; WIX = =) (156) pri () < {d.: E[d (= d}g; (165)
pwix (w]z)EPw |,
with which completes the proof of the lemma. O
Pwie = {pwix (w]z): E[D(X, W|X =) < d,} (157) APPENDIX Il
DITHERED NESTED LATTICE CODE FOR
denoting the constraint set for the embedding. WYNER-ZIV ENCODING

Using this lemma, consider the set dif that achieves the  Nested lattices can also be used to build Wyner—Ziv codes that
maximum on the right-hand side of (155). By the conventionare capacity achieving at all SNRs. Our construction exploits
channel-coding theorem, we can achieve the@jtgd* ) with  dithered quantizers, and can be viewed as a generalization of
embedding distortion* and negligible probability of error if the result in [36]. As before, it suffices to restrict our attention
X = «z for all samples of data. Thus, the following codingo the casel < "%IX'
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Our dithered quantizers are defined via To establish thaZ in (174) is independent & in (173), we
first note thatEy|x is independent oY by the orthogonality
Q) = argmin U - (1+T)|? (166) principle. It only remains to show thd; is independent oY
+TeL+T

andEy x. To see this, note that

where the dithefl” is uniform over the characteristic Voronoi _ _ - _
cell and generated independently. By the properties of subtra@—[ElEYlX‘Y = 1‘/] = E[Ely‘y = 1‘/] -YE [El ‘Y = y]
tive dithered quantization, we must change the property (GQ-1) —E[E\Y'| - yE[E}] =0 (175)
for the new quantize)(-) as follows.

(GQ-Y) The quantization error (30) is white and Gaussi
with zero-mean and varianee’, and independent
of the input to the quantizer [35].

The other properties (GQ-2) and (GQ-3) remain valid v@th). ) )
With these quantizers, the nested lattices are chosen such @t the third equality follows from the fact that by (GQ-the
quantization erro8} =Y’ — Q,(Y’) is zero mean and inde-
dU%IX ) ) ) pendent oft’. Hence, it follows thaf; is independent of both
— and o; =07+ oyx e (167) vy andEy,|x
(1 =)

A suitable encoder using these lattices transmits the

index of the closet coset to the sourks i.e., it transmits \yhere the first equality follows from an application of (GQ);1
M = k(Q1(Y)). The decoder observe¥ and M, calculates anq the second by averaging ogein (175).

a¥3{here the first equality follows from (172), the second equality
ollows from the definition

Yl - g + EY\X (176)

o} =

E@Jﬂ:m&Enﬂ:o (177)

the coset shifS = ¢(M) and an MMSE estimat¥ = pX,  Now, sinceZ is effectively Gaussian with zero mean and vari-
wherep = o3 /(03 +0f,). The decoder then produces a SOUrCgncen?, +7, we know from (GQ-2) thaPr(Qx(Z) #0] <.
estimate of the form Furthermore, if)>(Z) = 0, then by the translational invariance
. of lattice geometry
W =0aX + W (168)
Q51+ Z) =1, forany cosetshifs and anyi € £35. (178)
where ~
N N So withW as defined in (169) we have that, using (173) and
W =05 (Y) : (169) exploiting the independence & andY

That the system operates at the target rate follows from the; [W £ Ql(y)‘ff - g}
lattice properties. Indeed, Property (GQ-3) and (167) prescribe

the rate of the code to be withiryn bits of =Pr [Q‘g(f/) # Q1(Y)‘f/ - 17}
LW 1. (03 = Pr[QS(Qi(Y) - 2) # Qu(Y)|Y = g]
Rz—log(—)z—lo( 5 )
n Vs 2 01G2 = Pr[Q2(Z) = 0]
2 o ~
! 1Og(“x;llx> +O() = BYA (D) +0() (170) Pr[QS(Qi(Y) - 2) £ (V)] @x(2) = 0, ¥ =]
2 + Pr{Qa2(Z) # 0]
where the last equality follows from (23). - Pr [Qg(Ql(Y) —-Z)# Ql(Y)‘Q2(Z) #0,Y = ?NJ}
Next, to verify that the decoder reconstructs the so¥fde <e (179)

within distortiond, we first define the quantization error
since the term on the fifth line is zero by usihg Q1 (Y) € £5
E =Y -Q.Y) (171) in(178), and sinc®r[Q2(Z) # 0] is bounded by. Thus, using
(179) in (168), we have that with probability— e
and the estimation error

