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Abstract

This thesis develops a framework for low-complexity communication over channels with feedback.
In this framework, which is referred to in the thesis as the compressed-error-cancellation frame-
work, data are sent via a sequence of messages: the first message contains the original data; each
subsequent message contains a source-coded description of the channel distortions introduced on
the message preceding it. The usefulness and flexibility of the framework is demonstrated by ap-
plying it to a number of fundamental feedback communication problems.

The framework is first used for coding over known single-user channels. For discrete mem-
oryless channels with complete, noiseless feedback (DMCx's), a coding scheme exploiting low-
complexity lossless source coding algorithms is developed, and the associated encoder and decoder
are shown to use a number of computations growing only linearly with the number of channel inputs
used (linear complexity). The associated error exponent is shown to be optimal in an appropriate
sense and implies that capacity is achievable. Simulations confirm the analytically predicted behav-
ior. For the class of channels with memory known as discrete finite-state channels with complete,
noiseless feedback (DFSCy's), the framework is used to develop linear-complexity coding schemes
performing analogously in terms of rate and reliability to the schemes developed for DMCx's.

The framework is then used for coding over unknown DFESCy's. A linear-complexity universal
communication scheme whose rate varies with the quality of the realized channel is developed and
analyzed. The asymptotic rate and reliability characteristics of this universal scheme are shown to
be similar to those of the schemes developed for known channels.

An extension of the compressed-error-cancellation framework is developed for discrete mem-
oryless multiple-access channels with complete, noiseless feedback and leads to linear-complexity
coding schemes achieving rates on the frontier of the feedback-free capacity region.

Finally, the compressed-error-cancellation framework is applied to the probiem of coding for
channels with noisy and partial feedback. The scheme developed for DMCy's is modified to in-
corporate Slepian-Wolf coded feedback, resulting in a linear-complexity, capacity-achieving coding
scheme with partial, noiseless feedback. This modified scheme, of which the ARQ protocol is
shown to be a special case, is then used as an outer code in a concatenated coding arrangement;
with a forward error-correcting (FEC) code used as the inner code, a framework emerges for inte-
grating FEC coding with feedback coding, leading to a broad class of coding schemes using various
amounts of noiseless feedback. Preliminary investigations on partial-feedback multiple-access sce-
narios and noisy feedback scenarios are also discussed.
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Chapter 1

Introduction

Communication systems are charged with the task of sending data or information from cne place to
another!. A block diagram emphasizing certain elements essential to most communication systems
is shown in Figure 1-1. In this figure, the source generates the raw information to be transmitted.
This information may be speech or video signals, text, computer programs, or a variety of other
data. The encoder takes the source data and processes it so that it is suitable for transmission over
the channel. The channel may be, for example, a telephone link, a radio link, or an underwater
acoustic link. It may deterministically and/or randomly distort the data transmitted over it. The
decoder then processes the output of the channel to try to recover the raw information generated by
the source.

The developments in this thesis are concerned only with the inner three blocks of Figure 1-1
— encoder, channel, and decoder. We assume that the source always generates independent binary
digits. Because of this assumption, our results are most relevant for communication systems in
which the true source is first transformed into such a binary source. An entire branch of information
theory. known as source coding theory, is devoted to this transformation. Yet we should always
keep in mind that communication systems that require this initial transformation are a subset of
all p:sssible communication systems and may therefore exclude the best possible system, however
“best” may be defined. Nevertheless, the assumption that the true source is initially transformed
into a binary source is widely used, traditional, and most importantly aliows great simplification of
the design and analysis of communication systems.

Shannon [53] developed a powerful mathematical theory, now called information theory, for
communication systems. The theory has two major branches, source coding theory, mentioned
above, and channel coding theory. As we show in the following chapters, the two branches can
hardly be considered separate, but strictly, the work herein lies within channel coding theory, be-
cause it concerns the inner three blocks mentioned above.

In channel coding theory, a channel consists of an input, an output, and a probabilistic relation-
ship between the two. The channel is “used” over time by modulating its input — that is, the inputs
are varied with time in a way that depends on the information to be sent. Discrete-time channels, to
which we restrict our attention throughout the thesis, allow the input to the channel to change at dis-
crete times; the output also changes at the same times. While many real channels allow modulation
of the input in continuous time, these channels can often be converted to discrete-time channels.

! Sometimes storage media are considered communication systems that transfer data from one time to another.
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Figure 1-1: Block diagram of a canonical communication system.

Perhaps the most basic example of a noisy channel, a channel that randomly distorts its input, is
the binary symmetric channel (BSC). A BSC allows inputs with values 0 or 1 and has outputs with
values O or 1. An input of 0 becomes 1 with some probability € and an input of 1 becomes a 0 with
the same probability. The input passes through undistorted with probability 1 — €. The inputs are
“flipped” independently, making this an example of a memoryless channel.

Even a novice to channel coding theciy can probably imagine that one could convey to another
the value of a single binary digit (bit) acvoss a binary symmetric channel very reliably by repeatedly
sending that bit. That is, n 0's might be put in to the channel if the value of the bit to be conveyed is
0, and n 1's might be put in if the value to be conveyed is 1. To determine whether the value being
conveyed is O or 1, one could observe the corresponding n outputs of the channel, count the number
of 0's and 1's in the output sequence and estimate the value to be 0 if there are more O's than 1's
and estimate the value to be 1 otherwise. If the estimate is wrong, then a decoding error is said to
occur. As n increases, the probability of decoding error decreases. But if we use this procedure to
send each of many bits generated by a source, then as n increases, it takes a longer time to send the
bits. Because we send one bit per n channel uses, we say the rate of the communication system is
1/n, the rate being the number of bits we send per channel input we use. In this example, the rate
goes to zero as the probability of error goes to zero.

Remarkably, Shannon [53] showed that for any channel in a particular class of channels — a
broad class — there is a number C, known as the channel capacity, such that for any rate less than
C, an encoder and decoder can be designed so that the probability of decoding error is arbitrarily
small. Instead of the rate going to zero as the probability of error goes to zero, the rate can remain
constant. Shannon also showed that the probability of error cannot go to zero if the rate is above C.

Shannon showed that this behavior could be achieved by using an appropriate codebook. A
codebook is a set of sequences, each of which corresponds to a message. When the source generates
a message, the corresponding codebook sequence, or codeword, is put into the channel. The decoder
tries to identify the codeword after the channel distorts it and subsequently matches the codeword to
a message. Shannon showed that one can construct a codebook with an arbitrarily small probability
of decoding error. But the length of the codewords in the codebook, the blocklength, must increase
as probability of decoding error decreases. It was subsequently shown (e.g., [23]) that the probabil-
ity of decoding error decays exponentially with blocklength, but that the rate of decay depends on
the rate of the codebook. As the rate approaches the channel capacity, the probability of decoding
error decays more and more slowly, demanding longer blocklengths.

But encoding and decoding of codebooks with long blocklengths seem to require vast compu-
tational resources. If the codebook has rate R and blocklength n, then there are 2% codewords
in the codebook. Unless the codebook has some special structure, such a codebook requires about
n2"® memory elements to store, and the same number of computations to decode with minimum
probability of error. As n becomes very large, the computational resources of any known computer
are quickly exceeded.

Unfortunately, Shannon gave no constructions of specially structured, easily decodable code-

14



books for use on a given channel. In fact, he gave no codebook at all—he simply showed that an
appropriate codebook exists. As a result, ever since Shannon put forth his celebrated coding the-
orem, researchers have struggled to find codebooks that attain the promised performance, but can
also be decoded with reasonable amounts of computational resources.

Researchers have met with limited success. Justesen codes [32] and more recently Spielman
codes [56] are two notable examples of codes with polynomial computational complexity? and
exponentially decaying error probabilities. In fact, the encoding and decoding computational com-
plexity of Spielman codes is linear in the blocklength. But neither Justesen codes nor Spielman
codes give arbitrarily low error probabilities at rates arbitrarily near capacity. Convolutional codes
with sequential decoding {44] form another class of low-complexity encoding/decoding schemes.
The decoding process suffers from a random amount of computation, which in turn requires large
amounts of storage to obtain exponentially decaying error probability. Using a framework he called
concatenated coding, Forney [21] gave a class of codes with polynomial computational complexity
and error probabilities decaying exponentially with blocklength at any rate below capacity. How-
ever, at rates near capacity, as we discuss in Section 2.6, the computation required by concatenated
codes is still far too high for practical implementation. Thus, researchers are still searching for
low-complexity encoding/decoding systems achieving rates near capacity with arbitrarily low prob-
abilities of decoding error. This thesis develops a framework for designing such systems under
special conditions, namely, when feedback is available.

1.1 Feedback in Commumnication

The availability of feedback in a communication system — i.e., a channel from receiver to transmit-
ter through which the receiver passes the transmitter its observations — generally enables schemes
for communicating over the forward channel to have lower computational complexity, higher re-
liability, higher capacity, or a combination of these advantages, in comparison to feedback-free
communication schemes.

The research of Schalkwijk and Kailath [49], Horstein [30], Berlekamp [7], Yamamoto and
Itoh [65], Burnashev [11], Kudryashov [34], Gaarder and Wolf [22], Cover and Leung [13], Veu-
gen [61], and many others attests to these advantages. For example, while Shannon [52] showed that
the capacity of memoryless channels is not increased by feedback, Gaarder and Wolf [22] showed
that the capacity region of a memoryless multiple-access channel can be increased by feedback; in
addition, it is straightforward to construct examples of channels with memory whose capacity is
i~creased by feedback (see, e.g., Section 3.5.2). For the BSC with feedback (BSCy), Horstein [30]
developed a scheme with low complexity and bit error probability that decays exponentially with
decoding delay at any rate below capacity. He also outlined an extension of his scheme for arbi-
trary discrete memoryless channels with noise-free feedback (DMCy's) [29]. Berlekamp [7] and
Schalkwijk et al. {47, 50] also developed low-complexity strategies for the BSCy that, at certain
rates, guarantee correction of the largest possible fraction of errors. For the Gaussian channel with
average-power constraint, Schalkwijk et al. [46, 49] described a low-complexity scheme whose
error probability decays with blocklength as an extremely fast double exponential (272°") at all
rates below capacity. Even the peak-power limited scheme of Schalkwijk and Barron [48] has an

2We make the notion of computational complexity more precise in Section 2.6.
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error probability that decreases exponentially with blocklength with an error exponent that is sig-
nificantly larger than that for the corresponding feedback-free channel. Their scheme was adapted
for use with arbitrary DMCy¢'s by Yamamoto and Itoh [65] and provides similar reliability. Com-
putational efficiency is poor, however, since high-rate random block codes are relied upon. More
recently, Veugen [59, 60, 61] analyzed a low-complexity scheme based on repeated retransmission
of symbols. With this scheme, a price is generally paid in terms of rate — i.e., the resulting schemes
are not typically capacity-achieving.

