QUEUING WITH DISTORTION-CONTROL FOR MULTIMEDIA CONTENT

Stark C. Draper and Gregory W. Wornell

Dept. EECS, Massachusetts Institute of Technology, Cambridge, MA 02139
{scd,gww }@allegro.mit.edu

ABSTRACT

There are numerous contexts in which systems need to buffer
multimedia signal content. If such a buffer overflows, sig-
nal data are lost in an uncontrolled manner, which can lead
to large end-to-end distortions. However, if the queued sig-
nals are distortion-tolerant, overflows can be avoided, and
significant performance gains realized, by reducing the fi-
delity of the signals in a gradual, controlled, manner. Based
on ideas of successive-approximation source coding, we de-
sign an adaptive-buffering algorithm to minimize end-to-

end distortion. This algorithm performs nearly as well as .

a performance bound on all possible algorithms. Perhaps
most importantly, the algorithm’s performance remains ro-
bust across a wide range of (unpredictable) utilization rates
(input rate/output rate).

1. INTRODUCTION

Consider a finite-memory queue buffering multimedia con-
tent such as audio, images, or video. If arrival rates exceed
departure rates over a span of time, the queue could over-
flow because of memory limitations. The ensuing data loss
would result in reduced end-to-end signal reconstruction fi-
delity. In this paper we consider a strategy that lowers the
fidelity at which signals are stored in the queue in a con-
trolled manner, freeing memory resources to avoid uncon-
trolled buffer overflows. This approach aims to maximize
end-to-end fidelity.

These ideas are applicable in a wide range of contexts:
€.g., ad-hoc sensor networks, multimedia routers, on-micro-
chip signal distribution architectures. We exploit the avail-
ability of successive-approximation source codes. However,
rather than focusing on any of the numerous specific coding
schemes in the literature (e.g [1]), we instead start from the
underlying basic theory [2, 3]. This enables us to develop
fundamental limits on the performance of any buffering al-
gorithm, against which specific algorithms can be tested.

In this paper we focus on a single queue as shown in
Fig. 1. The input to the queue is a sequence of unquan-

This work has been supported in part by NSF Grant No. CCR-
0073520, by MARCO/DARPA Contract No. 2001-CT-888, and by
Hewlett-Packard.

0-7803-7402-9/02/$17.00 ©2002 IEEE

S i Suce. Apj
) . Approx. Random Access Succ. Approx.
H Storer Memory (RAM) Extractor

Fig. 1. Components of a queue with distortion-control.

tized (or finely-quantized) source signals. The source mod-
els we use are highly simplified in order to illustrate the
design trade-offs most clearly. More complex sources are
considered in [4].

2. INPUT AND OUTPUT DATA STREAMS

The ith signal to arrive is s;, and the s; are each modeled as
N-length sequences of independent identically distributed
(i.i.d.) zero-mean Gaussian random variables of variance
o?. The “normalized-quantization-rate”is definedas Rq: =
Mj{,ﬂ, where M, is the total memory size (bits). Rq; is the
quantization rate (bits/sample) when all memory resources
are used to describe a single observation (hence ‘normal-
ized’).

The input data stream is modeled as a Poisson process of
rate A. In an interval of 7 seconds, At signals are expected.
At the output, packets of Mp, bits are emitted according to
Poisson process with rate ppac, S0 the average transmission
rate is Mpaclipac bits/sec.

The output data stream is well described by two pa-
rameters. The first is the number of packet transmissions
needed to empty the memory. This “time-to-empty” con-
stant is defined as Temp = %:ff The second is the “packet-
normalized” utilization rate which measures the ratio of in-

put to output rates: ppac = Toae”

3. SUCCESSIVE-APPROXIMATION CODES

Successive-approximation source codes are composed of K
ordered subcodes, C1, . ..,Ck, of rates Ry, . .., Rk, respec-
tively. Using subcodes Cy, . . .,C; (where !l < K), the source
can be reconstructed to distortion D(22=1 R;). Using such
codes, the source can be reconstructed progressively as each
subcode becomes available, rather than having to wait until

I1-1977

the whole code is available. If a successive-approximation

source code is optimal at each step, i.e., if D(+) is the distortion-

rate function for the source, it is called a successive-refinement
source code.

