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Abstract—Aspects of the duality between the information-em-
bedding problem and the Wyner–Ziv problem of source coding
with side information at the decoder are developed and used to es-
tablish a spectrum new results on these and related problems, with
implications for a number of important applications. The single-
letter characterization of the information-embedding problem is
developed and related to the corresponding characterization of the
Wyner–Ziv problem, both of which correspond to optimization of
a common mutual information difference. Dual variables and dual
Markov conditions are identified, along with the dual role of noise
and distortion in the two problems.

For a Gaussian context with quadratic distortion metric, a
geometric interpretation of the duality is developed. From such
insights, we develop a capacity-achieving information-embedding
system based on nested lattices. We show the resulting encoder–de-
coder has precisely the same decoder–encoder structure as the
corresponding Wyner–Ziv system based on nested lattices that
achieves the rate-distortion limit.

For a binary context with Hamming distortion metric, the in-
formation-embedding capacity is developed, along with its rela-
tionship to the corresponding Wyner–Ziv rate-distortion function.
In turn, an information-embedding system for this case based on
nested linear codes is constructed having an encoder–decoder that
is identical to the decoder–encoder structure for the corresponding
system that achieves the Wyner–Ziv rate-distortion limit.

Finally, based on these results, a simple layered joint
source–channel coding system is developed with a perfectly
symmetric encoder–decoder structure. Its application and per-
formance is discussed in a broadcast setting in which there is a
need to control the fidelity experienced by different receivers.
Among other results, we show that such systems and their mul-
tilayer extensions retain attractive optimality properties in the
Gaussian-quadratic case, but not in the binary-Hamming case.

Index Terms—Coding with side information, data hiding, digital
watermarking, hybrid coding and transmission, information
embedding, joint source–channel coding, Slepian–Wolf coding,
Wyner–Ziv coding.
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I. INTRODUCTION

I NFORMATION embedding concerns the reliable transmis-
sion of information embedded into a host signal, and has

an increasingly wide array of applications, from digital water-
marking, data hiding, and steganography, to backward-compat-
ible digital upgrading of communications infrastructure [7], [6].
Likewise, source coding with side information has a growing
spectrum of applications, ranging from new low-power sensor
networks to the upgrading of legacy communications infrastruc-
ture [28], [1].

This paper develops the natural duality between information
embedding, which can be reinterpreted as a problem ofchannel
coding with side information at theencoder[7], and the problem
of sourcecoding with side information at thedecoder, the most
important instance of which is the well-known “Wyner–Ziv”
problem [34]. Exploiting this duality, several new results and
interesting insights with practical implications are obtained, in-
cluding several in the context of mixed analog–digital transmis-
sion.

Fig. 1 depicts the information-embedding scenario of interest.
The -dimensional vector is the “host” signal, and the mes-
sage is the information to be embedded, which is indepen-
dent of . The encoder uses both the host and the message to
create a “composite” signal that is suitably close to the host

. The composite signal passes through a probabilistic channel,
the output of which, , is reliably decoded to retrieve the em-
bedded message .1 In our model for information embedding,
each element of the host is drawn in an independent and iden-
tically distributed (i.i.d.) manner from the distribution ,
and the channel is memoryless and characterized by the transi-
tion density .2 The specific information-embedding
problem is as follows: if the distortion between the host and
composite signal is constrained to be at most, what is the max-
imum rate of reliable communication that can be supported
by the embedding given a particular transmission channel?

The dashed line in Fig. 1 represents a less interesting variant
of information embedding whereby the host is also known to
the decoder. Wolfowitz [31] originally derived capacity for this
system without the distortion constraint, i.e., capacity with side
information at the encoder and decoder. For the purposes of this

1The decoder can also extractWWW fromYYY , thereby reconstructing the original
host to within distortiond.

2For watermarking problems, a variety of attack channel models of the form
considered in [23], [7], and [12] are also of particular interest, although we do
not consider such channels in this paper.
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Fig. 1. The information-embedding model. The signalsXXX ,M ,WWW , andYYY are,
respectively, the host, embedded information, composite signal, and channel
output. The dashed line represents side information at the decoder, which may
or may not be present, depending on the application.

Fig. 2. The source coding with side information model. The signalsYYY , M ,
XXX , andWWW are respectively the source, digital encoding, channel output, and
decoded source. The dashed line represents side information at the encoder,
which may or may not be present, depending on the application.

paper, we refer to the case where the host is also known at the de-
coder as “private” information embedding, and to the case where
the host is not also known at the decoder as “public” informa-
tion embedding. While we examine both forms of embedding,
we emphasize public information embedding in our develop-
ment, and when there is no risk of confusion we use the term
“information embedding” generically to refer to this case.

Fig. 2 depicts the source coding with side information
problem of interest. The-dimensional source vector passes
through a probabilistic channel, producing the side information

. The encoder produces the messagefrom the source
that the decoder uses in conjunction with to produce a

suitably accurate reconstruction of . In our model for
source coding with side information, the source is drawn i.i.d.
from , and the channel is memoryless with transition
density . For this problem, the question is: given a
particular side information channel, what is the minimum rate

that is required at the output of the encoder to ensure that
distortion between the source and reconstruction is at most?

The dashed line in Fig. 2 represents a less interesting variant
of the source coding with side information problem whereby
the side information is also known to the encoder. When the
side information is also known to the encoder, achievable perfor-
mance is easily characterized in terms of a familiar conditional
rate-distortion function [5], [21]. When the side information is
not also known to the encoder, we have the problem consid-
ered by Wyner and Ziv [34]. While we develop dualities associ-
ated with both forms of the source-coding problem, we empha-
size the Wyner–Ziv version, and when there is no risk of confu-
sion we describe both versions generically as the “Wyner–Ziv
problem.”

As Figs. 1 and 2 suggest, there is a one-to-one correspon-
dence between variables in the information-embedding and
Wyner–Ziv problems. Indeed, our notation is chosen so as to
identify the correspondence between variables in the two prob-

lems that arises out of the duality, as we will discuss.3 For the
moment, it suffices to observe that the information-embedding
encoderhas exactly the same input variables (and ) and
output variable ( ) as thedecoderfor the Wyner–Ziv problem.
Furthermore, the information-embeddingdecoderhas the same
input variable ( ) and output variable ( ) as theencoderfor
the Wyner–Ziv problem. As we illustrate in some key contexts
of interest, this is not a coincidence: the two problems are, in
fact, duals in the sense that an optimal encoder–decoder for one
problem is an optimal decoder–encoder pair for the other.

In developing the deeper connection, we show that, in gen-
eral, the capacities and rate-distortion limits for the two prob-
lems are closely related, and can be expressed in terms of an
optimization over the same mutual information difference with
respect to the free parameters in each problem. Moreover, we
show that distortion and channel noise play dual roles in the two
problems.

In addition to our own work [1], [6], [2], there has been
growing interest in aspects of the subject of this paper in recent
times, and an expanding set of results and insights. Su, Eggers,
and Girod [30] consider the Gaussian-quadratic special case
and have a similar geometric interpretation to ours. Chiang
and Cover [9], [17], [16] expand the scope of the duality
beyond the information-embedding context. Chou, Pradhan,
and Ramchandran describe aspects of the duality in [10] and
investigate it further in [24], [25].