W =aX +0Q:(Y). (180)
Eyx=Y-Y 172
vix (172) Choosinge andb so as to minimize the mean-square distor-
so that tion betweenW andY, we obtain, using basic linear MMSE
estimation theory, that the optimuirandb yield a mean-square
Q(Y)=Y +2Z (173) estimation error of
1
with SE[[W-Y|’] =d+0(c) (181)

Z=Eyx - E,. (174) which confirms the distortion constraint is met.
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APPENDIX IV
CAPACITIES OF INFORMATION EMBEDDING FOR THE
BINARY-HAMMING CASE

A. Proof of Claim 3 (Public Case)
The upper concave envelopegf (

g*(d) = sup [0g,"(B1) + (1 —0)g;

yB1, B2

d) in (54) is given by

E(82)] (182)

where the supremum is taken with respect t@ad [0, 1] and
Bi, B2 € [0, 3] suchthatl = 63, + (1 —6)3,. By the concavity
of h(-), itis clear thaty!®(d) is concave ovep < d < 3. Thus,
the maximization in (182) can be simplified by lettifg = 0

g*(d) = sup h(p))],

6,3

[B(h(B) — 0<d<-  (183)

N =

where the supremum is taken with respect t@ad [0, 1] and
B € [0, 3] such that
d=60. (184)

We establish that'*(d) =
C™E(d) is lower- and upper-bounded by (d).

The lower bound is developed by considering a special case.
Let the auxiliary random variabl€ be the output of a binary-

symmetric channel with crossover probabijityvhich hasX as
input. Furthermore, we choogesuch thatV = f(U, X) = U,
which makes the distortion equal We evaluate

IY;U)-1(U; X)=I(Y; W) - I(U; X)
= (L= h(p)) = (1 = h(B)) = h(B) — h(p) (185)
and conclude from (1) that
C™®(d) > h(B) — h(p) (186)

when we choose the valuész [0, 1] and € [0
(184) holds for some giveit € [0, 3].
By the concavity ofC'F(d) from Lemma 1, we have

= C'"(88) 2> 0C™(B) 2 (h(B) — h(p))

which is true for alb andg satisfying (184), whenc€'®(d) >
g*(d).

It remains only to show the upper bound®(d) < g¢*(d),
for which it suffices to show that

, 1] such that

C™(d) (187)

I(Y; U) - I(U; X) < g*(d) (188)
for anypy, y|x (w, u|z) such thatb[D(X, W)] = d.
Defining the set
A= {u: f(u, 0) = f(u, 1)} (189)
we have
d > E[D(X, W)] (190)
=Pr(U € A)E[D(X, W)|U € A]
+Pr(U € AC)E[D(X, W)|U € A°]  (191)
> Pr(U € A)E[D(X, W)|U € Al. (192)

g*(d) by separately proving that

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

Using
E[D(X,W)|U € A] = ) 713:(’5(?A)E[D(X, W)U = u]
(193)
with (192) yields
d=6 Ad,<d (194)
ucA
wheref = Pr(U € A), A\, = py(u)/Pr(U € A), and
d, = E[D(X, W)|U = ). (195)

We observe that, becaugé(X) = 1, we haveH(X) —
H(Y) = ¢,¢ > 0, and thus,

I(Y; U) - I(U; X)
=H(X|U)-H(Y|U) — e (196)
< Z (XU =u)— HY|U = u)]pv(u)
ueA
+ > [HX|U =u) = HY|U = u)lpu(u) (197)
u€eAC
< S [HX|U=u) - HY|[U =u)lpy(u)  (198)
ueA
=60 MNJ[HXU =u) - HY|U =u)] (199)
ueA

where for (198) we have used

H(X|U=u)<HY|U=u), VYUeA°

which is true because for ardy € A, the channel inputV’ is
eitherX orthe complement ok . Because the channel is binary
symmetric, the entropy df is thus greater than or equal to that
of X.

