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ABSTRACT 

A promising class of nonlinear multiuser detectors is introduced 
for CDMA systems. These “iterated-decision” multiuser detectors 
use optimized multipass algorithms to successively cancel multiple- 
access interference (MAI) from received data and generate symbol 
decisions whose reliability increases monotonically with each it- 
eration. They significantly outperform decorrelating detectors and 
linear minimum mean-square error (MMSE) multiuser detectors, 
but have the same order of computational complexity. When the 
ratio of the number of users to the spreading factor is below a cer- 
tain threshold, iterated-decision multiuser detectors asymptotically 
achieve the performance of the “optimum” multiuser detector, i.e., 
maximum-likelihood (ML) decoding. 

1. INTRODUCTION 

A variety of multiuser detectors have been proposed for CDMA 
channels over the last decade and a half as solutions to the prob- 
lem of mitigating multiple-access interference (MAI) [ 11. Ex- 
amples include single-user matched filter receivers, decorrelating 
detectors, minimum mean-square error (MMSE) linear multiuser 
detectors, decision-feedback multiuser detectors, successive can- 
cellers, and multistage detectors. Optimum maximum-likelihood 
(ML) detection, while superior in performance, is not a practical 
option because of its high complexity. 

In this paper, we introduce a class of remarkably efficient mul- 
tipass multiuser detectors that is a particularly attractive altema- 
tive to conventional detectors. These new detectors, which can 
be related to the iterated-decision equalizers developed in [2], are 
structurally similar to multistage detectors [3] in that they both 
generate tentative decisions for all users at each iteration and sub- 
sequently use these to cancel MA1 at the next iteration. However, 
unlike the heuristically motivated multistage detectors, these new 
iterated-decision multiuser detectors take into account the reliabil- 
ity of tentative decisions and are optimized to maximize the signal- 
to-interference+noise (SNR) ratio at each iteration. We show that 
these new detectors can achieve asymptotically optimum perfor- 
mance while retaining surprisingly low complexity. 

2. CHANNEL MODEL 

For the purposes of illustration (and to simplify exposition), we 
consider a P-user discrete-time synchronous channel model, where 
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the ith user modulates an M-ary PSK symbol 2% onto a randomly 
generated signature sequence h, = [h,[l], h,[2], . . ., h,[Q]IT of 
length Q assigned to that user, where the taps of the sequence 
are mutually independent, zero-mean, complex-valued, circularly 
symmetric Gaussian random variables with variance 1/Q. The re- 
ceived signal is 

(1) 
where H = [ h l l .  . . Ihp] is the Q x P matrix of signatures, 
A = diag(A1, . . . , A p }  is the P x P diagonal matrix of re- 
ceived amplitudes, x = [xl ] x ~ ,  . . . ] xpIT is the P x 1 vector of 
data symbols, and w is a Q-dimensional Gaussian vector with in- 
dependent zero-mean, complex-valued, circularly symmetric com- 
ponents of variance No. 

r = HAx -k w, 

3. THE ITERATED-DECISION MULTIUSER DETECTOR 

The iterated-decision multiuser detector we now develop processes 
the received data in an iterative fashion. Specifically, during each 
iteration or “pass,” the received data is premultiplied by a matrix, 
and tentative decisions made in the previous iteration are then used 
to construct and subtract out an estimate of the MAI. The resulting 
MAI-reduced data is then passed on to a slicer, which makes a new 
set of tentative decisions. With each successive iteration, increas- 
ingly refined hard decisions are generated using this strategy. 

The structure of the iterated-decision multiuser detector is de- 
picted in Fig. l ,  with the parameters of all systems and signals cor- 
responding to the Zth pass denoted using the superscript 1.  On the 
Zth pass of the equalizer where Z = 1 ,2 ,3 ,  . . ., the received vector 
r is first premultiplied by a P x Q matrix B” = [bi I . . . Ib;]+, 
producing the P x 1 vector I’ = B” r. Next, an appropriately con- 
structed estimate i’ of the MA1 is subtracted from I’ to produce %’, 

i.e., x’ = F’ - z‘ where z’ = D’+ x’-’ with D‘ = [di I t .  . Id;], 
a P x P matrix. Since i’ is intended to be some kind of MA1 
estimate, we restrict attention to the case in which the diagonal el- 
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ements of D' are zero. Finally, a bank of slicers then generates 
the P x 1 vector of hard decisions 2' from j i l  using a minimum- 
distance rule. 

When x and x'- I are vectors of zero-mean uncorrelated sym- 
bols, each with energy E,, such that their normalized correlation 
matrix is of the form 

then the slicer input for the ith user at the lth iteration can be ex- 

(3) 
pressed as 

where U: is complex-valued, marginally Gaussian, zero-mean, and 
uncorrelated with xi, whose variance is a function of bf and dt. 