But even though many communication links can be modeled as channels with feedback (see,
e.g., [61] for a number of examples), system designers have shunned these low-complexity, high-
rate, high-reliability techniques in favor of those that either avoid or minimize their use of feedback.
Indeed, when feedback strategies are used, simple, low-rate feedback, automatic-repeat-request
(ARQ) protocols or variants thereof are most often chosen. Such choices may sometimes be jus-
tified from a purely information-theoretic perspective : given unlim..ed computational resources
for encoding and decoding, exploiting feedback on memoryless single-user channels is inherently
inefficient in terms of bandwidth utilization — i.e., the bandwidth allocated for the feedback link is
better used to directly increase the rate on the forward link.

When computational resources are limited, however, more sophisticated feedback strategies
such as those mentioned above may have a place. Under computational constraints, the use of feed-
back can actually increase bandwidth efficiency on even memoryless two-way communication links.
Specifically, given fixed computational resources, allocating some of the total available bandwidth
for feedback and using a suitably designed coding scheme can increase throughput over feedback-
free schemes at certain bit-error rates.

On a variety of increasingly important asymmetric two-way channels, this potential for through-
put increase via feedback is even greater, because it may be possible to send many more bits per
Hertz over the feedback path than over the forward path. Channels of this type arise rather naturally,
for example, in the context of mobile-to-base communication in contemporary wireless networks.>
In these systems, mobile-to-base transmission is often severely power-limited, while much greater
power is available for base-to-mobile feedback. As a result, even a small amount of bandwidth can
support high-rate feedback. Moreover, when the total available bandwidth is large, any reduction in
capacity from reallocating mobile-to-base bandwidth for feedback is typically small, since power
rather than bandwidth is the dominant limitation in this scenario.

But before feedback strategies can compete with feedback-free strategies, a framework for
the design and understanding of feedback strategies is needed. As it stands, the feedback coding
schemes developed in previous research are somewhat loosely related.

In this thesis, we put forth a framework for the design of low-complexity feedback coding
strategies. The central notion underlying the framework, which we term the compressed-error-
cancellation framework, is as follows. The transmitter sends a message (without forward error
correction (FEC) coding) over the forward channel. Via the return path, the receiver feeds back
what was received, so that the transmitter is able to determine what was received in error. The
transmitter then uses source coding to form the smallest possible description of the errors and sends
this description (again without FEC coding) over the forward channel to the receiver, which the
receiver can use for the purposes of error correction. Because the channel introduces new errors
into this compressed error description, an iterative process is required. In particular, the receiver

*Such networks may correspond to, for example, terrestrial cellular or satellite systems.

16



again feeds back what was received, and the transmitter again sends a compressed description of
the new errors to the receiver. And so the process repeats.

We should note that an idea of this type was used by Ahlswede in his constructive proof of
the coding theorem for IDMCy's [1], though his investigation was rather limited in scope. In this
thesis, we build extensively on this idea, showing how it can be applied to develop low-complexity,
high-rate, high-reliability coding schemes for a wide variety of channels with feedback, including
DMCy's, discrete finite-state channels (DFSCy's), unknown channels, multiple-access channels, and
channels with noisy and partial feedback.

1.2 Overview

The thesis is organized as follows:

In Chapter 2, we introduce the compressed-error-cancellation framework in the context of devel-
oping a low-complexity, capacity-achieving, high-reliability coding scheme for arbitrary DMCs's.
By exploiting low-complexity lossless source-coding algorithms, we develop a coding scheme re-
quiring a number of computations that grows linearly with the total number of channel inputs used
(linear complexity). The error exponent for the scheme is also optimal in a certain sense. We ex-
plore variations of the scheme and also address certain practical considerations such as delays due
to computation and feedback delays. We also demonstrate that the scheme operates as predicted by
simulating it on a digital computer.

In Chapter 3 we consider channels with memory, which arise in a number of practical applica-
tions. We show how the compressed-error-cancellation framework can be used to develop linear-
complexity, high-rate, high-reliability coding schemes for DFSCy¢'s, which constitute a very general
class of channels with memory.

In Chapter 4, we consider an even more complex problem: communicating over a channel that
is unknown to some extent. In practice, this problem arises when, for exariple, the channel varies
with time in an unknown way. While the transmission of training data is a typical solution to this
problem, these information-free transmissions can substantially reduce the rate and error exponent
of a coding scheme. We explore in Chapter 4 how the compressed-error-cancellation framework
can be used to accomplish universal communication — variable-rate communication over unknown
channels with feedback. We see that the framework leads to linear-complexity schemes with some
very attractive asymptotic properties.

In Chapter 5, we consider multiple-access channels, which are becoming increasingly important
in communication within a network of users. When several transmitters send information to a
single receiver, a common scenario, then these transmitters are said to communicate over a multiple-
access channel. In Chapter 5, we extend the compressed-error-cancellation framework to cope with
multiple-access channels with feedback. We show that rate pairs on the frontier of the two-user,
feedback-free, multiple-access capacity region can be achieved with linear complexity.

The schemes we develop in Chapters 2-5 all require complete noiseless feedback. But one of
the obstacles preventing feedback communication systems from seeing more widespread use is that
complete noiseless feedback is often not available in practice. Often the feedback channel is noisy.
It may a'so have insufficient capacity to allow the receiver to feed back is complete observation.
In Chapter 6, we show that the compressed-error-cancellation framework is useful for coding for
channels with partial and noisy feedback.

Concluding remarks are given in Chapter 7.
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1.3 Summary of Notation and Abbreviatiens

The main notational convention of which we must be aware at this point is that if X is a discrete
random variable, then px automatically denotes its pmf, and E[X] automatically denotes its ex-

. pected value. Standard adjustments to this notation are used for conditional and joint pmfs and
expectations.

Remaining notational conventions and abbreviations are introduced as needed throughout the
thesis (often in footnotes). For reference, we summarize here some important conventions and
abbreviations, which should be assumed to hold unless otherwise stated :

Abbreviations:
Bernoulli-e — Bernoulli with probability of equaling one being €
BSC — binary symmetric channel
BSC; — BSC with complete noiseless feedback
BSC,; — BSC with partial noiseless feedback
cdf — cumulative distribution function
CSWCF - concatenated Slepian-Wolf coded feedback
DFSC — discrete finite-state channel
DFSCy — DFSC with complete noiseless feedback
DFSCp¢ — DFSC with partial noiseless feedback
DMC — discrete memoryless channel
DMC; — DMC with complete noiseless feedback
DMC;¢ — DMC with partial noiseless feedback
DMMAC — discrete memoryless multiple-access channel
DMMAC; - DMMAC with complete noiseless feedback
DMMAC,s — DMMAC with partial noiseless feedback
FEC — forward error-correcting
i.i.d. — independent and identically distributed
MABC — multipie-access broadcast channel
pmf — probability mass function
SWCF — Slepian-Wolf coded feedback
UFSC — unknown DFSC
UFSC¢ — UFSC with complete noiseless feedback
UFSCy¢ — UFSC with partial noiseless feedback

Notational Conventions:

O — marks the end of a proof (I.h)
¥V — marks the end of a proof of a lemma introduced within a larger proof (1.2)
z[] — square brackets have no general meaning; they are used as
an alternative or in addition to super- and subscripts. 1.?)
on(g(n)) — afunction in the set {f(n) : lim, f(n)/g(n) = 0} (14)

On(g(n)) — afunction in the set {f(n) : liminf, o f(n)/g(n) > 0and
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lim sup, o £(n)/g(n) < oo}
©.(g(n)) — a function in the set { f(n) : liminf, o f(n)/g(n) > 0 and
limsup,,_,, f(n)/g9(n) < oo}
Z — the set of integers
R — the set of real numbers
N — the set of natural numbers ({0,1,2,---})
|A| — cardinality of the set A
coA — convex hull of the subset A of Euclidean space
A™ — n-fold Cartesian product of A with itself
A" = the set of variable-length tuples with elements in A:
At =U32 A"
al = (as,--- ,a4)
ay = (as,as41,° )
a™ = af
£(a) — length of variable-length tuple a:
l(a) =nifa €A™
Op-a™ = Y a;iM™
=1

[, —* nth M-ary expansion digit of z € [0, 1}, where M is determined from

context. When two expansions exist, the one ending with zeros is taken.

.’L‘{i]] - (z[s]s Tt ,IL'[g])

zlt zﬁ]]
z Ty — z converges to y from below
[z] — ceiling of z:
[z] = min{z:2€ Z,z> z}
log z — base-2 logarithm of =
In z — natural logarithm of z
expo{z} o 2%
exp{z} — €*
Pr{A} — probability of an event A
Pr{A|B} — probability of an event A conditioned on the event B
px — probability mass function (pmf) for X: px (z) = Pr{X = z}
pxjy — pmf for X conditioned on Y: px |y (z|y) = Pr{X = z|Y =y}
E[X] — expected value of the random variable X :

E[X]=)_ zpx(z)
var(X) — variance of the random variable X:

var(X) = Z(z - E[X))’px ()

std(X) — standard deviation of the random variable X:
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(1.5)

(1.6)
(1.7)
(1.8)
(1.9)
(1.10)
(1.11)
(1.12)

(1.13)
(1.14)
(1.15)
(1.16)

(1.17)
(1.18)

(1.19)
(1.20)

(1.21)
(1.22)

(1.23)
(1.24)
(1.25)
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)
(1.31)

(1.32)

(1.33)



std(X) = v/var(X)
H3(e) — binary entropy function:

Hy(e) = —eloge — (1 - €)log(1 — ¢€)
H(X) — entropy of random variable X:

H(X)=-Y px(x)logpx(a)

H(X,Y) — joint entropy of random variables X and Y:
H(X,Y) == pxy(z,y)logpx,y(z,y)

z,y
H(X|Y) — conditional entropy of X given Y
HX|Y)=H(X,Y)-H({)
I(X;Y) — mutual information between X and Y:
I(X;Y)=H(X)+H(Y)-H(X,Y)
Ho (X*°) — entropy rate of random process X *°:
1
Ho(X*°) = nli)ngo ;H(X")
Ho(X°,Y*°) — joint entropy rate of random processes X and Y *:
Hoo(X*,¥*) = lim %H(X",Y")
Ho(X*°|Y"*°) — conditional entropy rate X conditioned on Y*°:
Ho(XZ)Y®) = Hoo(X®°,Y®) — H(Y™)
D;(e || @) — Kullback-Leibler distance between Bernoulli pmfs with parameters € and a:
1—¢
1 -a
D(p || ¢) — Kullback-Leibler distance between pmfs p and ¢:

Dlpl0) = 3 () log g’%

Dyl @) = elogi +(1—¢)log
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(1.40)
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Chapter 2

Discrete Memoryless Channels: An
Introduction to the Framework

2.1 Introduction

In this chapter, we develop the compressed-error-cancellation framework for coding for feedback
channels, which supports the next four chapters. We convey the central ideas that constitute the
framework via the following three progressively more complicated illustrations.