We proceed to evaluate the right-hand side of (199). Consider
anyu € A. Definingvy(u) = f(u, 0) = f(u, 1), we obtain,
using (195)

d, = E[D(X, W)|U = u]

= Pr(X # v(uw)|U = u). (200)

So
H(X|U = u) = h(dy). (201)

Next, givenU = u, the channel input is uniquely specified by
W = 5(u), and thus,

H(Y|U = u) = h(p). (202)
Thus,

I(Y;U) = I(U; X) <6 ) Au(h(du) = h(p)) (203)

ueA
=0 M\G(d), (204)

ueA
<60a@ <Z Au du) (205)

ueA
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=0(h(B) — h(p)) (206) 3]
=g"(d') (207) 1y
<g*(d) (208)

[5]

where
(203) is obtained by substituting (201) and (202) into (199); !
(204) is obtained by defining¥(v) 2 h(v) — h(p);

(205) follows from the facts tha is concave fof < v < 3 (7]
and) ca A = 1,

(206) follows from definings = > . 4 Audu;

(207) follows from the definition o§* (d) in (183) withf3 = (8l
d'; and

(208) follows from the fact that’ < d andg* is a nonde-  [9]

creasing function.
Hence, we have shown that for any distribution[;q;
pw,v|x (w, u|z) there exists & € [0,1] andB € [0, 3]
such that (188) holds.

[11]

B. Proof of Claim 4 (Private Case) [12]

Since adding (modul@) a known symbol to both” andY

in (4) does not affect their mutual information, we have [13]

[14]
Cleie(d) = I(Y ® X; E|X) (209)

sup

pe|x (elz) [15]

whereF = W @ X is the distortion due to embedding, which [16]
is constrained to haveg (1) < d. Notethat @ X = E @V,
whereV is a Bernoull{p) source representing the noise of the ;7
binary-symmetric channel. Under the constraint fhatl) <
d, we have the following chain of inequalities: (18]
(Y& X; E|X)

=HE®V|X)-H(E®V|E, X) (210)

<HE®V)- > pe(eHESVIE=¢, X)

[19]

e€{0,1} [20]

(211)
[21]

=HESV)~ Y pe(e)hp) (212)
e€{0,1} [22]

< h(pxd) = h(p). (213)
[23]
The inequalities are met with equality # is Bernoull(d), in- 24]

dependent oX', andV, which proves the claim.

[25]

ACKNOWLEDGMENT

The authors wish to thank Prof. Amos Lapidoth, Dr. Aaron[26]
Cohen, Dr. Ram Zamir, and E. Martinian for helpful interac-
tions, and the anonymous reviewers and Associate Editor Prof.
Imre Csiszar for their thoughtful feedback and careful readind?’!
of the manuscript, which led to many improvements. 28]

REFERENCES [29]

[1] R. J. Barron, “Systematic hybrid analog/digital signal coding,” Ph.D.
dissertation, MIT, Cambridge, MA, June 2000.

[2] R.J.Barron, B. Chen,and G. W. Wornell, “The duality between informa- [30]
tion embedding and source coding with side information and some ap-
plications,” inProc. IEEE Int. Symp. Information ThegiWashington,

DC, June 2001, p. 300.

1179

R. J. Barron and A. V. Oppenheim, “Signal processing for hybrid chan-
nels,” inProc. ARL Fedlabs Sympreb. 1999, pp. 481-484.

——, “A systematic hybrid analog/digital audio coder,”Rmoc. Work-
shop Applications of Signal Processing to Audio, Acoustbshonk,

NY, Oct. 1999.

T. Berger,Rate Distortion Theory Englewood Cliffs, NJ: Prentice-
Hall, 1971.

B. Chen, “Design and analysis of digital watermarking, information em-
bedding, and data hiding systems,” Ph.D. dissertation, MIT, Cambridge,
MA, June 2000.

B. Chen and G. W. Wornell, “Quantization index modulation: A class of
provably good methods for digital watermarking and information em-
bedding,”IEEE Trans. Inform. Theoryol. 47, pp. 1423-1443, May
2001.

—, “Quantization index modulation methods for digital watermarking
and information embedding of multimedial” VLSI Signal Processing
Syst. for Signal, Image, and Video Technabl. 27, pp. 7-33, Feb. 2001.
M. Chiang and T. M. Cover, “Duality of channel capacity and rate dis-
tortion with side information,” inProc. Int. Symp. Information Theory
and Its ApplicationsNov. 2000.

J. Chou, S. S. Pradhan, and K. Ramchandran, “On the duality between
distributed source coding and data hiding,” fmoc. Asilomar Conf.
Signals, Systems, ComputefBacific Grove, CA, Oct. 1999, pp.
1503-1507.

A. S. Cohen, private communication.

A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game: Parts
I and Il,” IEEE Trans. Inform. Theoryol. 48, pp. 1639-1667, June
2002.