The second order model (3) tums out to be a useful one for 
analyzing and optimizing the performance of the iterated-decision 
multiuser detector. In particular, during the lth pass, the SMR at 
each slicer input, defined as yf(bE,df:) = &sIbithiA;12/var vf 
for i = 1 ,2 ,  . . . , P ,  achieves a maximum value of [4] 

2f = bit hi Aiz; + vi 

(4) 
1 - 1) 1 

-Yi = ( ( [ I  + a']-')ii 1 - 1pf-112 

B' a [No1 + &,HA(I  - p'- 'p"- ' t )AtHt]- lHA 

when' 

( 5 )  
D' = p"lt [B"HA- diag{@'tHA)ll, . . ., @ltHA)pp}] t , ( 6 )  

wherea '  = &,(I-p'-'p'-")AtHtHA/No a n d I i s  theidentity 
matrix. 

This result for dt is intuitively satisfying. If $' = xi so 
that pl-' = 1, then the inner product dft 2l - l  exactly reproduces 
the MA1 component of Fl. More generally, pi-' describes our 
confidence in the quality of the estimate ?:-I. If $' is a poor 
estimate of zi, then pE-' will in tum be low, and a smaller weight- 
ing is applied to the MA1 estimate that is to be subtracted from 
Fi. On the other hand, if ?.E-' is an excellent estimate of zi, then 
pf-' sz 1, and nearly all of the MA1 is subtracted from Fi. Note 
that the diagonal of Dl is indeed zero, as stipulated previously. 

Some comments can be made about the special case of 1 = 1. 
During the first pass, MA1 subtraction is not performed because 
pa = 0, so the vector k0 does not 'need to be defined. More- 
over, the matrix B' reduces to an expression for the linear MMSE 
multiuser detector. Thus, the performance of the iterated-decision 
multiuser detector, after just one iteration, is identical to that of 
the linear MMSE multiuser detector. In Section 4, we show that 
the iterated-decision multiuser detector, after multiple iterations, 
performs significantly better than the linear MMSE detector. 

Next, the properties of vf suggest that the probability of sym- 
bol error for the ith user at the lth iteration can be approximated by 
the high signal-to-noise ratio (SNR) formula for the M-ary PSK 
symbol error rate of a symbol-by-symbol threshold detector for 
additive white Gaussian noise (AWGN) channels, given by [5] 

(7) 

]Using a matrix identity, we may altematively write 

B' 0: HA[NoI + &,(I - p'-'p'-'+)AtHtHA]-' ,  

which may be easier to evaluate depending on P and Q. 

where &(U) = sum For the special case of QPSK 
(A4 = 4), the exact probability of symbol error at the Ith iteration 
is given by [5] 

P r ( d  = Q (In) [2 - Q (&)I. (8) 

For the case of accurate power control, i.e., A = AI  so p'-' = 
p'-'I), in the large system limit (P + 00 with ,6 = P/Q held 
constant), the SINR in (4) for each user converges in the mean- 
square sense to [4] 

A 

whereF(y,z)  = (Jy(1 + &)2 + l -Jy( l  - &)z + 1)2 and 
1/J' = &s(l-  Ip'-'12)IA12/No. Theiterativealgorithmforcom- 
puting the set of correlation coefficients p', and in tum predicting 
the sequence of symbol error probabilities is as follows. 

1 .  Set po = 0 and let 1 = 1. 
2. Compute the SINR y' from p'-' via (9). [It is worth point- 

ing out that for systems with few users, we can altematively 
(and in some cases more accurately) compute y' from p'-' 
via (4).] 

3. Compute Pr(E') from y' via (7). 
4. Compute p' via the approximation [4] 

5. Increment 1 and go to step 2. 
In the special case of QPSK, it can be shown that the algorithm can 
be streamlined by eliminating Step 3 and replacing the approxima- 
tion ( I O )  with the exact formula 

p ' = 1 - 2 2 &  (d7). 
4. PERFORMANCE 

In this section, we focus exclusively on the case of accurate power 
control. 

From Steps 2 and 3 ofthe algorithm, we see that Pr(e') can be 
expressed as Pr(E1) = B(C,p, p ' - ' ) ,  where G(., ., .) is a mono- 
tonically decreasing function in both SNR 1 / C  and correlation 
p ' - ' ,  but a monotonically increasing function in p. The mono- 
tonicity of G(. ,  ., .) is illustrated in Fig. 2 where the solid curves 
plot B(C, ,B, p )  as a function of 1/(1 - p )  for various values of p. 
Meanwhile, from Step 4 of the algorithm, we see that we can also 
express Pr(e') as Pr(e') = E($) ,  where E( . )  is a monotonically 
decreasing function of p'. The dashed line in Fig. 2 plots R(p) as 
a function of 1 / (1  - p) .  

For a given 1 / C  and p, the sequence of error probabilities 
Pr(6') and correlation coefficients p' can be obtained by start- 
ing at the left end of the solid curve (corresponding to po = 0) 
and then successively moving horizontally to the right from the 
solid curve to the dashed line, and then moving downward from 
the dashed line to the solid curve. Each "step" of the resulting 
descending staircase corresponds to one pass of the multiuser de- 
tector. In Fig. 2, the sequence of operating points is indicated on 
the solid curves with the o symbols. 