An outline of the paper is as follows. After establishing
some basic notation in Section II, we develop and relate the
basic single-letter characterizations for the two problems
in Section III. For the information-embedding problem, we
generalize a result of Gel’fand and Pinsker to include a
distortion constraint and an arbitrary metric; other versions
of this problem are considered by Moulin and O’Sullivan
[23]. In Appendixes I and II, we provide the proofs for the
coding theorems for public and private information embedding,
respectively, emphasizing the duality with the corresponding
Wyner–Ziv problem. We then discuss the duality between
the resulting mutual information optimization and Markov
conditions for the information-embedding and Wyner–Ziv
problems. We further examine the dual relationship between
distortion and channel noise in the two problems, developing
the correspondence between the noise-free and distortion-free
special cases of each problem. Among other insights, we
discuss the resulting duality between a version of Slepian–Wolf
encoding and information embedding for noise-free channels.

Section IV examines the duality further in the case of
Gaussian contexts with a quadratic distortion metric. In this
case, we relate the information embedding capacity and Wyner–
Ziv rate-distortion function geometrically, which emphasizes
the dual relationship between distortion and channel noise
in the two problems. We then proceed to build deterministic
information-embedding systems based on nested lattices that
achieve capacity at high signal-to-distortion ratio (SDR). Such
systems are also developed independently by Erez, Shamai, and
Zamir in [18]. We show how the resulting encoder–decoder pair

3Throughout this paper it will be clear through context whether a variable
to which we refer corresponds to the information-embedding problem or the
Wyner–Ziv problem.
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has theidentical structure as the associated decoder–encoder
pair for a deterministic Wyner–Ziv embedding system based
a nested lattices, which achieves the rate-distortion limit at
high signal-to-noise ratio (SNR), and which is a nondithered
version of the Wyner–Ziv solution developed by Zamir and
Shamai [36]. We further develop, in Appendix III, a Wyner–Ziv
code based on nested lattices with dithering that achieves the
rate-distortion limit at any SNR.

Section V examines the duality further in the case of binary
contexts with a Hamming distortion metric. In this case,
we use our results in Section III to compute the informa-
tion-embedding capacities (Appendix IV), and highlight the
close relationship—between both the proofs and the final
expressions—to the corresponding Wyner–Ziv rate-distortion
function developed in [34]. We then proceed to build deter-
ministic information-embedding systems for this case based
on nested linear codes that achieve capacity, and show how
the resulting encoder–decoder pair has the identical structure
as the associated decoder–encoder pair developed in [28] for
achieving the Wyner–Ziv rate-distortion limit. In the noise-free
special case, the information-embedding system we construct
is the dual of Wyner’s Slepian–Wolf code construction [32].

Finally, in Section VI, we exploit our results in the devel-
opment of a new class of layered joint source–channel coding
systems from the interconnection of information embedding
and Wyner–Ziv subsystems. The new systems can be used in
a broadcast setting in which one wants to control the fidelity
available to different groups of users. We show that, with our
construction, no price need be paid for this extra functionality
in the Gaussian-quadratic case, but that there is a cost in the
binary-Hamming case. A unique feature of our coding system
is that the encoder and decoder shareidenticalstructure.

Section VII contains some concluding remarks.

II. NOTATION

In terms of general notation, the components of a length
random vector are denoted . In turn, we use
to denote a vector comprised of theth through th components
of , where if the subscript is omitted,is implicitly ; whence

. A script is used to denote the alphabet of
the random variable . Except when otherwise indicated (i.e.,
in Gaussian scenarios), all random variables in this paper take
on values from finite alphabets. We use to denote
a general distortion measure. The expressions , , and

denote Shannon’s mutual information, entropy, and con-
ditional entropy, respectively. All logarithms in this paper are to
be interpreted base-.

III. SINGLE-LETTER CHARACTERIZATIONS OFCAPACITY

AND RATE DISTORTION

In this section, we describe the single-letter expressions for
the distortion-constrained public information embedding ca-
pacity and the Wyner–Ziv rate-distortion function. We compare
these expressions to those when the host (respectively, source)

is known at the decoder (respectively, encoder).

Fig. 3. Illustration of the variable relationship in the single-letter
characterization of information embedding, whereU is the auxiliary
random variable.

A. Public Information Embedding Capacity

The capacity of public information embedding subject to
an embedding distortion constraint is denoted . It is
defined as the maximum achievable rate for communicating
a message such that is arbitrarily small and

is arbitrarily close to for sufficiently
large .

The following result is a generalization of that of Gel’fand
and Pinsker [20] and Heegard and El Gamal [22], which con-
sider the problem without a distortion constraint.

Claim 1: For general distortion measures , the ca-
pacity can be expressed in the form

(1)

where the supremum is taken over all distributions
and functions satisfying

where (2)

where is an auxiliary random variable.

The relationship between the primary and auxiliary random
variables in this single-letter characterization is depicted in
Fig. 3. To prove Claim 1, we begin by using an extension of
the reasoning in [20] to show that the rate
is achievable. The basic encoder and decoder construction is
as follows. A random codebookis generated with i.i.d.
codewords , where .
The codewords are distributed randomly into bins, where

. At the encoder, the embedded
information specifies the bin which is used to code the
source. The encoder finds the codewordin that bin that is
jointly distortion typical with the host and transmits it.4

The decoder looks for the code vector in all ofthat is jointly
typical with the channel output . The bin index of that code
vector is the decoded information . That this encoder and
decoder structure has the requisite properties is straightforward
as shown in [1]. It remains only to show the converse, which is
provided in Appendix I and relies on the concavity of .

Finally, observe that since is an auxiliary random variable,
the characterization of the physical channel in this problem is
such that form a Markov chain, whence

(3)

4The main difference between this achievability proof and that of [20] is that
joint distortion typicality—not just joint typicality—is required to meet the em-
bedding distortion constraint.
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B. Private Information Embedding Capacity

The corresponding result to Claim 1 for private information
embedding subject to a distortion constraint with arbitrary
metric is summarized as follows.

Claim 2: The private information embedding capacity, de-
noted , is given by

(4)

where the supremum is taken over all such that
.

A proof is provided in Appendix II. The construction for
achievability involves the use of a set of codebooks, each of
which is a capacity-achieving codebook for a particular host
value . The total achievable rate is thus the ex-
pected value of the conditional capacities over, and the av-
erage distortion is the expected value of the distortions over all
the codebooks. The converse exploits the concavity of .

The public and private information embedding capacities are
related by

(5)

where equality in (5) holds if and only if the maximizing distri-
bution for in (1) also maximizes the argument on
the right-hand side of (4), and if with this distribution

(6)

i.e., form a Markov chain.
To verify (6), we first obtain, by expanding , two

different ways using the chain rule

(7)

where is any auxiliary random variable such that (2) is sat-
isfied. Likewise applying the chain rule to we
obtain

(8)

However, from (3), the first term on the right-hand side of (8) is
zero, and since is a deterministic function of and , the
second term on the right-hand side of (8) is also zero. Thus, (8)
implies and (7) can be rewritten as

(9)

Comparing (9) with (1) and (4), we obtain the stated necessary
and sufficient conditions for the public and private embedding
capacities to be equal.

C. Rate-Distortion Function With Side Information at the
Decoder

In [34], Wyner and Ziv define the rate-distortion function with
side information at the decoder, denoted , as the min-
imum data rate at which can be transmitted such that when

is large the average distortion is ar-
bitrarily close to .

Fig. 4. Illustration of the variable relationships in the single-letter charac-
terization of source coding with side information, whereU is the auxiliary
random variable.

Their main result is the following:

(10)

where the infimum is taken over all and functions
such that

is a Markov chain (11)

and

where (12)

where is an auxiliary random variable. The relationship be-
tween the primary and auxiliary random variables in this single-
letter characterization is depicted in Fig. 4.