The first is an illustration of the method used by a man, Tex (Tx), to tell his father, Rex (Rx),
who is losing his faculties, his new address:

Tx.1: “My new address is four twenty-seven ElImwood Avenue, Maplewood, New Jersey, oh
seven oh four one.”

Rx.1: “Your new address is forty-seven Maplewood Avenue, EImwood, New Jersey, oh seven
oh four one?”

Tx.2: “No, transpose Elmwood and Maplewood and change forty-seven to four twenty-seven.”

Rx.2: “Transpose Elmwood and Maplewood and change forty-seven to twenty-seven?”

Tx.3: “Not twenty-seven — FOUR TWENTY-SEVEN.”

Rx.3: “Not twenty-seven — four twenty-seven?”’

Tx.4: “Right.”

Rx.4: “Ok. Goodbye, son.”

In this illustration, Rex distorts Tex's statements and tells Tex (feeds back) the distorted interpreta-
tion. To guide Rex to an undistorted picture of his original message, Tex makes four progressively
shorter statements with the following property: Tex's ith statement paired with what Rex interprets
his (z — 1)th statement to be is sufficient to determine what Tex's (¢ — 1)th statement truly is. For
example, item Tx.2 above can be recovered from items Rx.2 and Tx.3. That is, Tex immediately
tells Rex, in a compact way, only what errors Rex has made in interpreting his previous statement.

An efficient adaptation of this method for communicating over a noisy channel is suggested
by the following second illustration involving a BSC¢ with crossover probability e. With Ha(e)
denoting the entropy of a Bernoulli-e random variable, the transmitter (Tx) and receiver (Rx) (and
the channel (Ch)) participate in an iterative coding scheme as follows (also see Figure 2-1 for a
graphical representation of the scheme):
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Original Message

Channel Input: ~ 010111001000011101 01001110
%
&
%
Additive Noise:  010000000000010000 01000000
)
Channel Output:  000111001000001101 00001110 1000 10

Figure 2-1: Graphical representation of the iterative coding scheme for a BSCy.

Tx.1: Sends N uncoded data bits over channel.
Ch.1: Adds (modulo-2) N samples of Bernoulli-€ noise.
Rx.1: Feeds its IV noisy observations back to Tx.
Tx.2: (a) Finds N samples of noise added by channel.
(b) Compresses noise into N H (¢) new data bits.
(c) Sends these data bits uncoded over the channel.
Ch.2: Adds (modulo-2) N H (¢) samples of Bernoulli-¢ noise.
Rx.2: Feeds its VH () roisy observations back to Tx.
Tx.3: (a) Finds N H (e) samples of noise added by channel.
(b) Compresses noise into N H (¢)? new data bits.
(c) Sends these data bits uncoded over the channel.

If the compression (source coding) steps are assumed lossless, then, like the first illustration, the
data sent in item Tx.3 along with the data received in item Rx.2 is sufficient to determine the data
sent in item Tx.2. More generally, at each iteration, a message is transmitted over the forward
channel without additional redundancy bits for (forward) error correction. The message contains
enough information to cancel the errors in the previous block.

If the process were to continue indefinitely, the number of channel inputs used to send the N
bits would be

N

2 3 e = ———
N + NHy(e) + NHa(e)? + NHy(e)® + 1= Hye)’

which corresponds to a rate of 1 — Hy(e), the capacity of the BSCy. In practice, the process is
terminated after a finite number of iterations by sending a final block using a different coding scheme
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Original Message

0101110010001011 01001110 1010 0

-w J 9 -
3 g 3 3 3
[¢] [e] [2] [e]
Q Ry Q 0 Q
& $ & & &

§

Channel Input (X): abbbbababbabbbbabbb bbbabbabbbab baabbbbb bbab
0 0 0 0
g g g g
=] =] 3 =
=] =] = =
5 8 8 o
Channel Output (Y):  Xyyyyyyxyxxyyyyxyyy YYYXXYYyyyyy YXyyyyyx yyyy

Figure 2-2: Graphical representation of the iterative coding scheme for a DMCy with input alphabet
{a, b} and output alphabet {x, y}; the capacity-achieving distribution is such that H(X) < 1.

known as the termination coding scheme. If the receiver decodes this final block correctly, then it
can recursively process the received data to reconstruct the original N-bit message.

The coding scheme illustrated above can be generalized to a coding scheme for an arbitrary
DMC, which gives us the following third illustration. Let gy|x be the channel transition function
of a given DMC, and let gx be its associated capacity-achieving input distribution. For notational
convenience, let X and Y be random variables such that px v (z,y) = gx(z)qy|x(y|z). Then
consider a coding scheme in which the transmitter, receiver, and channel act as foliows (also see

Figure 2-2 for a graphical representation):

Tx.1: (a) Precodes N message bits into N; = N/H(X) channel inputs' XM that look i.i.d.
according to gx.
(b) Sends XIN ! over channel.
Ch.1: Corrupts X lN ! according to gy x.
Rx.1: Feeds corrupted data Y;™* back to Tx.
Tx.2: (a) Using ¥}, compresses XV into Ny H(X|Y') new data bits.
(b) Precodes new data bits into No = Ny H(X|Y)/H(X) channel inputs X ﬁ:_ﬂvz,
which look i.i.d. according to g x.
(c) Sends X N1+N2 over channel.

Ni+1

Ch.1: Corrupts X ﬁ:ﬂ\h according to gy x -

Rx.2: Feeds corrupted data YI{X ‘:IN 2 back to Tx.

'As a notational convenience to consolidate lists of variables in this paper, we adopt the shorthand al, for
(@m,@m+1,- - -, @n), and, in turn, the shorthand a™ for at. As related notation, we use A™ to denote the n-fold Cartesian
product of a set A with itself, where n may be infinite. This notation holds only for sub- and super-scripted variables that
have not otherwise been specifically defined.
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function feedback_enc (message, it)

if (it > B)
return append(synch_sequence, termination_enc (message));
else
e = precode (message) ;
return append(e, feedback_enc(cond_source_enc (e, channel(e)), it+1));
end
end

Figure 2-3: Pseudocode for compressed-error-cancellation coding.

Tx.3: (a) Using Y,f,‘i‘_:“lNz, compresses Xﬁl‘_ﬂv* into No H(X|Y) new data bits.
(b) Precodes new data bits into N3 = No H(X|Y')/H(X) channel inputs X ﬁ::ﬁjﬂv 3,
which look i.i.d. according to gx.
(c) Sends X' N2+ over channel.

If we assume both precoding and source coding to be invertible, then items Tx.2, Rx.2, and Tx.3
again have the same relationship as in the previous two illustrations, and more generally, data trans-
mitted at Tx.(i + 1) with data received at Rx.i are sufficient to determine the data transmitted at
Tx.i.

When the process iterates indefinitely, the number of channel inputs used is

N N [(H(X|Y) N [(H(X|Y)\? 3 N
H(X) +H(X)( H(X) ) H(X)( H(X) ) T HX) - HXY)

giving an average rate equal to the channel capacity. Again, in practice, we terminate the process af-
ter a finite number of iterations by sending a final block of data over the channel using a termination
coder.

The notions in these three illustrations are compactly summarized in the even more general
description of the framework given by the pseudocode in Figure 2-3, which also highlights the
framework's recursive nature. As the pseudocode suggests, the encoder for a coding scheme based
on the compressed-error-cancellation framework comprises three key components : a precoder, a
source coder, and a termination coder. (A fourth component, the synchronization subsystem, is
needed when the precoder and source coder outputs have variable length.)

The precoder is needed for two reasons: 1) because the input alphabet of a given channel may
not be the binary alphabet {0, 1} and 2) because the optimal way in which the input symbols should
be used may be complex. Neither of these conditions holds for the BSC, which is why the second
illustration above uses no precoder. But for a channel such as a DMC, for example, the frequency
with which each symbol should be used in order to maximize transmission rate is given by the
capacity-achieving input distribution gx. The purpose of the precoder in this case is then to trans-
form a sequence of Bemoulli-% random variables (bits) into a sequence that uses the channel inputs
with the optimal frequency, e.g., a sequence that is i.i.d. according to gx . For more general channels,
the precoder transforms a sequence of bits into a sequence of channel inputs that is appropriately
distributed.
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The source coder is needed to form a compact description of the corruption introduced by the
channel. That is, on a given iteration, the precoder produces a sequence of channel inputs that
are sent over the channel. After seeing the corresponding channel outputs, the receiver has some
remaining uncertainty about the input sequence. The source coder produces data that is sufficient to
resolve this uncertainty.

The termination coder is needed when the recursive process reaches its “base” case. At this
point, a final sequence of bits remains to be transmitted reliably. The termination coder fills this
need.

When we put these three subsystems together in the way suggested by the pseudocode, the re-
sulting system is both easy to understand and elegant. Intuitively, we can see that it is also efficient
in terms of rate. But what justifies its designation as a framework for low-complexity coding? Is it
somehow very practical, too? The answer is “yes”, and “yes” for an important reason. This frame-
work shows the problem of channel coding with feedback to be strongly related to the problem of
source coding. As a result, very general and computationally efficient implementations of codes
based on the compressed-error-cancellation framework are obtained by exploiting the rich theory
and efficient algorithms of lossless source coding [14]. In particular, by using variants of arith-
metic coding [63] and Lempel-Ziv coding [67], we can construct low-complexity feedback coding
schemes for a wide range of channels. Moreover, the Slepian-Wolf source coding theorem [55] has
some important interpretations in the context of our channel coding framework (see Section 6.6.2).

The remainder of this thesis is about the application of this framework to some of the fundamen-
tal scenarios typically addressed in information theory. The remainder of this chapter focuses on a
precise development and analysis of coding schemes for DMCy's. Using the coding scheme we de-
velop for DMCy's as a foundation, subsequent chapters explore coding schemes that are applicable
to different models of both the forward and feedback channels.

The DMCs provides a natural and useful starting point for a number of reasons. First, the DMC
is perhaps the simplest and most fundamental channel in information theory. It is, for example,
the channel emphasized by Shannon in his development of the coding theorem [53]. Shannon also
showed that the presence of feedback does not increase the capacity of DMC's [52], which further
simplifies our discussion. Second, the DMC is also quite a general channel model, requiring only
that the channel input and output alphabets be finite sets and that the channel output at a particu-
lar time be statistically dependent only on the channel input at the same time. As a result, a wide
variety of commonly used channels can be well modeled as DMC's, inciuding, with appropriate
quantization, channels with continuous valued inputs and outputs such as the deep space channel.
Third, the assumption that the forward channel is a DMC coupled with the assumption that a com-
plete, noiseless feedback? channel is available admits the simplest description and analysis of a
coding scheme based on the compressed-error-cancellation framework. While a complete, noise-
less feedback channel may often be a somewhat unrealistic model for a given feedback channel, it
may provide a reasonable model in certain situations, such as those discussed in Chapter 1 in which
the receiver has much greater transmit power available than does the transmitter.