As an illustration we consider the case of the Gaussian
source signals, s;, introduced in Section 1, under a mean-
squared distortion (MSD) measure. Given any K rates,
R;,..., Rk, using subcodes C1, .. .,C; we can describe s;

to within distortion D (Zi.:] R,') =02272Zi1 Ri See[2,
3, 4] for more details.

4. NON-ADAPTIVE ALGORITHM

As a baseline, we describe a non-adaptive algorithm that
does not exploit ideas of successive-approximation source
coding. If any part of a non-successive source code is lost,
the source code becomes corrupted and therefore useless.
For this reason the rates of the codes describing the sig-
nals cannot be varied dynamically. This type of algorithm is
static; the designer must decide a priori at what rate to quan-
tize each signal. As shown in [4], the optimal choice is to
quantize the signals at equal rates. Given & mem is chosen as
the maximum number of signals the queue can handle at any
one time, each signal is quantized at rate Mot /NKmem =
RQ1/Kmem- At this quantization rate, the minimum achiev-
able MSD (achievable for large N) is E [D; kmem] =

_g Raor
022 2

Because the decoder requires the entire non-
successive source code before decoding can begin, the non-
adaptive algorithm sends its queued signals one at a time.
Non-Adaptive Algorithm:

0. Divide the memory into £ mem blocks of size Mot/ Kmem-
1. If a packet is to be sent: include all bits relevant to a
particular code until the whole code has been sent.

2. If a signal is received and (a) the queue is not full then
assign the signal to one of the available memory blocks. The
signal is encoded at distortion D = ¢2272Fai/fmem,
Otherwise (b) the queue is full. The new signal cannot be
stored, is lost, and incurs distortion D5 = 2.

5. ADAPTIVE ALGORITHM

The adaptive algorithm consists of two sub-algorithms with
parallel structure. The first is an extraction algorithm that
prioritizes sub-descriptions for inclusion in the next packet.
In effect this algorithm concatenates sub-descriptions into a
super-packet. The second is a storage algorithm that deter-
mines how to shuffle memory resources in order to quantize
and store a newly received signal.

Suppose signals sy,...,s,,—; have been received and
stored. Define kgs ; and kqu,i, @ = 1,...,m — 1, respec-
tively as the number of bits describing s; already at the des-
tination (i.e., already transmitted by the queue), and still re-

After Packet Transmission

Before Packet Transmisslon

Fig. 2. Determine packet contents by “water-filling” to the
dashed line, which satisfies 37" 8pac,s = Mpac. Shaded
rectangles indicate kqst,; and white rectangles kqy,i-

tained in the queue. The description rate of each s; at the
destination is R; = kast,;/IN. Using successive-refinement
source codes, the MSD at the destination is E [D] =

e Z:’;l 02272 Define 6, ; to be the number of bits
from the encoding of signal s;, to be included in the next
packet. Theorem 1 gives the optimal choice for the d pac,i-

Theorem 1 (Determining 8y,ac,i) Let s; be as defined in Sec-
tion 1. The a priori bit allocations for the m — 1 signals at
the destination and at the queue are kgst,i and kqy i, respec-
tively. The optimal choices for the 8,4 ;, are:

8pac,i = min {ma.x {O, % log [2 In 2%,:- %] — kdsc,,-} , kqu'i},

. m—1
where)\ is chosen so that Zi=1 Opac,i = Mpac. The a pos-
teriori bit allocations are kast il ., = Kdst,i + Opac,i and

kqu,i',,ew = kqu,i - ‘5pac,i‘

This method for determining which bits are most useful
to transmit is akin to “water-filling” for colored Gaussian
channels in channel-coding theory, and is illustrated in Fig. 2.

Suppose s, is received and must be stored. The a pri-
ori bit allocations, kqu.i, 2 = 1,...,m — 1 upper-bound the
a posteriori bit allocations in the queue after s, has been
received. Since, at most, all memory resources can be as-
signed to store s,,, its a posteriori bit allocation is upper-
bounded by Myqy; therefore kqu,m = Mior. Define dqy,i to
be the changes in bit allocations made in order to store s .
Theorem 2 gives the optimal choice for the §qy, ;.