Note that the objective functions on the right-hand sides of
(10) and (1) are identical, as occurs in the case of the duality
between source and channel coding without side information
[15]. Condition (11), i.e., and are conditionally indepen-
dent given , implies (c.f. (6))

(13)

which using (7) simplifies (10) to

(14)

The achievability proof [15] and that used for the informa-
tion-embedding problem [1] are mirrors of each other. Indeed,
the Wyner–Ziv encoder (respectively, decoder) is used in pre-
cisely the same manner as the information-embedding decoder
(respectively, encoder). Likewise, whereas the converse for in-
formation embedding relies on the concavity of , the
converse for the Wyner–Ziv problem relies on the convexity of

.

D. Conditional Rate-Distortion Function

Source coding with the side information known at the decoder
and encoder is the dual of private information embedding. As
shown by Berger [5] and Gray [21], the achievable rate is given
by the conditional rate-distortion function

(15)

where the infimum is taken over all distributions
such that .

The proof of this result mirrors the proof of private informa-
tion embedding described in Appendix II. In particular, achiev-
ability of the conditional rate-distortion function is proven by
a “switching” argument; for each , an optimal rate-dis-
tortion codebook is used to code the source samplesfor all
such that . The total rate is thus the expectation over
of the marginal rate-distortion functions, and the distortion is the
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expected value of the distortions over all the codebooks. Like-
wise, in the same way that the converse for private information
embedding exploits the concavity of , the converse for
the conditional rate-distortion problem exploits the convexity of

.
The Wyner–Ziv and conditional rate-distortion problems are

related by

(16)

where, as shown in [34], equality in (16) holds if and only if the
minimizing distribution for in (10) also minimizes
the objective function on the right-hand side of (15), and if with
this distribution we have (c.f. (3))

(17)

i.e., form a Markov chain.

E. Duality of Necessary and Sufficient Conditions

The relationships described in the preceding subsections re-
veal an important aspect of the duality between information em-
bedding and source coding with side information.

To summarize, with information embedding (respectively,
source coding with side information), for the embedding
capacity (respectively, rate-distortion function) to be the same
whether or not the host (respectively, side information) is
known at the decoder (respectively, encoder), the optimizing
distributions for must first be the same with
or without the signal known at the encoder (respectively,
decoder).

The duality manifests itself in the remaining necessary con-
dition. For information embedding this is the Markov condition
(6), which for the Wyner–Ziv problem is automatically satisfied
(c.f. (13)). Similarly, for the Wyner–Ziv problem, the remaining
necessary condition is the Markov constraint (17), which for the
case of information embedding is automatically satisfied (c.f.
(3)).

The Markov condition not automatically satisfied by the
problem construction may or may not be satisfied. Indeed,
in Section IV, we will see that itis for both problems in the
Gaussian-quadratic case, while in Section V we will see that it
is not for either problem in the binary-Hamming case.

Unless otherwise noted, for the remainder of this paper, we
restrict our attention to the problems of source coding with side
information known only at the decoder, and information embed-
ding with side-information known only at the encoder.

F. Noise-Free/Distortion-Free Duality

In this subsection, we examine important limiting cases of
the duality between information embedding and Wyner–Ziv
coding, corresponding to noise-free and distortion-free sce-
narios. First, we observe that distortion-free information em-
bedding and noise-free Wyner–Ziv encoding are trivial duals

- (18)

In the other limiting case—noise-free information embedding
and distortion-free Wyner–Ziv coding—the duality is more in-
teresting.

The minimum rate required for distortion-free
Wyner–Ziv coding follows immediately from an application of
the Slepian–Wolf source-coding theorem [29]. In particular,
the source can be reproduced exactly at the decoder ( )
if and only if [15, Sec. 14.4]

(19)

where the underlying density is prescribed by the
problem, so no infimum in (19) is required.

To see the duality to noise-free information embedding, we
develop the associated capacity in the sequel.

1) Noise-Free Information Embedding Capacity:The max-
imum rate that can be attained for noise-free information em-
bedding is closely related [6]. In particular, the dual result is as
follows: one can reliably embed a messagein the host signal
for transmission over an error-free channel if and only if

- (20)

where the maximum in (20) is over all distributions
such that .

Equation (20) is verified as follows. We first show that, even
with the constraint in (1), the rate is achiev-
able

(21)

where we have used in the second line. Now, we
shall show that the capacity (1) cannot exceed

The third line follows since conditioning decreases entropy. The
final line arises since entropy is nonnegative.

It remains only to maximize this resulting rate
over all possible choices of . Equation (20) is ex-
pressed in terms of the equivalent maximization over
since .

IV. GAUSSIAN-QUADRATIC CASE

In this section, we examine the information embedding ca-
pacity and rate-distortion function in the case of a (continuous-
alphabet) Gaussian host and source, respectively, a memoryless
Gaussian channel, and a quadratic distortion metric. Our devel-
opment reveals the duality in the derivations of these bounds and
in the codes that achieve them.

A. Gaussian-Quadratic Information Embedding Capacity

Consider an i.i.d. Gaussian host and a
channel that adds white Gaussian noise that is
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independent of , where denotes Gaussian random
vector with mean and covariance matrix.5 The message
is embedded into , creating a composite signal such that the
mean-square embedding distortion is minimized:

. The capacity of this system is given by [14]

(22)

Costa proves this result in the context of coding for a channel
with a random state known at the encoder. Using a convenient
super-channel interpretation of information embedding, Chen
and Wornell [7] cite Costa’s expression as the information-em-
bedding capacity for the Gaussian case.

Costa first proves that the information-embedding capacity
with known at the encoder and decoder equals the expres-
sion in (22). He then proceeds to show that with no host at the
decoder, there is a test channel which achieves this capacity.

The test channel used to determine capacity defines the aux-
iliary random variable for some constant and
with zero-mean, Gaussian, and independent of, implying
that the encoding function is .
Solving for and maximizing with respect
to yields (22).

B. Gaussian-Quadratic Wyner–Ziv Rate-Distortion Function

The Wyner–Ziv rate-distortion function for a Gaussian source
with jointly Gaussian side information at the decoder is a dual to
the distortion-constrained information embedding capacity with
Gaussian host and Gaussian channel.

For jointly Gaussian and whose element pairs are
all drawn i.i.d. from the Gaussian density

, the Wyner–Ziv rate distortion function is [33]

if

if

(23)

where is the error variance in the minimum mean-square
error (MMSE) estimation of from . We can always write
the relationship between and in the form for
some , where is Gaussian with variance and independent
of . Without loss of generality, we restrict our attention to the
case .

Wyner [33] proves (23) by first showing that the conditional
rate-distortion function equals the expression in (23), mirroring
the approach used by Costa in the corresponding information-
embedding problem. He then proceeds to show that with no
side information at the encoder, there is a test channel which
achieves the same rate-distortion function, thereby finding the
Wyner–Ziv rate-distortion function.

In Wyner’s formulation, the test channel encoder simply as-
signs the auxiliary random variable to be a linear combi-
nation of the source and an independent zero-mean Gaussian
variable: . The test channel decoder function is

5We useIII to denote the identity matrix.

Fig. 5. Geometric interpretation of information embedding as sphere packing
in the Gaussian-quadratic case.

also a linear function. For the special case of an additive white
Gaussian channel with SNR , the decoder function is

(24)

Note that this special-case decoder is the same as the informa-
tion-embedding encoding function for the Gaussian case.

C. Geometrical Interpretations

The duality between the information-embedding capacity and
Wyner–Ziv rate-distortion function in the Gaussian case has
a convenient geometrical interpretation, which we illustrate in
this subsection.6 In particular, we show how information em-
bedding is sphere packing about the host in signal space, while
Wyner–Ziv encoding is sphere covering about a source estimate
that is a linear function of the side information.