Before turning our attention to the precise development of coding schemes for DMCy's, it is
useful to first make our notions of a DMC and a DMCs precise. A DMC is described by a triple
(X, gy|x, 4)- The finite set X is the range of allowable channel inputs, the finite set Y is the range of
possible channel outputs, and gy| x is the conditional probability mass function (pmf) of the channel

Complete, noiseless feedback is also known as information feedback.
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output at time k given the channel input at time & for any integer k¥ > 0. The meaning of this tuple
is defined more formally as follows:

Definition 2.1.1 Let {X;}22, and {Y;}32 , be random processes. Then {Y} }$2, is the output pro-
cess resulting from passing { Xy}, through a DMC (X, qy|x,Y) (or just gy x) without feedback
if foralln > 0,

n
pynix ("2 = [ ] avix (uwlze) 2.1
k=1

forall x™ € X™ and y™ € Y.

A DMCy is a DMC with a feedback channel and is also described by a triple that specifies
the DMC. The feedback channel is noiseless, delayless, and has sufficient capacity to feed back
the receiver's complete observation—i.e., at time k, the transmitter knows the value of the channel
outputs from time 1 to time k£ — 1.

We emphasize that the probability law (2.1) does not hold when feedback is available. For
example, consider the case in which the forward channel is a BSC with crossover probability e.
Suppose that the first channel input is O or 1 with equal probability and that all subsequent inputs
are equal to the previous channel output. Then (2.1) would say that given an input sequence, say
z" =(0,1,1,0,1,1,1,0,0). every output sequence has positive probability. But it is clear that only
output sequences of the form (1,1,0,1,1,1,0,0,-) are possible; that is, only two sequences have
positive probability given such an input.

So what is a DMCs? A definition that captures the important features of these channels and the
way they are typically used is as follows:

Definition 2.1.2 Let M be a random variable taking values in M. For all m € M, let {fi}52,
be a sequence of functions, where fr, ; : Yi=1 _ X maps a sequence of i — 1 channel outputs to a
single channel input, and f, ; takes a constant value in X. Then {Y}} is the output process resulting
from passing M through a DMCy (X, gy |x, Y) (or just gy x) via {{fm,i}{2, }mewn if forall n > 0,

Py @ m) = [ avix el e (F 1)) 2.2)
k=1

forall y™ € Y™ and all m € M.

We now develop in detail a coding scheme for DMCy's. We begin with a formulation of variable-
length coding in Section 2.2, and follow with a description and analysis of a coding scheme for
DMC¥'s in Sections 2.3-2.6. We discuss some variations on the scheme in Section 2.7 and end with
a discussion of remaining practical and theoretical issues in Section 2.8.

2.2 Variable-Length Codes and Their Properties: Rate, Reliability,
and Complexity

A variable-length code is a 4-tuple (NN, ¢, {x;}i, A), where N is the number of message bits to be
transmitted, € : {0, 1}" x Y> — X is the encoding function, {x; : Y* = {0,1}}%, is a sequence
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of stop::ing functions, and® A : Yt — {0,1}" is the decoding function.

The first argument to the encoding function ¢ represents the message to be encoded, while the
second argument represents the stream of feedback coming back to the transmitter. Because of the
causal nature of the feedback, ¢ is restricted to have the form

E(wNa yoo) = (51 (wN)a é'2(1'01\,7 yl)a 53(’U)N,y2), .. )1 (23)

where the range of &; is X for all <.

In describing the performance characteristics of such a code on a given DMCs (X, gy |x, Y),
we let the random variables W1, --- Wy represent the IV independent and identically distributed
(ii.d.) equally likely message bits, i.e., the message WP is a discrete random variable that is
uniformly distributed over the set

W = {0,1}V. (2.4)

We then let the process {Yx} be the output process resulting from passing W through the DMCy
qy|x via {{&(m, )}, }me{o,l}N~

To define the rate of the code, we must define its transmission length, which is the point at
which the receiver stops data acquisition. The stopping functions x; are the mechanism by which
the receiver determines from its observations when to stop data acquisition. By simulating the re-
ceiver using the feedback link, the transmitter can also determine when to correspondingly terminate
transmission. In particular, at each time k, the function x; maps the data observed up to that time,
Y*, into a decision as to whether to terminate transmission; the value one is the signal to terminate,
while the value zero is the signal to continue, i.e., x; : Y* — {0,1}. In terms of this notation, the
transmission length is given by the random variable

L* = mkin{k k(YR =1} (2.5)

The rate of the code (N, €, {xi}324, A) is then defined to be N/E[L*].
The decoder makes an estimate W™ of the message sent using its decoding function A : Yt —
W, ie.,

wh =AY, (2.6)

and the associated error probability of the code is Pr{W® # W/},

A coding scheme is a function mapping two parameters p; and p; to a variable-length code. A
coding scheme c achieves a rate R if for any § > 0 and any € > 0, there are parameters p; and
p2 such that ¢(p;, p2) has probability of error less than ¢ and rate greater than R — €. A coding
scheme is (feedback-free) feedback-capacity-achieving if it achieves a rate equal to the (feedback-
free) feedback capacity of the channel.

We say a coding scheme c attains an error-exponent function F' : I — R if foreach rate r € I,
where I C R, there is a sequence of parameter pairs {(p1n(7), p2,n(7))}n such that the resulting

sequence of codes {c(p1,n(7), p2,n(r))}n is such that the corresponding rate sequence { Ry}, and

31n the descrirtion of variable-length tuples, it is convenient to use A" to denote the set of all tuples whose elements
arcinthe set A, i.e., AT = U, A™.
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the probability of error sequence { P, },, obey

lim R, >r 2.7
n—00
tim —Fnl08Fn 5 gy 2.8)
n~»00 n

where Ny, is the number of message bits for the code ¢(p1n(r), p2.n(r)). A useful interpretation
is that if an error exponent F(r) is attained, then for any € > 0, a sequence of codes with rates
greater than 7 — € can be generated such that their associated error probabilities decay exponentially
with the expected transmission length with an associated rate of decay greater than F(r) — e —
1.e., the error probability is reduced by at least two when expected transmission length increases by
1/(F(r) —e).

While rate and reliability are two important properties of codes, they say little about the com-
putational resources required by encoding and decoding algorithms. Hence, in addition to assessing
the rate and reliabilities of the various coding schemes we introduce, we also characterize their com-
putational requirements by describing their time and space complexities. We devote the remainder
of this section to making our notions of time and space complexity more precise.

We define time complexity and space complexity to be the asymptotic order of growth of the
time cost and space cost used to run an algorithm on a random-access machine under the uniform-
cost criterion. A random-access machine can be thought of as the usual computer with memory
registers that can perform some basic operations on the contents of its registers, including reading
and writing to its registers. Each register is assumed to be capable of holding an arbitrarily large
integer. Under the uniform-cost criterion, basic operations on registers are assumed to take constant
time independent of the size of the integers in the registers; space cost per register is a constant
independent of the number held in the register.

We break slightly from the usual definition of space complexity and use a more conservative
definition. Normally, input for an algorithm is assumed to be given on a read-only input tape, and
the output is assumed to be written onto a write-once output tape. The size of the input tape and
output tape is then usually not considered in the space complexity. In other words, only memory that
can be both read from and written to is considered in space complexity. But because communication
is by its nature dynamic — i.e., we are not interested in sending one message over and over — the
notion of a read-only input tape and a write-only output tape seems inappropriate. Hence, the
ultimate aim being to characterize the amount of memory that we must have on hand to implement
the entire coding scheme, we feel it is appropriate to count the storage required to store inputs and
outputs, and we do so.

Note that order of growth is generally described relative to the size of the input to the algorithm
but can be described relative to the size of the output, which we do in certain cases. The reason
for these choices of time and space complexity is the combination of intuitive simplicity and the
reasonable degree to which it models computation on contemporary digital computers.

It is important to keep in mind that there are many alternative notions of computational com-
plexity. A number of possible notions are outlined in [54]. No single notion seems to have become
dominant in the channel coding literature. We choose the above measure as for its tractability and
meaningfulness. Under this measure, for example, summing n numbers has O, (n) complexity, the
fast Fourier Transform has O, (n logn) time complexity, and other intuitively satisfying results are
obtained. Yet this count may not accurately reflect the time required to carry out the algorithm on a
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contemporary digital computer if, for example, in the summing of n numbers, n is truly enormous.
Indeed, a more useful measure might be a count of the number of bitwise operations required to
carry out the algorithm. But this measurement is difficult to obtain, requiring us to delve into the
bitwise details of our algorithms. Because it is difficuit to make precise statements about the number
of bitwise computations, we avoid doing so.

Nevertheless, in recognition of the importance of what the bitwise computation model intends
to capture, which is the amount of time required by the algorithm to run on a contemporary digital
computer with finite-length registers, we adopt the following approach: We state the time and space
complexity of our algorithms using the uniform-cost criterion and then comment on issues one
might encounter when implementing the algorithms on a finite-length-register contemporary digital
computer, since this is what is of immediate practical importance. We see that the complexity given
under the uniform-cost criterion should give a fairly accurate characterization of the computational
resources required on such computers for reasonably sized problems.

2.3 A Feedback Coding Scheme for DMCx's

Now that we have defined the elements that constitute a variable-length feedback code, we can
describe a coding scheme cpmc for a given a DMCy (X, gy x, ) based on the compressed-error-
cancellation framework. As stated in the previous section, a coding scheme is a function taking
two parameters as input and returning a code. Our scheme cpmc takes as its two parameters a
message length NV and a termination coder parameter v, which together determine the rate and
probability of error for the code, as we show later. Then cpmc(ZV, v) is a variable-length feedback
code (N, e, {xi}2,,A), which we now describe, with primary emphasis on the encoder £ — the
corresponding definitions of the decoder and stopping functions are implied by definition of the
encoder. Note that for notational cleanliness, we do not make explicit the dependence of the last
three elements of the 4-tuple on v, N, or the DMC¢ parameters. Also for notational purposes, we
let gx be the capacity-achieving input distribution for the channel, and let X and Y be random
variables that are jointly distributed according to px y (,y) = qx(z)gy|x(y|z), forall z € X and
ally e Y.

2.3.1 Encoding

To define €, we define the sequence of channel inputs e(W",Y®) that is transmitted when the
message to be sent to the receiver is W and when the sequence Y is fed back.