That the sequence of error probabilities Pr(E'), Pr(e2), . . . 
obtained by the recursive algorithm is monotonically decreasing 
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suggests that additional iterations always improve performance. 
The error rate performance for a given SNR of 1 /C and a given 
P eventually converges to a steady-state value of P r ( P ) ,  which 
is the unique solution to the equation 

corresponding to the intersection of the dashed line and the appro- 
priate solid curve in Fig. 2. 

If /3 is relatively small, Fig. 2 suggests that steady-state per- 
formance is approximately achieved with comparatively few it- 
erations, after which additional iterations provide only negligibly 
small gains in performance. This observation can also be read- 
ily made from Fig. 4, where bit-error rate is plotted as a function 
of SNR per bit for 1 , 2 , 3 , 5 ,  and an infinite number of iterations, 
with /3 = 0.77. It is significant that, for small P,  few passes are re- 
quired to converge to typical target bit-error rates, since the amount 
of computation is directly proportional to the number of passes re- 
quired; we emphasize that the complexity of a single pass of the 
iterated-decision multiuser detector is comparable to that of the 
decorrelating detector or the linear MMSE multiuser detector. 

As P increases, Fig. 2 shows that the gap between the solid 
curve and the dashed curve decreases. Thus the “steps” of the de- 
scending staircase get smaller, and there is a significant increase in 
the number of iterations required to approximately achieve steady- 
state performance. Moreover, the probability of error at steady- 
state becomes slightly larger. 

When ,B is greater than some SNR-dependent threshold, not 
only can (12) have multiple solutions, but one of the solutions oc- 
curs at a high probability of error, as illustrated by the curve in 
Fig. 2 corresponding to /3 = 4. The dependence of the threshold 
on SNR is shown in Fig. 5 .  As the SNR increases, the P threshold 
increases and the curve becomes much sharper at the threshold. 

In Fig. 6, we compare the theoretical and simulated bit-error 
rates of the iterated-decision multiuser detector with the bit-error 
rates ,of various other multiuser detectors as a function of SNR, 
with P = 1 and power control. The iterated-decision multiuser de- 
tector significantly outperforms the other detectors at moderate to 
high SNR, and asymptotically approaches the matched filter bound 
for the single-user channel. Thus, perfect MA1 cancellation is ap- 
proached at high SNR. 

Next, in Fig. 7, we compare the effect of P on the bit-error 
rates of the various multiuser detectors when decoding P = 128 
simultaneous users at an SNR per bit of 7 dB with power control. 
The iterated-decision multiuser detector has clearly superior per- 
formance when ,8 5 2. 

5. CODED AND ADAPTIVE IMPLEMENTATIONS 

For coded systems, an iterated-decision multiuser decoder is read- 
ily obtained (Fig. 3), and takes a form analogous to the iterated- 
decision equalizer-decoder structure described in [2]. The data 
streams zl[n] ,  i = 1 , 2 , .  . . , P of the P users are encoded us- 
ing separate encoders, and the corresponding streams of coded 
symbols can be thought of as rows of a P x N matrix X = 
[X[l]l . . . IX[N]].  The receiver obtains a set of vectors, one for 
each symbol period having the form 

r[n] = HA[n]X[n] + w[n] for n = 1 , 2 , .  . . , N. (13) 

At the receiver, the Q x N matrix of the received vectors, R = 
[r[l]l . . . Ir[N]], is processed in an iterative fashion. Each Q x 1 

1 W P )  

Fig. 2. Theoretical iterated-decision multiuser detector perfor- 
mance, with power control. The solid curves plot QPSK symbol 
error rate as a function of the correlation coefficient p for vari- 
ous values of /3 = P/Q,  with an SNR per bit of 7 dB. Along each 
curve, 0’s identify the theoretically predicted decreasing error rates 
achieved with 1 = 1 , 2 ,  . . . decoding passes, and the intersections 
with the dashed line are the steady-state values (1 + 00). 

column of R, which represents a particular symbol period, can 
be processed independently to produce a P x 1 column of the 
matrix X’ = [X’[l]l . . . IX‘[N]]. Each 1 x N row of the matrix 
X’, corresponding to the data for a particular user, is then input to 
a soft-decision ML decoder, which produces a row in the P x N 
matrix X‘ = [?‘[1]/ . . . I?’[N]], the tentative decisions for the P 
users. These tentative decisions must be re-encoded before being 
processed by the matrix D’+ [n]. 

Adaptive implementations can likewise be developed in a man- 
ner analogous to those described in [2] and [ I ,  61. 
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Fig. 3. Structure of a communication system that combines iterated-decision multiuser detection with channel coding. 
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Fig. 4. Theoretical iterated-decision multiuser detector perfor- 
mance with power control, as a function of SNR per bit. The suc- 
cessively lower solid curves depict the QPSK bit-error rate with 
p = P/Q = 0.77 as a function of SNR per bit for I ,  2, 3, 5 ,  and 
03 decoding iterations. 
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mance with power control, as a function of p = P/Q. The solid 
curves depict the QPSK bit-error rate as a function of ,Ll for vari- 
ous values of SNR per bit, while the corresponding dashed curves 
depict the matched filter bound for the single-user channel. 
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