1) Geometry of Information Embedding:Information em-
bedding can be viewed as a sphere-packing problem, as depicted
in Fig. 5 in the high distortion-to-noise ratio (DNR) regime. To
understand this figure, note that the distortion constraint implies
that all composite signals must be contained in a sphere
of radius centered about . In coding for the channel,
we use codewords (signal points) that must be contained
within such that smaller spheres of radius about all
of the signal points have negligible overlap—each symbol will
be uniquely distinguishable at the decoder. We emphasize that
this must be true for all , so that if changes by some amount,
the positions of signal points may change, but the number of
signal points will stay the same. Signal design corresponds to
filling a sphere of radius with smaller spheres of
radius .

6A similar geometrical interpretation is given in [30].
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Fig. 6. Geometric interpretation of Wyner–Ziv coding as sphere covering in
the Gaussian-quadratic case.

With this geometrical interpretation, clearly the maximum
number of spheres that can be used is upper-bounded by the
ratio of the volumes of the large to the small spheres. Thus, the
number of codewords is bounded

(25)

From (22), we see that a capacity-achieving code will meet this
upper bound as

(26)

for large .
2) Geometry of Wyner–Ziv Encoding:Wyner–Ziv coding

can be viewed as a sphere-covering problem, as depicted in
Fig. 6 in the low DNR regime. Given a side information vector

at the decoder, an MMSE estimate of the source is ,
where is the associated MMSE estimator gain. The remaining
mean-square error about the estimate is , implying that the

source must lie in a sphere of radius about .

Moreover, the noisier the channel fromto , the larger this
sphere. A Wyner–Ziv codebook for a distortionwill contain

code vectors in , and is designed so that most source
sequences of lengthlying in are within a distance
of a codeword. Rate-distortion coding for the Gaussian case,
therefore, amounts to covering the sphere with smaller
spheres of radius , which we illustrate in Fig. 6. Clearly
the number of codewords is lower-bounded by the ratio of the
volumes of the large to the small spheres

(27)

and this lower bound is met by a code that achieves the rate-
distortion bound given by (23).

D. Geometrical Duality

The geometric interpretation of the Gaussian case shows that
the encoder (respectively, decoder) operation for information
embedding is the same as the decoder (respectively, encoder)
operation for Wyner–Ziv coding. At the information-embedding
encoder, the digital information specifies a signal point in
a sphere about a signal, and similarly, at the Wyner–Ziv de-
coder the digital information from the coded source specifies
a signal point in a sphere about the signal. A minimum-dis-
tance decoder for the information-embedding problem finds the
nearest neighbor code vector to the channel observation, which
corresponds to a decoded message index. The corresponding
Wyner–Ziv encoder finds the nearest neighbor code vector to
the source, and transmits the associated index.

Another aspect of the relationship between the infor-
mation-embedding and Wyner–Ziv problems is the duality
between the roles of noise and distortion in the two problems,
which is readily seen in our geometric interpretation of the
Gaussian case. In particular, from Fig. 6 we see that in the
Wyner–Ziv problem the radius of the large sphere is propor-
tional to , which characterizes the noisiness of the channel
in the Wyner–Ziv problem, and the radius of the smaller sphere
is proportional to . In contrast, from Fig. 5, we see that in the
case of information embedding the radius of the large sphere
is essentially proportional to , and the radius of the smaller
sphere is proportional to the standard deviation of the noise.

Note that this dual relationship between noise in one problem
and distortion in the other is consistent with our observations in
Section III-F of the duality in the characterizations of achievable
rates between the noise-free and distortion-free scenarios in the
two problems with finite alphabets.

E. Nested Lattice Code Constructions

Nested lattices can be used to construct optimum codes for
the information-embedding and Wyner–Ziv problems in the
Gaussian-quadratic scenario, as we describe in this section in
the dual cases of high SDR and high SNR, respectively. The
resulting codes are duals of one another.

Our notation is as follows. An (unbounded)-dimensional
lattice is a set of codewords such that

(28)

A minimum (Euclidean) distance decoder, which quantizes an
arbitrary signal to the nearest (in a Euclidean sense) code-
word, takes the form

(29)

where denotes the (usual) Euclidean norm. The associated
quantization error is then

(30)

The quantizer specifies the characteristic Voronoi region
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for the lattice. A Voronoi region is conveniently described in
terms of its volume , second moment , and normalized
second moment , which are given by, respectively,

(31)

When is a good lattice (i.e., constitutes a good
source–channel code, in the sphere-covering/packing sense),
is sufficiently large, and we are operating in the limit of high
resolution (high signal-to-quantization-error ), we have
the following properties.7

(GQ-1) The quantization error (30) is white and Gaussian
with zero mean and variance, and independent of
(29), the codeword to which the vector is quantized
[35].

(GQ-2) For every , the probability of a decoding error,
when and is a

zero-mean white Gaussian vector independent of
whose elements have variance [13].

(GQ-3) For all , [35].

We make use of two good lattices and , where is
nested in , i.e., .8 The associated quantizer, Voronoi
cell, volume, second moment, and normalized second moment
for the lattice are denoted , , , , and .

The lattice can be partitioned into
cosets corresponding to and its translates. As in [36], for

, we refer to the quantity as the coset
shift of with respect to the lattice . The function :

indexes the coset shifts, and the
inverse function is , i.e., .

We let denote the coset corresponding to coset shift,
and we note that the quantizer for this coset,, takes the form

(32)

1) Nested Lattice Codes for Information Embedding:In this
subsection, we construct a nested lattice implementation of dis-
tortion-compensated quantization index modulation (DC-QIM)
[7]. The codes achieve information embedding capacity in the
limit of high SDR . For this version we avoid the use of
dither; versions that exploit dither are given in [1] and [18].

We choose our nested lattices such that

and (33)

where

(34)

Our information-embedding encoder using these lattices
takes the form of DC-QIM [7], i.e., the composite signal
is constructed from the host and the (unique) coset shift

of the message according to

(35)

7These properties are true only in the asymptotic sense, which makes them
somewhat hypothetical for anyn. See [18] for a more rigorous treatment.

8The existence of pairs of good nested lattices is shown in [19], [37].

with

(36)

where is another parameter. The associated decoder produces
the message estimate as the index of the closest coset to its ob-
servation , i.e., .

We first verify that the embedding rate is arbitrarily
close to capacity, which follows from the lattice properties.
Indeed, with the message drawn uniformly from the indexes

, using Property (GQ-3) and (33), the rate of
the system is within bits of

(37)

where the last equality follows from (22).
Furthermore, with the right choice of the parameter, we can

ensure the encoder meets the distortion constraint in the regime
of interest. Indeed, defining the quantization error

(38)

and letting we have that

(39)

Applying Property (GQ-1) in the context of the lattice, we
obtain that the embedding distortion is, using (39), as desired

(40)

Finally, it is straightforward to verify that the decoder
achieves arbitrarily low error probability. Indeed

(41)

(42)

(43)

(44)

where (42) follows from (39), where (43) follows from (38),
where is as defined in (36), and where .
Now, using Property (GQ-1) in the context of lattice, we
know that , and hence , is Gaussian and independent of

. Thus using Property (GQ-2) in the context of latticewe
have from (44) that with probability at least
since .9 But , so the decoder
estimates as with probability at least .

2) Nested Lattice Code for Wyner–Ziv Encoding:Anal-
ogously, nested lattices can be used to build Wyner–Ziv codes
for the Gaussian-quadratic case, as Zamir and Shamai develop
with a dithered construction in [36] in the limit of high SNR

.10 A generalization of this construction that achieves
the rate-distortion limit for all SNRs is outlined in Appendix III
and also appears in [1] and [37]. A version of this construction
that avoids dither, which we summarize here, is the dual of that
we consider in Section IV-E1. As the solution will reveal, the
Wyner–Ziv encoder (respectively, decoder) has the same form

9That the overallZZZ can, for good lattices, be effectively treated as Gaussian
with the indicated variance is also justified by more formal treatment of the
underlying limits, as shown in [19].