To describe this sequence of transmitted channel inputs, we make use of the following subsys-
tems: precoders {7} ;, where 7, precodes n bits; lossless source coders {o,}32 ;, where o,
conditionally source codes n channel inputs; and a termination encoder ef;,"j,,, which encodes a
block of xx bits, where xn is given further below as a function of IV, at some rate and probabil-
ity of error determined by the parameter v. At this stage, we focus on the basic structure of the
encoding process, deferring a precise description of the functions {7, }7%,, {on}52;, and €77, to
Sections 2.3.1.1-2.3.1.3.

We begin with the simplifying assumption that we have available a length-ty sequence @'~ [N],
where* ¢ty = on(IV), that is perfectly detectable — no false alarms and no missed detections —

o () is the usual order notation with a subscript explicitly denoting the limiting variable, i.e.. if f(N)=on (g(N)),
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after passing through the DMC. This assumption is removed in Section 2.5.

The sequence of transmitted channel inputs is generated as follows. On the first iteration, the raw
message bits WV are precoded and transmitted. Each subsequent iteration generates new bits to be
precoded and transmitted that can be used by the decoder to correct errors on the previous iteration.
If the source coding and precoding subsystems are designed appropriately, then the transmission on
a given iteration is about H(X|Y')/H(X) < 1 times as long as the transmission on the previous
iteration on average. After By iterations, some finai bits remain to be transmitted and are sent
with protection from the termination coder. As we show later, if sufficiently few final bits remain,
then overall complexity of the scheme can be kept small compared to N. We can ensure that
the expected number of final bits is small enough for sufficiently large NV by choosing B as the
following function of V:

By = [log? N] (2.9)

The transmissions on each iteration, which are blocks of varying lengths, are denoted by ), £/,
. E'BN_] , respectively, and are generated according to the following recursive procedure:

1. Let : = 0 and initialize the block ¥; of data bits to be precoded, the length L¢ of this block,
and the time index A; + 1 of the beginning of the ith block:

U, =W, A; =0, LI=N

2. Compute the variable-length tuple ¢; that is the precoded version of ¥;, and compute its

length L;:3
g, = mre (U;) (2.10)
L; = £(e). (2.11)
then
- f(N) _
Nm oo =0

We also use On () and Oy (-) so that f(IN)=On (g(IV)) means that
.. f(N) S
1}\1}1}:2! 9N 2 0

. )
hgl_.sip 9(N)

< 00,

and f(N)=0On(g(N)) means that
oo V)
gy

imsup £33

>0

< co.

The extra subscript is convenient in expressions where dependencies between variables are implicit.
*With N denoting the set of natural numbers {1,2,3,...},welet¢: A" — Nfora given set A denote the function
whose value is the length of its argument; for example, ifa € A", then £(a) = n.
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3. Increment ¢ and compute the new time index A;:

A;=A;_1+ L;_;. (2.12)

4. Compute the variable-length tuple ¥; that results from source coding the previously trans-
mitted block according to the input distribution given the feedback information, prefix ¥; by
an encoding of the lengths associated with the (2 — 1)th block to form ¥;, and compute the
length L7 of ¥;:

Si=oL_, (ai_l,Y/ﬂ’_]H) 2.13)
i = r((¢(Li-1), #(L7_1), Ei),1) (2.14)
LY = o(;). 2.15)

In (2.14), the mapping ¢ : {0} UN — {0,1}' returns a sequence of length 2 [logn] + 2
corresponding to a binary representation of its integer argument n with each bit repeated once
followed by a terminating string (0, 1);® The invertible mapping’ r : {0,1}! x N — {0, 1}
is introduced to ensure that ¥; is uniformly distributed over the set {0,1}%7. To do so, r
adds (modulo-2) a pseudorandom Bemoulli-% sequence to its first argument, using its second
argument as a “seed”. As a result, the output of r is indistinguishable from an i.i.d. Bernoulli-
-;— source, and r is reversible in the sense that the tuple d can be recovered from r(d, s) and
s.

5. If ¢ = By, stop; otherwise, go to Step 2.

After directly transmitting the blocks &} for : = 0,1,...,By — 1 on successive iterations, a
special encoding is used for the data comprising the final source coded data ¥ p together with the
block lengths Lg_; and L% _, needed for decoding. In particular, these data are transmitted via the
invertible (i.e., uniquely decodable) sequence

G® = (P(EBN), ¢(I-ABN/tN-ItN - ABN)’ ¢(LBN—-1)a¢( %N—l)’oa 0,1,9,1,0,1,...).
(2.16)

In (2.16), the mapping p : {0,1}} — {0,1}! repeats each input bit and adds the terminating
string (0,1).2 It is worth emphasizing that although G is infinite in length, the transmitter stops
transmission when the receiver stops data acquisition, since the transmitter knows the receiver's
actions via the feedback.

Since no subsequent data are transmitted to correct the errors occurring in the transmission of
G, we must use termination coding to protect G*°. Accordingly, the complete encoding function

%For example, ¢(6) = (1,1,1,1,0, 0,0, 1), since the number 6 has binary representation (1, 1, 0).

"We have observed that in practice, the randomizing function = in (2.14) is unnecessary; it is, however, convenient for
analysis.

#S0 that, for example, p((1,0,1)) = (1,1,0,0,1,1,0,1).
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€ is given by

e(W",¥Y®) = (eh, €1, ..., €y -1, D, 0N [N],
2 3
:?;':u(GKN) :f:r,lu(Gx':ﬂ}-I) :S:I:u 22:+1) ) (2‘]7)

The synchronization sequence ('~ [N] is used to enable correct parsing of the incoming stream by
the receiver, as we discuss in Section 2.3.2. The sequence ®F is a fairly arbitrary length-F “filler”
sequence to be ignored, where ' = [Ap, /tn]tn — Ap, < tn; it serves only to ensure that
0t~ [N] is transmitted at an integer multiple of ¢y. Note that we have simplified our notation in
(2.17) by suppressing the (potential) dependence of the termination encoder exnw» Which may itself
be a feedback coder, on the appropriate subsequences of Y *°.

Let us now precisely define the precoding, source coding, and termination coding subsystems.

2.3.1.1 Precoding Subsystem

To effect a transformation from a sequence of n i.i.d. Bemoulll-— random variables (bits) into a
sequence that is approximately i.i.d. according to qyx, the precoder mn 2 {0,1}* — XT uses two
key ideas: 1) that a sequence of variables taking values in a discrete set with cardinality M can be
mapped to a real number in [0, 1) via its M-ary expansion; and 2) that a real random variable with
some desired distribution can be created by applying the inverse cumulative distribution function
(cdf) associated with the desired distribution to a uniformly distributed random variable.

The precoding then takes place in three steps: 1) The data bits to be precoded are mapped to a
real number S € [0, 1); 2) an appropriate inverse cdf function F)T{ ! is applied to this real number to
form another real number U € [0, 1); 3) an appropriate number of M -ary expansion digits of U are
taken to be the output of the precoder. These three steps are similar to those taken by a decoder for
an arithmetic source coder.

To define , precisely, we define the sequence of channel inputs 7, (D™) that correspond to
precoding the n data bits D™. We first transform D™ to a real number S € [0, 1) according to

S=0..D"+27"Z, (2.18)

where
. J .
O0x.a’ =0g.a102---a; = ZaiK"’, (2.19)

and Z is a random variable that is uniformly distributed over [0, 1). The sole purpose of Z is so S
is uniformly distributed over [0, 1) when D" is uniformly distributed over {0,1}".
Next, assuming X = {0, 1,--- , M — 1} (which sacrifices no generality), we define the cdf Fj

whose inverse is used for the transformation. Let {Xk}k ; be an i.i.d. process with marginal pmf
gx. We then map this process onto the unit interval [0, 1) by letting X be a random variable defined
by X = 0p.X: X2 --, and we let Fz be the cdf for X.
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With the base of all expansions in this section taken to be M, the precoder 7, is defined by®

Tn(u) = ul(®)] (2.20)
(D) = Tu(F7'(S)), 2.21)

where the expansion in (2.20) is M -ary, and [, : [0,1) — N is defined as follows to ensure that the
output of the precoder stops after enough digits of the M -ary expansion of Fg 1(S) have been put
out to uniquely determine the first n bits of S. That is, [,, is defined by

ln(u) = min{k : Fg([0pr-u¥,0pr.0 + M%) C [i27", (i + 1)277)}
foru € F;l([z'z-", (i 4+1)27 ")) fori =0,--- ,2" — 1. (2.22)

This definition of 7, implies that the precoder is a lossless coder, i.e., if d* € {0,1}", then
7n(d™) is a variable-length tuple whose elements are in X; from n and 7, (d"), we can determine
d". No knowledge of Z is required by the decoder.

This definition also implies that the distribution of the output of the precoder approximates
the desired channel input distribution in the following sense: If the input to the precoder D" is
uniformly distributed over {0, 1}", then the elements of 7, (D") form a random process that can be
generated by taking an i.i.d. process with marginal pmf ¢gx and truncating it according to a stopping
rule [25].

2.3.1.2 Source Coder

We now define the source coding function o, : X® x Y* — {0,1}!. This function compresses its
first argument, a sequence z" € X" representing the channel inputs, using a statistical model for its
dependence on its second argument, a sequence y" € Y" representing the corresponding channel
outputs.

Since z™ is generated by the precoder, whose output is approximately an i.i.d. process, and y™
results from passing z™ through the DMC effectively without feedback, we choose the following
statistical model for use in the source coder. Let {X’i} denote an i.i.d. process with marginal pmf
qx, and let {¥;}%, denote the channel output process resulting from passing {X;} through the
DMC gy |x without feedback. The source coder then assumes that the probability of z™ given y" is
simply

Pin i (27 [Y"). (2.23)

_ Source coding is accomplished with this model via a Shannon-Fano strategy [14]. That is, with
X =0p.X",

on(z™,y") = ull 2.24)

°As additional notation, for any given number a € [0,1), we use ar,) to denote its ith K-ary (base-K) expansion
digit, ie.,a = >0 aK ™ withap,; € {0,1,..., K — 1}. When using this notation, the base K of the expansion is

=1

either stated explicitly or clear from context. If a has two K-ary expansions, then a[,) specifically denotes the ith digit of
the expansion that ends in an infinite sequence of zeros. Also, a{:]], where s < t denotes the tuple (a,},- - ,a), and

af}} is abbreviated by ol
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where the expansion in above is binary, and

U= Fgpn (0.2 [y") + pgnjyn (2]y") /2 (2.25)
I =[~logpgnpa(z"ly™)] +1, (2.26)

and Fy ¥ is the cdf for X conditioned on Y™, The source coder is lossless in the sense that ™ can
be recovered from y" with o, (2™, y*).

Note that the statistical model used in the source coder is inaccurate: Modeling the precoder
output as n samples of the i.i.d. process { X }$2 , is not strictly correct, because n itself is dependent

on the values of X™. Nevertheless, we use this source coder in our overall scheme and show that
these inaccuracies are inconsequential.