Theorem 2 (Determining 644,:) Let s; be as defined in Sec-
tion 1. The a priori bit allocations for the m signals are
kast,; and kqu,;. The optimal choices for the 84, ;, are: §qu i =

min {ma.x {0, kdst,i + kqui — 3 log [2 In 21,5‘%] }) kqu,i}

where X is chosen so that 31~ (kqui — Oqu;i) = Mot

The a posteriori bit allocations are kasy i\, o, = Kast,i and

kqu:ilnew = kqu,i - équ,i-

II- 1978

Before Storage of s,

After Storage of s ¢

Fig. 3. Determine memory reallocations by “reverse water-
pouring” to the dashed line, which satisfies 37" (kqu,i —
Oqu,i) = Mior. Shaded rectangles indicate kgst,; and white
rectangles kqy ;.

This method for determining bit allocations is akin to “re-
verse water-pouring” for colored Gaussian sources in rate-
distortion theory, and is illustrated in Fig. 3.

Adaptive Algorithm:

1. When deciding on the contents of the next packet for

transmission: (a) Calculate dpac ; forall ¢ according to Thm. 1.

(b) Concatenate the most significant dp,c ; bits of each sig-
nal into the next packet to be transmitted. (c) Increase & gt i,
and decrease kqu,i, by dpac,i-

2. When a new signal s,, is received, encode it using a
successively-refinable source code: (a) Calculate kqy ; —
dqu,; for all ¢ according to Thm. 2. (b) Reduce the queue
memory allocated s; to kqy,; — dqu,i. (€) Store s, using
kqu,m — 8qu,m bits.

When implementing this algorithm, there is some gran-
ularity in dpac ; and dqy,; that we have so far not taken into
account. Basically, dpac,i and dqy,; must be chosen to be
integer multiples of the bit-size of each of the successive-
approximation sub-codes. Given there are K subcodes, the-
oretically I « K <« N. The results presented in the next
section assume that K (and hence, V) is very large, so gran-
ularity effects are negligible.

6. ALGORITHMIC ANALYSIS

In [4] we derive bounds on the distortion performance of
queue management algorithms. First, we show a lower bound
on the normalized MSD achievable by any algorithm is

RQ1

E[D o Mpacupac 9
norm — 0{2] 22 PTERRE = 27 “rempepac . (1)

X

E[D]

Second, in [4] we show that the performance of the non-
adaptive algorithmis: E [D; Kmem) >

norm —

2_2%1::_:"_ (1—- p:;;’m + (1 - psig)p:i';em (2)
1— p:irél=m+1 1 -~ p:ir;em"‘l ’

where pgig, the “signal-normalized” utilization rate, is de-

fined as psig = ﬁ = A;Zme—. The reciprocal of the

“signal-normalized” transmission rate, 1/p4ig, is the aver-
age time it takes the non-adaptive queue to transmit one
quantized signal. The two terms of (2) correspond to dis-
tinct sources of distortion. The first is quantization noise.
This noise results from the finite memory resources avail-
able to describe each signal. The second is overflow distor-
tion. When the queue is full, received signals are lost, and
maximum distortion (¢2) is incurred.

Furthermore, the performance of the non-adaptive algo-
rithm (2) is parameterized by & mem, but is a function of pg;.
Generally, the system designer must choose & mem Without
knowledge of psig. We define £mem,opt 10 be the £mem that
the designer would choose given perfect knowledge of p g,
ie.,

Kmem,opt = argmin E [D; K/mem}norm =~ PpacTemp- 3)
Kmem
The second equality is shown to hold, to first order, in [4].
Comparison with the definition of ps, shows that this is
the Kmem for which psi; = 1. Substituting (3) into (2) we
get a lower-bound on the union of performances across all
possible non-adaptive algorithms. ,

Finally, simulations confirm that the performance of the
adaptive memory management system always lies between
the bound found by substituting (3) into (2), and the bound
on all algorithms given by (1), which we rely on in the se-
quel.

7. COMPARISON OF ALGORITHMS

In Fig. 4 typical performance curves for the queue manage-
ment algorithms are plotted versus ppac. The lower bound
on the union of performance curves of all possible non-
adaptive algorithms (dashed curve), derived by substitut-
ing (3) into (2), is quite close to the bound on all algorithms
(solid curve) from (1). The adaptive algorithm’s perfor-
mance falls between these two curves. If ppac is known,
the non-adaptive algorithm could be optimized to the par-
ticular ppac, capitalizing on the computational simplicity of
that algorithm. ‘The disadvantage of doing this is that the
performance of the non-adaptive algorithm is quite fragile
and depends markedly on perfect knowledge of p pac, as we
discuss further below