10Such constructions are explored further by Servetto [27].
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as the information-embedding decoder (respectively, encoder).
It suffices to restrict our attention to the case .

For this problem, the nested lattices are chosen such that

and (45)

A suitable encoder using these lattices transmits the index
of the closet coset to the source, i.e., it transmits

. The decoder observes and , calculates the
coset shift , then produces a source estimate of the
form

(46)

where

(47)

That the system operates at the target rate follows from the
lattice properties. Indeed, Property (GQ-3) and (45) prescribe
the rate of the code to be within bits of

(48)

where the last equality follows from (23) together with the fact
that as .

Next, to verify that the decoder reconstructs the sourceto
within distortion , we first define the quantization error

(49)

and express the received datain the form

(50)

where we have defined . Now applying (GQ-1) in
the context of11 , and exploiting that is independent of
and, therefore, , we have that is (effectively) Gaussian
and independent of . In turn, since , we can
use (GQ-2) in the context of to obtain that, with probability
at least

(51)

since . In turn, substituting (51) into (46), we
have that with probability

(52)

Choosing and so as to minimize the mean-square distor-
tion between and , we obtain, using basic linear MMSE
estimation theory, that the optimumand yield a mean-square
estimation error of

(53)

which confirms the distortion constraint is met.

11Since Wyner–Ziv coding is nontrivial only whend < � , and since
� < � , then our operating in the high-SNR regime implies we are also
operating in the high-SDR regime.

V. BINARY-HAMMING CASE

In this section, we consider the scenario where the signals of
interest—the host in the information-embedding problem and
the source in the Wyner–Ziv problem—are Bernoulli se-
quences, where Bernoulli denotes a sequence of i.i.d. binary

random variables, each of which is takes on the value
with probability . In both problems, the associated channel of

interest is the binary-symmetric channel with crossover proba-
bility . The distortion metric is Hamming metric, corre-
sponding to bit-error rate. In this section, we use to denote
the entropy of a Bernoulli source, i.e.,

and to denote binary convolution, i.e.,

A. Binary-Hamming Information-Embedding Capacity

The information-embedding capacities in the binary-Ham-
ming case are as follows.

Claim 3: For the binary-Hamming case, the distortion-con-
strained information-embedding capacity is the upper
concave envelope of the function

if

if
(54)

i.e.,

if

if

(55)

where .

Claim 4: For the binary-Hamming case, the distortion-con-
strained information-embedding capacity is given by

(56)

Proofs of Claims 3 and 4 are developed in Appendixes IV-A
and IV-B, respectively.12 Fig. 7 illustrates and
as a function of the distortion constraint for a channel transition
probability of . Note that for all

. This is not surprising: it is easy to verify that (6)
is not satisfied for in this range.

B. Binary-Hamming Wyner–Ziv Rate-Distortion Function

The Wyner–Ziv rate-distortion function for this scenario is
determined in [34] to be the lower convex envelope of the func-
tion

if

if
(57)

i.e.,

if

if

(58)

12The proof of Claim 3 mirrors that for the corresponding Wyner–Ziv rate-
distortion function in [34].
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Fig. 7. The information-embedding capacities for the binary-Hamming case with channel transition probabilityp = 0:1. The dashed line is the functiong (d)
from (54). The successively lower solid lines areC (d) andC (d), the information-embedding capacities with and withoutXXX known at the decoder,
respectively.

where is the solution to the equation

(59)

with denoting the differentiation operator. For comparison, we
show the conditional rate-distortion function (known at the
encoder and decoder) for the binary symmetric case [5]

if

if
(60)

Fig. 8 shows an example of and for channel
transition probability , which can be compared to
Fig. 7.

C. Nested Binary Linear Codes

Optimum information embedding and Wyner–Ziv coding in
the binary-Hamming case can be realized using a pair of nested
binary linear codes, as we develop in this subsection.

Our code notation is as follows. A binary linear codeof
codewords having length is defined by a parity-check matrix
of dimension with the property that

(61)

where denotes the transpose operator. The syndrome of an
arbitrary vector is . A minimum (Hamming) distance
decoder, which quantizes an arbitrary signalto the nearest (in
a Hamming sense) codeword, takes the form

(62)

where denotes modulo-addition, and where is the as-
sociated decoding function. The resulting quantization error is,
therefore,

(63)

Let be determined from the code rate via
. Then when is a good code and is sufficiently

large, we have the following properties.

(BH-1) The quantization error (63) is Bernoulli distributed
and independent of (62), the codeword to which it is
quantized.

(BH-2) For all codewords , the probability of a de-
coding error is small when is
Bernoulli distributed and independent of.

We make use of two good binary linear codesand ,
where is nested in , i.e., .13 The associated code
rate, parity-check matrix, quantizer, and decoding function for
code are denoted , , , and , re-
spectively. Note that because of the nesting, we can write

(64)

where has dimension . Furthermore, can
be partitioned into cosets corresponding to and its
shifts.

13The existence of pairs of good nested linear codes is shown in [19], [37].
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Fig. 8. The Wyner–Ziv rate-distortion functions for the binary-Hamming case with channel transition probabilityp = 0:25. The dashed line is the function
g (d) = h(p � d)� h(d) from (57). The successively lower solid lines areR (d) andR (d), the rate-distortion functions with and withoutXXX known
at the encoder, respectively.

1) Nested Binary Codes for Information Embedding:In-
formation embedding for the binary-Hamming case again takes
the form of QIM [7]. However, in this binary-Hamming case,
no distortion compensation is involved.

To develop the appropriate QIM scheme, we choose
and , so our code rates are and
It suffices to restrict our attention to the region , since
lower distortions can be achieved through time sharing.

We let the rate of the information signal be

(65)

and associate with each messagea (unique) coset shift
via the relation

(66)

where denotes a vector of length whose elements
are the binary expansion of . The encoder then generates the
composite signal according to QIM

(67)

(68)

where (68) follows from applying (62), and where

(69)

using (66) and the fact that .

To confirm that the encoder meets the distortion constraint it
suffices to note that by using Property (BH-1) in the context of
the codebook , we obtain that the (quantization) error

(70)

is Bernoulli .
The associated decoder operates as follows. The received

signal is , where is Bernoulli . Using Property
(BH-2) in the context of codebook , we obtain that can
be recovered via

(71)

with high probability. In turn, we use to recover
(and thus ) via

(72)

where the first equality is due to (66), and where the second is
a consequence of (67), since produces codewords in .

a) Noise-free case:Using (20), we easily determine that
under the constraint that the composite signalbe within Ham-
ming distance of the host , the binary-Hamming embedding
capacity is

- (73)

To achieve rates arbitrarily close to the capacity (73), it therefore
suffices to use the nested linear coding method for information
embedding described in Section V-C1 with .
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Fig. 9. A layered joint source–channel coding system.

2) Nested Binary Codes for Wyner–Ziv Coding:The corre-
sponding nested codes for the Wyner–Ziv problem are devel-
oped by Shamai, Verdú, and Zamir [28] by setting
and , so the code rates are and

. To illustrate the duality with the informa-
tion-embedding solution, we summarize the salient features of
the construction in [28] here, again, restricting our attention to
bit-error rates , as time sharing with no coding can
achieve all other operating points on the capacity curve.