2.3.1.3 Termination Coding Subsystem

We now describe the termination encoder e, that we use in the code cpmc(WV,v). The ter-
mination encoder, as we mentioned earlier, protects xy bits with a rate and probability of error
determined by its parameter v. Let us first discuss how many bits x the termination coder should

be designed to protect.

For the overall scheme to have high reliability, the final data bits should be encoded within a
single x n-bit block, on average. For this reason, we choose ky according to

Ky = [ N1/4] . A 2.27)

To show that ky is sufficiently large, we let B denote the number of «y-bit blocks required to
send the first L bits of G*°, where

L =20(Spy) +2[logt] +2[log Lpy—1] +2[log LG, _,] + 10 (2.28)

represents the number of final data bits that are sent by the termination coder up to and inciuding
the first appearance of the string (0,1,0,1 in G*°. Then

Bg = [il (2.29)
KN
<L i (2.30)
KN

where the inequality follows from the simple ceiling function property [z] < z + 1. Taking expec-
tations of the right-hand side of (2.30),

E[L]+ 2.

E[BG] <14
KN

(2.31)
We show in Appendix A.5 that with the precoder and source coder designs given in the previous
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two sections,
E[Bg]=1+ on(1), 2.32)

which shows that our choice of xn gives the desired behavior.

While any of a wide range of codes can be used as the termination coding scheme that protects
the final bits, we choose what we call a modified Schalkwijk-Barron (mSB) coding scheme, so
named because it is based on a coder developed by Yamamoto and Itoh [65] in a paper bearing this
name in the title. The mSB coder is itself a highly reliable feedback coder, which, as we show in
Section 2.4, gives the overall scheme high reliability.

The mSB coder that we use sends a block of kx bits as follows: Let = and z’ be two elements
of X defined by

(z,z') =ar(gn}§iXD(QY|x('|$) I gyix(-1z")), (2.33)

where D(- || -) denotes the Kullback-Leibler distance between two pmfs.!® Assuming the channel
has positive capacity, it can be shown easily that the probability of error associated with maximum-

likelihood decoding of the two-codeword, length-xx codebook consisting of the words a*~ [0] =
(z, - ,x) and a"V[1] 2 (z',---,2') is below 2%~ for some a > 0.

Each of the k, bits is sent via this two-codeword codebook, i.e., the sequence a”" [0] is sent
for a 0 and a"~[1] is sent for a 1. After the xy bits are sent via this procedure, the transmitter
determines whether the receiver has decoded any of the bits incorrectly. Via the union bound, the

probability P, that any of these bits are decoded incorrectly can be shown to be o, (1). If any

. N .
errors occur, then the transmitter sends the length-v sequence w” = (z',--- ,z’). Otherwise the

A . . . .
length-v sequence ¢” = (z,--- , x) is sent; if the receiver successfully determines that w” (and not
c”) was sent, the process is repeated from the beginning. In other words, e}, is the solution to the
following equation:

e, (67 ,y) = (el (6°), p(y™)) (2.34)
P if dP(y"n) = BN
p(y™) = { v if d(y™) # b and d(ypw3Y) =0,
(w”, e, (b5 Yo tv41)) otherwise,
(2.35)
where
en, (") = (@™ [bi), -+ ,a™ by ) (236)

'“The Kullback-Leibler distance, also called the information divergence, between two pmfs p and q is given by [14]

_ p(z)
D(pllq) = 2;17(3) log @)’
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and di\ : X*¥" — {0,1}"~ is the corresponding decoder for €l , and d°¥ decides whether w”
or ¢ was sent, returning O to indicate that ¢ was sent. Note that d°¥ is not a maximum-likelihood
detector, because it does not treat errors equally. It tries to minimize the probability of mistaking

w" for ¢” subject to making the probability of the reverse error o, (1); see [65] for details.

2.3.2 Decoding

Let us now outline the processing that takes place in the associated decoder for the encoder (2.17).
This high-level description implicitly defines the stopping functions {x;}, and decoder A.

The receiver has two operating modes, “normal mode,” in which it starts, and *termination-
decoding mode.” In normal mode, the receiver saves the data from the incoming bitstream directly to
memory without processing it while watching for the occurrence of the sequence @'~ [N]. When this
sequence is detected, it enters termination-decoding mode and begins decoding incoming data using
the decoder corresponding to the termination code. It concatenates the decoded messages into a long
decoded string, appending each newly decoded message to the end of the string. After decoding each
block of sy bits and appending it to the string, the receiver searches for the termination sequence
(0,1,0, 1) anywhere in the full string and stops data acquisition when it detects this sequence.

The receiver then proceeds to decode enough of G* to recover Xp,,, F, Lp, 1, and LG v—1-
Starting with this information, it decodes the data set acquired in normal mode according to the
following recursive procedure:

1. Subtract F' from the location at which §*~ [N] was detected to determine Ap,, . Leti = By.

2. Let A;_y = A; — L;_1. Use the received data Y/ﬁ‘_l +1 and L;_, to construct the (a poste-
riori) source coding pmf that was used to generate ¥;, and invert the source coded block %;
according to this pmf to obtain €] _;.

3. Use L{_, to invert the precoded block €]_; to obtain ¥;_;.

4. Decrement 7. If ¢ > 1, extract X;, L;_;, and LY_, from ¥; using the seed 7 to invert the

effect of r, and go to Step 2; otherwise, stop because ¥y = W, and the message has been
determined.

2.4 Reliability

The reliability of a coding scheme, also known as its error exponent, gives the asymptotic rela-
tionship among the coding scheme's rate, probability of error, and blocklength. In this section, we
prove at a high level, leaving most of the details to Appendix A, the following theorem regarding
the reliability for the scheme:

Theorem 2.4.1 Let cpmc be a coding scheme mapping N and v to the corresponding code con-
sisting of the encoder described in Section 2.3.1 with its implied associated stopping functions and
decoder. Then, in the sense of Section 2.2, cpmc attains the error exponent function Ecgc defined
on the interval (0, I(X;Y’)) by

Ecec(r) = (1 —r/I(X;Y)) Ecw, (2.37)
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Figure 2-4: Plot of Ecgc.

where

Eew = zeralcl,?fsxp(qyw('lx) | ayx (|z)). (2.38)

Remarks: This theorem implies that the probability of error for the scheme decays exponentially
with IV or faster at any rate below capacity. Furthermore, Bummashev [11] has shown that Ecgc is
an upper bound to the error exponent of any variable-length feedback transmission scheme for a
DMC;. This scheme therefore attains the largest possible error exponent at all rates. It is also useful
to realize that the error exponent Ecgc, which is plotted in Figure 2-4, is the same as that of the
mSB scheme introduced in [65]. Finally, note that E,,, may be infinite (e.g., if an output symbol has
positive probability under one channel input but zero probability under another as in a “Z-channel”)
in which case the error exponent becomes degenerate and somewhat meanizgless.

Proof: This theorem follows directly from three key properties of the coding scheme, which we
highlight to begin the proof. We call these properties “Subsystem Properties,” because each focuses
on a key aspect of one of the subsystems. The reader should be aware, though, that some of the
properties do depend on multiple subsystems and the way they interconnect. The main point is that
if we choose a different design for the precoder, source coder, termination coder or synchronization
subsystem, then as long as these properties hold, then Theorem 2.4.1 also holds.

Subsystem Property 1 If D" is uniformly distributed over {0, 1}", then there exists a constant
0 < Cr < oo that is independent of n such that
E[f(m,(D™)] < (n + Cr)/H(X). (2.39)
Subsystem Property 2 The precoders {7, }22., and the source coders {on, : X" xY™ — {0,1}1},

are such that there exists a a function A such that

E[L{,,] < E[L;] H(X|Y) + ME[L;]), fori =0,--- ,By — 1, (2.40)
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where A also has the properties that A(x)=o0,(z) and X is non-negative, monotonically in-
creasing, and concave (N) over [1, 00).

Subsystem Property 3 The termination coding scheme c*™ takes two parameters « and v and
returns a code. For any o > 0, there exists a sequence of parameters {(ky,vn(a))}32,;
such that ¢'*™(k,, v, {(c)), whose corresponding encoder is denoted ef?un(a), encodes k,, =
[nl/ 4] message bits into an average number of channel inputs 7, = an + o,(n) and has error
probability F; (erm,» bounded according to

P termn < exp2{-nn (Ecw — on(l)) }, (241

where exp,(z) £ 9z,

Subsystem Property 1 is proven in Appendix A.1, Subsystem Property 2 is proven in Appendix A.2,
and Subsystem Property 3 is proven in Appendix A.3.

Using these key properties, we can now prove the theorem as follows: Let 7 < I(X;Y) be
given, and let us construct a sequence of codes with corresponding sequence of rates and error
probabilities satisfying (2.7) and (2.8).

Intuition from the third illustration in Section 2.1 suggests that the expected transmission length
E[L*] of a code sending N message bits and using a termination coder that puts out a sequence of
average length 7, satisfies

E[L*] ~ +1. (2.42)

N
I(X;Y)
This equation in turn suggests that a sequence of codes with rate converging to r is {cpmc(n, vn) o2,
where vy, is a termination code parameter giving the termination code a corresponding expected
length of n,,(r) + on(n), where

m(r) = ;(1 - FXT_Y)) (2.43)

That an appropriate sequence of parameters {1, } exists is guaranteed by Subsystem Property 3.
Let us examine this sequence of codes {cpmc(n, ) }32; more closely to verify that it behaves as
desired.