J. H. Conway and N. J. A. Sloan§phere Packings, Lattices, and
Groups New York: Spring-Verlag, 1988.

M. H. Costa, “Writing on dirty paper,lEEE Trans. Inform. Theoryol.
IT-29, pp. 439-441, May 1983.

T. M. Cover and J. A. Thomaglements of Information Theary New
York: Wiley, 1991.

T. M. Cover and M. Chiang, “Duality between channel capacity and
rate distortion with two-sided state informatiodEEE Trans. Inform.
Theory vol. 48, pp. 1629-1638, June 2002.

M. Chiang and T. M. Cover, “Unified duality between channel capacity
and rate distortion with state information,” Rroc. IEEE Int. Symp. In-
formation TheoryWashington, DC, June 2001, p. 301.

U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice-strategies for
cancelling known interference,” iAroc. Int. Symp. Information Theory
and Its ApplicationsHonolulu, HI, Nov. 2000, pp. 681-684.

U. Erez and R. Zamir, “Lattice decoding can achiévig(1 + SNR)

on the AWGN channel using nested codes Pioc. IEEE Int. Symp. In-
formation TheoryWashington, DC, June 2001, p. 125. Also, submitted
to IEEE Trans. Inform. Theory

S. I. Gel'fand and M. S. Pinsker, “Coding for channel with random pa-
rameters,'Probl. Contr. Inform. Theoryvol. 9, no. 1, pp. 19-31, 1980.
R. M. Gray, “Conditional rate-distortion theory,” Stanford Univ., Stan-
ford, CA, Electronics Laboratories Tech. Rep. 6502-2, Oct. 1972.

C. Heegard and A. El Gamal, “On the capacity of computer memory with
defects,”|EEE Trans. Inform. Theorwol. IT-29, pp. 731-739, Sept.
1983.

P. Moulin and J. A. O’Sullivan, “Information-theoretic analysis of infor-
mation hiding,” , vol. 49, pp. 563-593, Mar. 2003.

S. S. Pradhan, J. Chou, and K. Ramchandran, “Duality between channel
and source coding with side information,” Univ. California, Berkeley,
UCBJ/ERL Tech. Memo. M01/34, Dec. 2001.

——, “A characterization of functional duality between source and
channel coding,” inProc. IEEE Int. Symp. Information Theory
Lausanne, Switzerland, June 2002, p. 224.

S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): Design and construction,Piroc. Data Com-
pression Conf.Snowbird, UT, Mar. 1999, pp. 158-167.

S. Servetto, “Lattice quantization with side information,’Rroc. Data
Compression ConfSnowbird, UT, Mar. 2000, pp. 510-522.

S. Shamai (Shitz), S. Verdd, and R. Zamir, “Systematic lossy
source/channel coding,/EEE Trans. Inform. Theoryvol. 44, pp.
564-579, Mar. 1998.

D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,”IEEE Trans. Inform. Theoryol. IT-19, pp. 471-480, July
1973.

J. K. Su, J. J. Eggers, and B. Girod, “lllustration of the duality be-
tween channel coding and rate distortion with side informatiorProc.
Asilomar Conf. Signals, Systems, CompytPexific Grove, CA, Nov.
2000.



1180

(31]
(32]
(33]

(34]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003

J. Wolfowitz, Coding Theorems of Information Thep8nd ed. New  [35] R. Zamir and M. Feder, “On lattice quantization noisEEEE Trans.

York: Springer-Verlag, 1964. Inform. Theoryvol. 42, pp. 1152-1159, July 1996.

A. D. Wyner, “Recent results in Shannon theofgEE Trans. Inform.  [36] R. Zamir and S. Shamai, “Nested linear/lattice codes for Wyner—Ziv
Theory vol. IT-20, pp. 2-9, Jan. 1974. encoding,” inProc. Inform. Theory WorkshogXilarney, Ireland, June
——, “The rate-distortion function for source coding with side infor- 1998, pp. 92-93.

mation at the decoder—II: General sourcdsform. Contr, vol. 38, pp. [37] R. Zamir, S. Shamai (Shitz), and U. Erez, “Nested linear/lattice codes
60-80, 1978. for multiterminal binning,”|EEE Trans. Inform. Theoryol. 48, pp.

A. D. Wyner and J. Ziv, “The rate-distortion function for source coding 1250-1276, June 2002.

with side information at the decodetBEE Trans. Inform. Theoryol.
IT-22, pp. 1-10, Jan. 1976.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