The encoder computes

(74)

and sends the length vector (syndrome) , which
describes the nearest coset ofto . The rate of the encoder
is thus

(75)

The associated decoder observes and , and recon-
structs an estimate of the source as (c.f. (67), (68))

(76)

(77)

where is constructed from the received side information
via

(78)

Following Shamaiet al. [28], the reconstruction can be
shown to meet the distortion constraint as follows. First, using
Property (BH-1) in the context of the codebook, we obtain
that the quantization error in, i.e.,

(79)

is Bernoulli . Next, expressing the channel output in the form

(80)

where is Bernoulli , we obtain, combining (79) with (80)

(81)

which is, therefore, Bernoulli . But then applying Property
(BH-2) to (81) in the context of the codebook, we have that
with high probability

(82)

Thus, we obtain that the reconstruction error is with high prob-
ability

(83)

which is Bernoulli( ) as required.

b) Distortion-free case:When we set in the nested
code construction of Section V-C2, the code not surprisingly
specializes to the well-known practical Slepian–Wolf code de-
veloped by Wyner [32].14 From this perspective, we can see
that the nested linear code for information embedding in the
noise-free case described at the end of Section V-C1 is the dual
of Wyner’s Slepian–Wolf code, i.e., the encoder in one case is
the decoder for the other, andvice versa.

VI. L AYERED JOINT SOURCE–CHANNEL CODING

The relationship between information embedding and
Wyner–Ziv coding developed in this paper can be exploited in
the development of a variety of novel systems. As one illustra-
tion, in this section we introduce a layered joint source–channel
coding system.

Such a system can be formed from the interconnection of
Wyner–Ziv and information-embedding subsystems. A simple
two-layer implementation is depicted in Fig. 9. As this figure
reflects, in this system the bits comprising the Wyner–Ziv rep-
resentation of the source are embedded into the source
using information embedding to produce a transmitted signal

, where the Wyner–Ziv encoding takes into account the ad-
ditional degradation of the source (beyond that introduced in
the channel) that will result from the embedding.15 The associ-
ated decoder operates on both layers of the received signalas
also shown in Fig. 9. It extracts the bits of the Wyner–Ziv rep-
resentation using the information-embedding decoder, and
uses them in the Wyner–Ziv decoder to reconstruct the estimate

of the source. Note the interesting property that encoder and
decoder for this system have identical structure, which follows
from the fact that the structure of the information-embedding
encoder is the same as that for the Wyner–Ziv decoder, andvice
versa.

Such a system has the feature that can be used in a broadcast
setting involving two classes of receivers: private receivers, to
which the Wyner–Ziv and information-embedding codebooks
are revealed, and public receivers, which have no codebook
information. Thus, public receivers construct an estimate
of the base layer, without decoding the embedded information,
while private receivers construct the estimate from both
layers.

By varying the Wyner–Ziv bit rate within the encoder (and
adjusting the private decoder parameters accordingly), one

14There has been renewed interest in implementations of Wyner’s construc-
tion lately; see, e.g., [26].

15Note that implicit in our assumption of a discrete-time source, all such codes
we develop use the same bandwidth as the source.
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can control the quality of the public estimate: the higher
the Wyner–Ziv bit rate, the lower the quality of the public
estimate. In the sequel, we examine how the quality of the
private estimate varies as this bit rate is varied. We refer to a
system as “efficient” when the quality of the private estimate is
independent of the chosen public estimate quality. Two systems
will be examined: one for the Gaussian-quadratic scenario, and
one for the binary-Hamming scenario.

A. The Gaussian-Quadratic Case

In this subsection, we construct a layered joint
source–channel code that is efficient for the Gaussian-quadratic
case. Let our i.i.d. Gaussian sourcehave elements distributed
according to , let the independent additive white
Gaussian noise in the channel have elements
distributed according to . Our implementation uses
the information-embedding and Wyner–Ziv subsystems in
precisely the forms developed in Sections IV-A and IV-B.

When we embed under an embedding distortion constraint
using a capacity-achieving code, the embedding adds noise

that is independent of . In order to normalize
the overall transmitted power to , the host must be scaled
by

(84)

prior to embedding.
At the receiver, the observed signal is

(85)

from which we see using MMSE estimation theory that the best
public receiver estimate is

(86)

and yields distortion

(87)

Thus, as is varied from to , varies from

(88)

to , corresponding to the observation carrying no useful
(public) information about .

To obtain the distortion of the private decoder, we note
that with fixed, the maximum achievable embedding rate is

. Given this supplied data rate, we Wyner–Ziv-encode
for minimum distortion at the decoder subject to the available
embedding rate, i.e., the resulting distortionis the solution to

(89)

which upon substitution of (87) for is easily verified to be
given by16 (88) independent of the embedding level for all

.
Efficiency follows immediately. In particular, note that the

choice corresponds to a single-layer, fully private
separate source and channel coding system, which by the
source–channel separation theorem we know is the lowest
possible distortion achievable by any system. That (88) is
independent of means, therefore, is that this layered joint
source–channel coding system is efficient forall choices
of . Consistent with our analysis, this includes the other
extreme case , which corresponds to single-layer
uncoded (fully public) transmission, whose efficiency in the
Gaussian-quadratic scenario is well-known [5, Sec. 5.2].

Multilayer Joint Source–Channel Codes:The two-layer
joint source–channel coding scheme just described generalizes
naturally to a multiple-layer scheme involving successive
embeddings at the encoder. Such a system can be used to
support nested classes of private users, each able to recover a
progressively better estimate of the source.

The encoding for a -layer system is generated from
successive embeddings at distortion levels, producing the

sequence of composite signals , . In partic-
ular, at each layer, the composite signal is generated by
embedding the bits of the associated Wyner–Ziv encoding of
the preceding composite signal into itself. The final com-
posite signal is transmitted over the channel. In each
embedding, the amplitude is renormalized to keep each com-
posite signal at power . The composite signals thus created
can, therefore, be expressed in the form

(90)

where

(91)

and , independent of , for
.

The received signal is decoded as follows. There arecode-
books , , of which the last are available to the
th class of (private) decoders. Theth embedding is extracted

from the channel output by the information-embed-
ding decoder using codebook, and the bits are used to form
an estimate of via the associated Wyner–Ziv de-
coder. By the analysis in Section VI-A, the distortion in the es-
timate so produced is given by (88). We proceed to form an
estimate from the preceding composite signal estimate

, where the distortion in this estimate remains (88). This
process is continued until is formed by decoding with
codebook .

If all codebooks are available to the decoder, i.e., the de-
coder is in theth class, it follows that the source reconstruction

achieves the best possible fidelity, i.e., (88). Thus,

16Note that this result is consistent with the broadcast channel result in [7]
showing that the layered digital coding method involving the embedding of bits
into a host that is itself a coded bit stream achieves capacity for the Gaussian
channel.
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the multilayer embedding continues to be efficient in the sense
that no other alternative coding scheme for the channel could do
better.

It remains only to analyze the performance experienced by
the other classes of decoders. To simplify the exposition, we
restrict our attention to the case of equal embedding distortion
at each layer, i.e., for , so that, via
(84), we have

(92)

The th class of decoders, which can decode down to the
th layer, obtain , which can be expressed using the

results of Section VI-A as

(93)

where is independent of , and where

(94)

Expanding according to the iteration (90), we have

(95)

where , , and are mutually indepen-
dent and Gaussian. Thus, theth class of decoders estimate
as

(96)

and the associated distortion these users experience corresponds
to the error in the associated MMSE estimate offrom ,
i.e.,

(97)

which decays exponentially with, the number of codebooks
available to the receiver. The time constant of the decay in-
creases linearly with . In turn, decreases linearly with

, the embedding distortion for an individual layer. When
(which requires that ), for all .

More generally, different versus profiles can be obtained
by choosing the to vary with .