To prove that the sequence of rates corresponding to this sequence of codes satisfies (2.7), we
first develop a bound on the the expected transmission length E[L*] of the code cpmc(V, vn) as
follows: Using the notation of Section 2.3, first consider the termination-coded transmission of
the sequence G defined in (2.16). If the receiver fails to detect the sequence (0,1,0,1) when it
first appears in the transmission G, then it is detected in a subsequent block because this coded
sequence is repeated indefinitely thereafter [cf. (2.16)]. Moreover, for each of these blocks the
probability of a missed detection is also less than P, irm, v, the probability of error associated with
the termination coder used by cpmc(V, vn). Thus, the expected length of the transmission starting
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with the length-t transmission of @'~ [N] until termination is less than
A / })e,term,N
p =N+ (E[BG] + a5 ) (n(r) +on(N)). (2.44)
(1 - Pc,term,N)
Furthermore, the expected length of the transmission before #*¥ [N] in (2.17) is

By -1

um 2 Y E[L). (2.45)

=0
Hence, the total expected length of the transmission is bounded according to

E[L*] < p1 + pur. (2.46)

The following lemma, which is proven in Appendix A.4, uses Subsystem Properties 1 and 2 to
upper bound pyy:

Lemma 2.4.1

< ( N
FI=\HX)-HX]Y)

) +on(N) (2.47)

And the next lemma, which is proven in Appendix A.S5, uses Subsystem Property 3 to upper bound
Hr:

Lemma 2.4.2
p <ty + (1+on(1))(nn(r) + on(N)) (2.48)

Since tnx /N=o0n(1), by substituting (2.48) and (2.47) into (2.46), we get that

E[L*}/N < +(1+on(1) ”NT(’") +on(1). (2.49)

I(X;Y)
This inequality with (2.43) implies that the rate Ry of cpmc (N, vn) satisfies Ry > r + on(1).
The last step in showing that Ecgc is attainable is to find the probability of error Py corre-
sponding to cpmc (N, vn). With the decoder described above, the invertibility of the source coder
and precoder—together with the perfect detectability of ¥ [ N]—mean that decoding errors in the
overall scheme occur only if one of the B¢ blocks that is termination coded is decoded incorrectly.
Since Py equals the probability of such an event, it can be union bounded above according to

Py < E[Bg) Pe term,N - (2.50)

Inequality (2.41) with (2.32) gives an upper bound on right-hand side of (2.50). Substituting (2.43)
into this upper bound, taking the log and multiplying by —Ry /N yields

Rylog Py _ Ry B T _
N 2 7(1 T(X;Y) +oN(1>) (E“” °”(1))’ @30
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> Ecec(r) —on(1), (2.52)

where (2.52) follows from the fact that Ry > 7 + on(1). Since these results hold for come(N, vn)
for arbitrary IV, the theorem is proved. o

2.5 Removing the Perfect-Detection Assumption

In the previous section, we assume that a perfectly detectable sequence (!~ [N ] exists. Since, in
general, no such sequence exists when the forward channel is a DMC, we must modify the coding
scheme before it can work with a forward channel that is a DMC. In this section, we outiine modi-
fications to our basic iterative coding scheme that allow us to remove the assumption that Bt~ [V]is
perfectly detectable.

To develop the modified scheme, we first construct §*~ [N] out of legitimate channel inputs from
X. Let a be an element of X defined by

a = arg max D(gyx(-|z) || py) (2.53)
z€X

and then let 0*¥ [N] = (a,- - - , a). The encoder uses the sequence in the same way, communicating
the time index Ap,, defined in (2.12) to the decoder by sending 0*~ [N] at time Ag, + F + 1 and
later sending bits describing F'. The decoder tests for the presence of this sequence in each new
incoming block of ¢ samples, using a minimum-probability-of-error detector 8;,, of the form
JtN (ytN) — {1 if Hfﬁ1 qY[X(yi'a) > H:ﬁl pY(yi) ) (2.54)
0 otherwise

There is now the possibility that d;, returns a 0 when @~ [N] is sent over the channel (missed
detection) or that s, returns a 1 when @*~¥[N] is not sent over the channel (false alarm). As ¢y
increases, the probability of either sort of error can be shown to be less than exp,{—3tx} for some
8> 0.

We now encounter a dilemma in choosing ¢x: If we accept that WV # W whenever a
false alarm or missed detection occurs, then we need to choose ¢, proportional to N to maintain
probability of error decaying exponentially in N. But choosing ¢ proportional to N causes the
rate to decrease by an asymptotically non-negligible amount. On the other hand, if we choose
tn=on (), then the probability of error does not decrease exponentially in V.

The solution is to choose ¢y=ox (V) but to use feedback to detect missed detections and false
alarms, allowing the encoder to take corrective action. We therefore choose ¢ according to

ty = [\/N] , (2.55)

which ensures that the probability of a false alarm or missed detection occurring at any time during
the transmission decays to 0 as N — oo. The scheme is then modified as follows.

As in the idealized case, the receiver has two modes of operation: normal mode and termination-
decoding mode. In normal mode, at every time k that is an integer multiple of ¢y, the receiver
tests the most recent ¢ channel outputs to see whether d;, (Yk’“_tN +1) = 1. If this condition
holds true, then the receiver enters termination-decoding mode; this is the only way the receiver
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can go from normal mode into termination-decoding mode. Once in termination-decoding mode,
the receiver decodes each incoming block to find the message coeded in that block. Concatenating
these messages, the receiver stops receiving when it is in termination-decoding mode and finds the
sequence (0, 1,0, 1) somewhere in the concatenated message.

The transmitter knows exactly what the receiver is doing via the feedback. Hence, it can ex-
ploit the fact that the receiver always enters termination-decoding mode on detection of #*~ [N] by
sending the receiver a message regarding its detection of @#*¥ [N]. In particular, if a false alarm oc-
curs, then the sequence (1,0, Wy, W), Wy, Wy, --- Wy, Wy,0,1,0,1,0,1,---) is transmitted in
blocks of k y bits using the termination coder. The first two elements of the sequence, (1,0), inform
the receiver that a false alarm has occurred and that the remainder of the sequence is io be regarded
as the original message. Note that even if some of these x n-bits blocks are decoded incorrectly, the
receiver eventually sees the sequence (0, 1,0, 1) and stops data acquisition.

In the case of a missed detection—that is, when @'~ [N] is transmitted but not detected by the
receiver—the transmitter resends @'~ [N] until it is detected by the receiver. After detection, the
transmitter sends (¢(Cmp ), G*°) coded in x x-bit blocks using the termination coder. The sequence
¢(Cwmp) encodes the number Cyp of missed detections that occurred. From this information, the
receiver can correctly ascertain the value of A, + 1.

In Figure 2-5, a flow chart giving an outline of how the scheme makes use of the synchronization
subsystem is shown.

2.5.0.1 Reliability of the Modified Scheme

It is proven in Appendix A.7 that Theorem 2.4.1 continues to hold for the modified scheme when a
synchronization subsystem can be designed with the following property:

Subsystem Property 4 With {¢x}%°_, asequence satisfying ty = on(1), the sequence of detector-
sequence pairs {(d;,, 0V [N])}%_; is such that the false-alarm and missed-detection prob-
abilities Pra ¢, and Pup,, . respectively, associated with each use of d;, by the receiver,
satisfies

Pragy <on(N72) (2.56)
Pup,ty < Mup + on(1) (2.57)

for some constant Myp < 1.

In Appendix A.6, Subsystem Property 4 is shown to hold for the synchronization subsystem
design given by (2.53)—(2.55).

2.6 Complexity
To this point, we have claimed that the compressed-error-cancellation framework leads to low-
complexity coding schemes. In what follows, we analyze the complexity of the coding scheme we

designed for DMCy's and argue that it has time and space complexity that is linear in the length of
the number of channel inputs used.
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Figure 2-5: Encoding modified for imperfect detection of @#*~ [V]. The notation “Y;, < Feedback”
indicates that one sample of feedback is retrieved and stored in Yj. Similarly, “Y'® « Feedback”
indicates that a samples are retrieved and stored in Y2,
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2.6.1 Time and Space Complexity for the Transmitter and Receiver

To assess the time and space complexities of the encoder and decoder, we first assess the time and
space complexities of each of the four constituent subsystems: precoding, source coding, synchro-
nization, and termination coding.

Precoding and postcoding (precoding inversion) operate nearly identically to arithmetic source
coding decoders and encoders, respectively, for i.i.d. sources. The dominant computation required
for arithmetic source coding and decoding is the computation of the relevant cdf. Because the cdf
can be computed using a recursive algorithm [14], it can easily be seen that arithmetic coding can be
performed with time cost that is proportional to the sum of the number of inputs and outputs under
the uniform-cost criterion. Space cost, excluding buffering of input and output, can be easily seen
to be a constant, so the total space cost including buffering requirements is proportional to the sum
of the number of inputs and outputs. Thus, the total time cost and total space cost associated with
precoding in the transmitter and postcoding in the receiver are linear in L*.

When carrying out precoding and postcoding on a digital computer with finite-length registers,
that the cdf must be computed to arbitrary precision is a concern. In [63], a k-bit integer arithmetic
implementation of an arithmetic source coding encoder and decoder for an i.i.d. source is given. The
implementation requires appropriate quantization of the marginal pmf for the source. The quanti-
zation error in the characterization of the marginal pmf decreases exponentially with the number
of bits allowed in the registers and presents no practical difficulties. The implementations of the
encoder and decoder both require a number of k-bit integer operations that grows linearly with the
suin of the number of inputs to and outputs from each. We have adapted this implementation to
precoding and postcoding and achieved the same behavior on a digital computer with finite-length
registers. Thus, the linear time complexity and linear space complexity seems to accurately reflect
the computation required when implementing the procedures on a digital computer.

The source encoding and decoding subsystems are based on Shannon-Fano source coding,
which can also be carried out using the arithmetic source coding algorithm. Use of arithmetic
coding again results in the time costs of the source encoder and decoder both being linear in the
length of their inputs plus outputs. Space cost is again constant. Therefore, the time complexities
and space complexities associated with source encoding and decoding are also Op-(L*). As for
implementation on a digital computer with finite-length registers, the same comments apply as for
precoding and postcoding.

The synchronization subsystem requires that the transmitter send the synchronization sequence
and that the decoder test for the sequence every ¢y samples using d;,, . Sending the sequence clearly
takes a number of operations linear in ¢y and requires ¢y buffer registers to store the sequence.
Each use of d;, clearly costs time linear in ¢y under the uniform-cost criterion. Space cost is
clearly On(tn). Since d;, is used fewer than L* /¢ times, the total time complexity attributable to
the synchronization subsystem in the receiver is linear in L*. Each time d;,, is used, it can reuse its
registers, so the total space cost is only Oy (tn). The transmitter must also perform each of these
hypothesis tests to determine the state of the receiver, so it shares the same complexity.

On a digital computer with finite-length registers, we must worry about “underflow”, i.e., we
must worry about the probabilities becoming so small that they are rounded to zero. To avoid
underflow, we compute the negative log-likelihoods, which increase linearly in ¢y, instead of the
likelihoods, which decrease exponentially in £. The only new problem seems to be the possibility
of “overflow”, i.e., that the negative-log-likelihood becomes so large that it is called infinity by the
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computer. But, clearly, extremely large values of ¢y are required before this can happen, and it is
a simple matter to allocate a sufficiently large register to hold this log probability. For example, a
1024-bit register is large enough to prevent overflow for any reasonable size of ¢5. We should also
note that rounding of the intermediate sums to a certain number of significant digits is allowable,
because the negative-iog-likelihood for the correct hypothesis should be smaller than the incorrect
hypothesis by an amount proportional to ¢. Hence, the characterization of §; ~ ascosting Oy (tn)
in time under the uniform-cost criterion is a reasonable estimate of the time required to perform
the computation cn a digital computer with finite-length registers for reasonable values of ¢,. For
extraordinarily large values of ¢y, even if Oy (logty) registers are allocated to hold the running
negative-log-likelihood sum, most of the time, an addition only affects the least significant regis-
ter, so it appears that Oy (ty) is still an accurate characterization of the time cost even for such
enormous values of ¢ .