The performance curves (dotted curves) of the three non-
adaptive algorithms plotted in Fig. 4 have two distinct re-
gions of operation: Kmem < Kmem,opt ad Kmem > Kmem,opt
(or psig < 1 and psi; > 1). These are the ‘memory-con-
strained’ and ‘communication-constrained’ regions of oper-
ation, respectively. In the memory-constrained region the
distortion is dominated by the first term in (2) — quantiza-
tion noise — which is invariant to changes in ppac. In the

1I-1979

o o o o © @
N (%) S o0 D ~
——r
R J

Noomtalizod Mean-Squared Distortion (MSD)

o

6 7

=)

5
Lacke(—Ngm\alized &iliza(ion éador: Poac = Al K,

Fig. 4. Normalized MSD versus ppac, Bq1 = 100, Temp =
40. MSDs for Kmem = 50,100, 200 are plotted as dotted
curves. These Kmem are optimal for pyac = 1.25,2.5,5,
respectively. The lower bounds on all non-adaptive algo-
rithms and all algorithms are plotted as dashed and solid
curves, respectively.

communication-constrained region the distortion is domi-
nated by the second term in (2) — memory overflow —
which is an increasing function of ppac.

To quantify the superiority of the adaptive algorithm,
we determine the extra resources necessary for the perfor-
mance of the non-adaptive algorithm (for £ mem fixed) to
match the performance bound on all algorithms (1). Match-
ing this bound guarantees that the performance of the adap-
tive algorithm is also matched. Since the performance of the
adaptive algorithm is quite close to the ali-algorithm bound,
this gives a good sense of the superiority of the adaptive
algorithm. This analysis is done in [4] and the results are
plotted in Fig. S.

In the memory-constrained region, M, must be in-
crease to Ymem Miot (s0lid curve) for the non-adaptive per-
formance to match the bound. In the communication-con-
strained region, the communication rate g pac must be in-
Crease to Yeompac (dotted, dash-dotted and dashed curves)
for the non-adaptive performance to match the bound. The
factors Ymem and ~ycom can be shown to be: ymem = p_‘—ig,
and Yeom = Psig [1—‘12__;_}2%—-—7'—:;"—:5] Clearly, the choice
of kmem controls the performance of the non-adaptive algo-

rithm.

If an incorrect £mem is chosen for a given pgiy (o1 psig
changes or is unknown), the performance relative to the
adaptive algorithm declines quickly, and significantly. This
indicates that the non-adaptive algorithm is quite fragile,
compared with the adaptive one. In the communication-
constrained region this fragility becomes even more marked
for decreasing Kmem. AS Kmem i decreased, the signal

Resource Increase for Equiv. Perf. (%)

" Signal—m1rvor;;lized Utilizaﬁo:\qfacﬁor: Pyg = p“:c Tomp 1% o

Fig. 5. The percentage by which system resources must in-
crease so that non-adaptive algorithm performance is guar-
anteed to match adaptive algorithm performance for fixed
Rq1 = 100, Temp = 40, and £mem = 50,100, 200.

quantization rate increases, but communication resources
are limited, so buffer overfiows become more likely. This
effect is shown for three choice of k mem (dotted, dash-dotted
and dashed curves) in Fig. 5.

8. EXTENSIONS

In this paper we have assumed that the signals are quantized
using a successive-refinement code, that all source signals
are white, and that there are no delay constraints. We de-
velop tools to relax the first assumption in {S], we relax the
second in [4], and focus on relaxing the third in current re-
search.

9. REFERENCES

[1} J. M. Shapiro, “Embedded image coding using ze-
rotrees of wavelet coefficients,” [EEE Trans. Signal
Proc., vol. 41, pp. 3445-3462, Dec. 1993.

[2] W. H. Equitz and T. M. Cover, “Successive refinement
of information,” IEEE Trans. Info. Theory, vol. 37, pp.
269-275, Mar. 1991.

[3] B. Rimoldi, “Successive refinement of information:
Characterization of the achievable rates,” [EEFE Trans.
Info. Theory, vol. 40, pp. 253-259, Jan. 1994.

[4] S. C. Draper and G. W. Wornell, “Distortion-controlled
queuing,” In preparation, 2001,

[5]1 A. Cohen, S. C. Draper, E. Martinian, and G. W. Wor-
nell, “Stealing bits from a quantized source,” Submitted
to Int. Symp. Info. Theory, 2002.

II-1980

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