B. Binary-Hamming Case

A layered joint source-channel coding system of the form
of Fig. 9 can also be developed for the binary-Hamming case.
We consider an implementation, analogous to that for the
Gaussian-quadratic case, in which we use the information-em-
bedding and Wyner–Ziv subsystems in precisely the forms
developed in Sections V-A and V-B. In the sequel, we use
to denote the crossover probability of the binary-symmetric
channel.

Let us evaluate the achievable distortions. As shown in Ap-
pendix IV-A, the information-embedding capacity of is
achieved with a distortion of that acts on the source as a
binary-symmetric channel with crossover probability. Thus,
the combined effect of the embedding and the physical channel
will be a binary-symmetric channel with crossover probability

, so that for the Wyner–Ziv encoding, the side information

is the source corrupted by a Bernoulli process. Thus, the
best (public) estimate of the source in this case is ,
and the associated distortion is

(98)

so that as is varied from to , varies from

(99)

to , corresponding to the observation carrying no useful
(public) information about .

Meanwhile, the achieved private distortionis the solution
to

(100)

where the left-hand side of (100) is the upper concave envelope
of the function as defined in (54), and the right-hand side
of (100) is the lower convex envelope of the function as
defined in (57).

The distortion in two limiting cases can be evaluated in closed
form. In the case , which corresponds to single-layer,
fully private, separate source and channel coding system, (100)
specializes to

(101)

yielding . By the source–channel separation theorem, this
is the best distortion one can achieve using any system on this
channel. The other limiting case for which , corresponding
to a single-layer, fully public uncoded system, the distortion

is obviously also achievable simply using the received data as
the source estimate.

More generally, the resulting (normalized) distortionis
plotted in Fig. 10 as a function of for various values of .
Note that while the system is efficient for the limiting cases

and , it is not in between: the distortion is strictly
greater than (99) for all and all . This fact
is proven analytically in [1].

Part of the reason for the inefficiency may lie in the fact that
in the encoder of our system: 1) the chosen information-embed-
ding encoder subsystem does not take into account the corre-
lation between the source and the message ; and 2) the
chosen Wyner–Ziv encoder does not take into account partial
knowledge it has of the ultimate channel outputin the form
of . Clearly, in the Gaussian-quadratic case nothing can be
gained by exploiting such partial side information, since the
system was efficient. However, in the binary-Hamming case,
taking them into account could lead to a system that is efficient
for all and , though that remains to be investigated.

VII. CONCLUDING REMARKS

In this paper, we identified and developed the inherent duality
between information-embedding and Wyner–Ziv coding, and
used this relationship to establish a variety of new results on the
performance limits of information-embedding and deterministic
nested codes for achieving them. As an illustration of other ap-
plications of these results, a layered joint source–channel coding
system was developed with a symmetric encoder–decoder struc-
ture, and evaluated in the context of a broadcast setting in which
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Fig. 10. Performance of layered source–channel coding in the binary-symmetric case. Plotted is the reconstruction distortion (normalized byp) as a function of
embedding distortion forp = 0:05; 0:1; 0:2; 0:4.

there is a need to control the fidelity available to different re-
ceivers. Efficiency was evaluated in the context of channels for
which the source–channel separation theorem holds, but still
more interesting results may follow from examining its behavior
in context where it does not.

More generally, in many respects, our results are simply rep-
resentative examples of a considerably broader set of results
that may ultimately evolve from the relationship between the in-
formation-embedding and Wyner–Ziv problems and exploring
such directions is a rich area for future research.

APPENDIX I
PROOF OF CONVERSE IN CLAIM 1

(PUBLIC EMBEDDING CAPACITY)

We show that for any rate , the maximal proba-
bility of error for a length code, , is bounded away from
zero. We begin with two useful lemmas.

Lemma 1: The capacity is a nondecreasing concave
function of .

Proof: First, that is a nondecreasing function fol-
lows from the fact that increasingincreases the domain over
which the maximization is performed.

To establish concavity, consider any two distortionsand
and the corresponding arguments, and , re-

spectively, which maximize the argument of (1) for the given
distortion. Let be a random variable independent of, ,

, and , that takes on the valuewith probability and the

value with probability . Define and let
, implying a distortion

(102)

(103)

(104)

and

(105)

(106)

(107)

(108)

(109)

Thus,

(110)

(111)

(112)

(113)

proving the concavity of .
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Gel’fand and Pinsker [20] show that in the absence of a dis-
tortion constraint, one cannot do better than (1) with a nonsin-
gular distribution . The same is true with a distortion
constraint present. The following proof is due to Cohen [11].

Lemma 2 (Cohen):For a fixed and ,

(114)

where on the right-hand side.
Proof: To show that any nondeterministic

has at best the performance of a deterministic
distribution, consider any such . Then there
exists such that for some

and . Define and functions , and
positive constants with such that

(115)
We show by a simple construction that a sufficient size
for is . We let and

. We define the variables

and place them, along with , in an ordered set of nonde-
creasing (possibly repeating) values, , where

. We let , . Corre-
sponding to each is a , from which we define

, , where is the smallest index for which
. These definitions satisfy (115) and ,

which is finite.
Continuing with the proof of the lemma, we define a new

alphabet where , and let
a new auxiliary random variable take values in and have
joint distributions

if

if

(116)

and
if

if

(117)

It is straightforward to verify that the joint distribution on
, , and is the same under the original and new auxiliary

random variable choices, i.e.,

(118)

Thus, both and are unchanged by
switching to the new auxiliary random variable.

If, in addition, the following joint distribution between, ,
and is defined via

if

if
(119)

which is consistent with (117), then form a
Markov chain. Thus, by the data-processing inequality

(120)

Moreover, since from (115)–(117), we have

(121)

Thus, by the concavity of entropy we have
, which together with the fact that is unchanged

yields

(122)

Combining (120) with (122) we see that

(123)

Thus, is an optimal choice of random variable, whose al-
phabet has one less element than for which is
nondeterministic. Recursive application of this logic for all

such that yields an auxiliary
random variable that is optimal and for which is
deterministic.

Despite the fact that the repeated application of the logic in
Lemma 2 will increase the cardinality of the auxiliary random
variable, the final is bounded above. Straightforward appli-
cation of Caratheodory’s theorem tells us that for the original
with nondeterministic , we have .
Since we apply the recursive argument at mosttimes, we
have

which is a finite upper bound on the cardinality.
Returning to our proof of the converse, consider an infor-

mation-embedding code, with an encoding function:
and a decoding function :

. Let : de-
note the th symbol produced by the encoding function. The dis-
tortion constraint is

(124)

We have the following chain of inequalities:

(125)

(126)

(127)
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(128)

(129)

(130)

(131)

where

(125) follows from the fact that is distributed uniformly
on from our formulation;

(126) follows from the fact that by the inde-
pendence of and in our problem formulation;

(127) follows from [20, Lemma 4], where is defined as
;

(128) follows from (1);
(129) follows from Jensen’s inequality and the concavity of

from Lemma 1;
(130) follows from (124) and the nondecreasing property of

from Lemma 1; and
(131) follows from the Fano inequality.

Rearranging terms in (131) we have

(132)

which shows for , the probability or error is bounded
away from .

APPENDIX II
PROOFCLAIM 2 (PRIVATE EMBEDDING CAPACITY)

In this appendix, we prove that the private information-em-
bedding capacity is given by (4), where the supremum is over
the set

(133)

A. Converse

The proof of the converse uses a technique very similar to that
used in Appendix I, exploiting the concavity of , a fact
which is established through the following lemma.

Lemma 3: The information-embedding capacity given in
(4) is a nondecreasing, concave function of the distortion con-
straint .

Proof: With increasing , the domain over which the
mutual information is maximized increases, which implies

, is nondecreasing.
We prove concavity by considering two capacity–distortion

pairs and , which are points on the informa-
tion-embedding capacity function. These points are achieved
with the distributions
and , respectively. We
define

(134)

Because distortion is a linear function of the transition proba-
bilities, the distortion for is

(135)

It is easily verified that the mutual information
is a concave function of the distribution . Therefore,

(136)

where we subscript the mutual informations with their respec-
tive distributions. Thus, we have the following chain of inequal-
ities:

(137)

(138)

(139)

(140)

where (139) follows from (136), which proves the concavity of
.

Returning to the proof of our main result, recall the input to
the channel is the composite signal , which is an encoded
function of the host and the message . The distortion
between and is constrained by

(141)

The converse is proven by the following chain of inequalities:

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)
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(150)

(151)

(152)

(153)

where

(142) follows from our formulation that is uniformly dis-
tributed on ;

(143) follows from our formulation that and are in-
dependent;

(144) follows from the chain rule for mutual information;
(146) follows from the fact that conditioning reduces en-

tropy;
(149) follows from the data processing inequality, using the

fact that is a Markov chain;
(150) follows from (4);
(151) follows from Jensen’s inequality and the concavity of

from Lemma 3;
(152) follows from (141) and that is nondecreasing

from Lemma 3;
(153) follows from the Fano inequality.

Rearranging terms in (153) we have

(154)

which shows for , the probability or error is bounded
away from .

B. Achievability

For our proof, it is convenient to express the capacity (4) in
terms of , the capacity of a channel when the host
is some constant valueknown at the encoder and decoder, as
developed in the following lemma.

Lemma 4: The information-embedding capacity with host
known at the encoder and decoder satisfies

(155)

where, by the conventional channel capacity theorem

(156)

with

(157)

denoting the constraint set for the embedding.

Using this lemma, consider the set of that achieves the
maximum on the right-hand side of (155). By the conventional
channel-coding theorem, we can achieve the rate with
embedding distortion and negligible probability of error if

for all samples of data. Thus, the following coding

scheme suffices: we embed data in, a length- block of host
samples, using a different codebook for eachwhich achieves
the rate at embedding distortion . For each , we
collect all of the samples for each such that and
code using the codebook corresponding to. The total rate is
thus

(158)
which by the lemma equals capacity.

It remains only to prove Lemma 4.

Proof of Lemma 4:We first prove that is lower-
bounded by the right-hand side of (155). To see this, choose a
fixed for each such that and a test channel

. It is easily confirmed from (157) that

(159)

which implies as defined in (133). For any
test channel

(160)
so that choosing to satisfy the maximization in
(156) yields

(161)

for any set of satisfying .
It remains only to show that is upper-bounded by the

right-hand side of (155). To see this, we choose a test channel
, which results in a set of conditional dis-

tortions that satisfy . For
any such test channel

(162)

(163)

(164)

Choosing to achieve the maximum in (4) yields

(165)

which completes the proof of the lemma.

APPENDIX III
DITHERED NESTED LATTICE CODE FOR

WYNER–ZIV ENCODING

Nested lattices can also be used to build Wyner–Ziv codes that
are capacity achieving at all SNRs. Our construction exploits
dithered quantizers, and can be viewed as a generalization of
the result in [36]. As before, it suffices to restrict our attention
to the case .
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Our dithered quantizers are defined via

(166)

where the dither is uniform over the characteristic Voronoi
cell and generated independently. By the properties of subtrac-
tive dithered quantization, we must change the property (GQ-1)
for the new quantizer as follows.

(GQ-1) The quantization error (30) is white and Gaussian
with zero-mean and variance , and independent
of the input to the quantizer [35].

The other properties (GQ-2) and (GQ-3) remain valid with .
With these quantizers, the nested lattices are chosen such that

and (167)

A suitable encoder using these lattices transmits the
index of the closet coset to the source, i.e., it transmits

. The decoder observes and , calculates
the coset shift and an MMSE estimate ,
where . The decoder then produces a source
estimate of the form

(168)

where

(169)

That the system operates at the target rate follows from the
lattice properties. Indeed, Property (GQ-3) and (167) prescribe
the rate of the code to be within bits of

(170)

where the last equality follows from (23).
Next, to verify that the decoder reconstructs the sourceto

within distortion , we first define the quantization error

(171)

and the estimation error

(172)

so that

(173)

with

(174)

To establish that in (174) is independent of in (173), we
first note that is independent of by the orthogonality
principle. It only remains to show that is independent of
and . To see this, note that

(175)

where the first equality follows from (172), the second equality
follows from the definition

(176)

and the third equality follows from the fact that by (GQ-1) the
quantization error is zero mean and inde-
pendent of . Hence, it follows that is independent of both

and

(177)

where the first equality follows from an application of (GQ-1),
and the second by averaging overin (175).

Now, since is effectively Gaussian with zero mean and vari-
ance , we know from (GQ-2) that
Furthermore, if , then by the translational invariance
of lattice geometry

for any coset shift and any (178)

So with as defined in (169) we have that, using (173) and
exploiting the independence of and

(179)

since the term on the fifth line is zero by using
in (178), and since is bounded by. Thus, using
(179) in (168), we have that with probability

(180)

Choosing and so as to minimize the mean-square distor-
tion between and , we obtain, using basic linear MMSE
estimation theory, that the optimumand yield a mean-square
estimation error of

(181)

which confirms the distortion constraint is met.
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APPENDIX IV
CAPACITIES OF INFORMATION EMBEDDING FOR THE

BINARY-HAMMING CASE

A. Proof of Claim 3 (Public Case)

The upper concave envelope of in (54) is given by

(182)

where the supremum is taken with respect to all and
such that . By the concavity

of , it is clear that is concave over . Thus,
the maximization in (182) can be simplified by letting

(183)

where the supremum is taken with respect to all and
such that

(184)

We establish that by separately proving that
is lower- and upper-bounded by .

The lower bound is developed by considering a special case.
Let the auxiliary random variable be the output of a binary-
symmetric channel with crossover probabilitywhich has as
input. Furthermore, we choosesuch that ,
which makes the distortion equal. We evaluate

(185)

and conclude from (1) that

(186)

when we choose the values and such that
(184) holds for some given .

By the concavity of from Lemma 1, we have

(187)

which is true for all and satisfying (184), whence
.

It remains only to show the upper bound ,
for which it suffices to show that

(188)

for any such that .
Defining the set

(189)

we have

(190)

(191)

(192)

Using

(193)

with (192) yields

(194)

where , , and

(195)

We observe that, because , we have
, , and thus,

(196)

(197)

(198)

(199)

where for (198) we have used

which is true because for any , the channel input is
either or the complement of . Because the channel is binary
symmetric, the entropy of is thus greater than or equal to that
of .

We proceed to evaluate the right-hand side of (199). Consider
any . Defining , we obtain,
using (195)

(200)

So

(201)

Next, given , the channel input is uniquely specified by
, and thus,

(202)

Thus,

(203)

(204)

(205)
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(206)

(207)

(208)

where

(203) is obtained by substituting (201) and (202) into (199);
(204) is obtained by defining ;
(205) follows from the facts that is concave for

and ;
(206) follows from defining ;
(207) follows from the definition of in (183) with

; and
(208) follows from the fact that and is a nonde-

creasing function.
Hence, we have shown that for any distribution

there exists a and
such that (188) holds.

B. Proof of Claim 4 (Private Case)

Since adding (modulo-) a known symbol to both and
in (4) does not affect their mutual information, we have

(209)

where is the distortion due to embedding, which
is constrained to have . Note that ,
where is a Bernoulli source representing the noise of the
binary-symmetric channel. Under the constraint that
, we have the following chain of inequalities:

(210)

(211)

(212)

(213)

The inequalities are met with equality if is Bernoulli , in-
dependent of , and , which proves the claim.
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