The number of computations required for mSB decoding depends on the specific inner code
used, but is at most

On(kn2) + 0, (V) (2.58)

under the uniform-cost criterion for each time the inner codeword and corresponding length-v ver-
ification message are sent. The first term accounts for decoding of the inner code at the receiver
(which must also be replicated at the transmitter). The second term accounts for the computation
required for the transmitter to send ¢ or w" and for the receiver to distinguish the two sequences.
For the important case in which v oc IV, we can write Ky = O,,(ul/4), and the two terms in (2.58)
can be combined into O, (v), i.e., the time and space cost of a single use of the mSB coder is nearly
proportional to the number of channel inputs used by the coder. Since the total number of chan-
nel uses due to mSB coding is less than L*, the total computation due to mSB decoding must also
be Op-(L*). The time complexity of mSB encoding is less than for decoding, so it can also be
shown to be Of-(L*). Space complexity for the mSB encoder and decoder is O, () under both
cost criteria, since ¢” and w” and the inner codebook, all of which are composed of discrete-valued
sequences, must be stored.

For implementation of the mSB decoder on a digital computer with finite-length registers, the
same comments made regarding the synchronization detector hold for maximum-likelihood deccd-
ing of the inner codebook and verification sequences. That is, the complexity characterization under
the uniform-cost criterion appears to be valid.

Summarizing, each subsystem has time and space complexity that is O. (L*) under the uniform-
cost criterion, and therefore so does the overall scheme. It follows that at a fixed rate, the expected
number of computations and amount of storage required by the transmitter and receiver is Oy (V).
Furthermore, this characterization of the complexity seems to reflect the behavior in practice were
these algorithms to be implemented on standard digital computers.

2.6.2 Uniform Versus Non-Uniform Complexity

In comparing this scheme to other low-complexity coding schemes, we see that concatenated
codes [21] with linear complexity can also be designed. Concatenated codes encode data first with
an outer code and then with an inner code. The inner code is usually a relatively short block code
that is used to obtain relatively small error probabilities on the channel. The outer code is then
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used to correct errors that escape the inner code, driving the error probability even lower. Fomey
showed that this structure allows error probabilities that decay exponentially with total blocklength
with polynomial computational complexity. It has recently become possible to obtain linear com-
putational complexity with exponentially decaying error probability by using Spielman's linear-
complexity codes [56]. Specifically, this performance is obtained by using Spielman's codes as
outer codes and using a randomly selected inner code. It may be tempting then to conclude that
feedback offers no advantages in terms of complexity.

But there is a very important distinction between the linear complexity of the feedback scheme
we have just introduced and the linear complexity of such a concatenated code. A concatenated
coding scheme whose inner code is decoded via exhaustive-search maximum-likelihood decoding
requires more computation per message bit as its operating rate increases. That is, at a particular
value of the rate R, the computation per message bit is independent of the number of message bits.
But the computation per message bit depends heavily on the rate and increases rapidly and without
bound as the rate approaches capacity. While the problem can be mitigated by using special ‘nner
codes that can be decoded with more computationally efficient decoders, no such capacity-achieving
codes and corresponding decoders appear to be known.

On the other hand, it is straightforward to verify that the feedback scheme we have introduced
does not behave in this way. The rate of wne feedback scheme can be made to increase to capacity
by letting v/N — 0 and N — oo. Computations per input sample need not grow without bound as
these two limits are approached. There must therefore exist a positive number U independent of the
rate R and the number of message bits /V such that the average number of computations per channel
input required for encoding and decoding is less than U for any R below the channel capacity.

We say that our feedback scheme has uniform linear complexity, while the above concatenated
scheme is an example of a scheme with non-uniform linear complexity. The difference has important
consequences in terms of what rates are actually achievable in practice.

2.7 Variations

The coding scheme we have developed thus far in this chapter is only one of many possible schemes
based on the compressed-error-cancellation framework. A number of minor variations on the coding
scheme are possible. For example, a synchronization sequence could be transmitted after every
iteration, so that block boundaries are known sooner. We could use a different feedback or feedback-
free code as the termination code. Or we could let the number of iterations be random, using the
termination coder when the length of the message drops below a certain threshold. Such variations
could lead to different performance characteristics and might be appropriate for certain situations.

One variation that is particularly important for certain analytical purposes that we encounter in
the remainder of this chapter and in Chapter 5, is a scheme that uses lossy (but effectively lossless)
precoders and source coders with fixed-length inputs and outputs. We describe this scheme in the
following section.

2.7.1 Scheme Using a Fixed-Length Precoder and Source Coder

We construct a scheme that uses the fixed-length precoder 75, : {0, 1} — X/5(®) where f5(n) =
[n/(H(X) — 6)] and the fixed-length source coder o5, : X; — {0,1}9(™) where gs(n) =
[n(H(X|Y) + 6)]. The constant § is a design parameter. These two subsystems are described
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in Appendix A.9. The encoder e(';LN then works essentially as the single-user coder described in
Section 2.2 but has fixed length:

Initialization:
I§=N,lo=[I§/(H(X)=6)],4 =0 (2.59)
To = w, €9 = g5 (r (o, 0)) (2.60)

fore=1,--- ,Bn:
17 = [(H(X|Y) + 8)li—1] (2.61)
Li=I7/(H(X) - )] (2.62)
Ai=A; 1+ (2.63)
Si = 054, (i1, U4 41) (2.64)
& = 4o (r(Si 1)) (2.65)

Number of channel inputs:
| = Ap, + #(Sp,)N'/* (2.66)
Encoding function:

ebn(W™,y') = (eo, - s eny—1,€[p /41 (Saw)) (2.67)

where r : {0,1}1 — {0,1}! is the same binary randomization function used in Section 2.3, and
By is chosen as

3log N

BN = {log(B(X) = 9) = log(# (X|Y) 7 3)) (2.68)

so that I~ N'/4. Then er[e131 /a7 €ncodes its data by using a two-codeword codebook of length

[N1/4] to encode each of the 1% » bits. It can easily be shown that the rate of this coding scheme

is I(X;Y) — 26 + on(1), and the error decreases exponentially with N1/4. These performance
characteristics hold for any § > 0.

This fixed-length code has relatively slow decay of the probability of error with N. To construct
a variable-length code with better error properties, we simply use it as an inner code with an mSB
scheme, which would then attain the error exponent (1 — r/(I(X;Y) — 26))E.y, where E,,, is as
given in (2.38).

This scheme has a number of advantages: it is easier to describe because it requires no synchro-
nization subsystem, it has essentially the same performance as the scheme given in Section 2.3, and
the lengths of the transmissions on each iteration are fixed. These make it advantageous for certain
techniques that are more easily analyzed with fixed-length iterations.

The scheme also has a number of disadvantages: As will become apparent in Chapter 4, univer-
sal communication is not possible because of the fixed-length nature of the scheme; the scheme is
not robust to channel modeling errors; and, for finite-state channels, it is not clear how to generalize
the techniques used to prove that the fixed-length precoders and source coders work. Nevertheless,
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we see in later parts of this thesis that this version of the scheme is useful in some circumstances.

2.8 Discussion

Thus far, we have concerned ourselves with certain fundamental theoretical aspects of the feedback
coding scheme. A host of other interesting issues remains. We discuss some of these issues in this
section.

2.8.1 Structuring Computation

We have assumed in the foregoing analyses that computation takes no time. This assumption is
fairly common in the channel coding literature. For example, when computing error exponents,
which can be viewed as relating decoding delay and probability of error, delay due to computation
is generally ignored.

It may seem almost contradictory to assume that computation takes no time but to concern
ourselves with computational complexity. However, there are cases in which complexity may be a
concern even though we can effectively ignore the time delays associated with computation within
the coding scheme. Such cases include, for example, the case in which a processor is so powerful
that all needed computations require negligible time, but incur a financial or energy cost; another
case is that in which coding is performed for a recording channel, in which the goal is simply to fit
the most data onto the medium.

But often we have a computer that does a fixed number of computations per unit of time, and
low-complexity encoding and decoding algorithms are required to ensure that the computer keeps
pace with the encoding and decoding of a long stream of messages. Note that in this situation, any
code with a total number of encoding or decoding operations growing faster than On(N) would
require the blocklength N to be limited to some finite number which would in turn require the
probability of error to be above some positive constant. Only a scheme using Oy (V) computations
is capable of truly providing arbitrarily low error rates.

Such a setup with a computer providing constant computations per unit time may cause delays
during which computation is performed. Prior research generally has ignored such delays, perhaps
because such delays do not create serious problems as long as the computer does not fall behind
in servicing the computational demands. For example, for FEC codes in which there is an infinite
stream of data to be sent, one can easily structure the transmission so that computation for encoding
or decoding of one message takes place during transmission of another message.

But complications may arise in feedback schemes. In particular, in the framework we have de-
scribed in this chapter, if we assume that the precoders and source coders require the full block of
input before they can compute their outputs'', a computational delay arises between iterations that
is proportional to the length of the transmission on the previous iteration. If we send information-
free filler during the delay, then the rate is reduced, because we waste a number of channel inputs
proportional to N. Even with such a delay, our scheme is computationally more desirable than any
scheme whose complexity grows faster than NV in the following sense: For any particular transmis-
sion rate, we can at least find a computer providing a sufficiently large number of computations per

""This is not actually the case for the subsystems described in this chapter, but it is the case for those described in
Chapters 3 and 4.
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second to allow arbitrarily small probability of error and arbitrarily large blocklengths. However,
the computer must become more powerful as the rate increases, suggesting that the scheme behaves
with a sort of non-uniform linear complexity.

Fortunately, we can structure the computation so that computation is performed while useful,
information-bearing data rather than information-free filler, is being sent. This allows us to find a
particular sufficiently powerful computer with which any rate below capacity can be achieved with
arbitrarily small probability of error.

To demonstrate the technique, which we call interleaving, we use the variation in Section 2.7
that uses a fixed-length precoder and source coder, sending a 2/N-bit message as follows:

e Precode the first V bits into N/H (X)) inputs.
e Precode the second N bits into N/H (X) inputs.
e Send the first length-N/H (X)) block of precoded data.

o Send the second length-N/H (X) block of precoded data. While these data are being sent, use
the feedback about the first block of precoded data to source code the first N/H(X) trans-
missions into NH(X|Y)/H(X) bits and also preccde these bits into NH(X|Y)/H?(X)
inputs.

e Send these NH(X|Y)/H?(X) inputs. While they are being transmitted, source code the
second N/H (X) transmissions into NH(X|Y')/H(X) bits and also precode these bits into
NH(X|Y)/H?(X) inputs.

o Send these NH(X|Y')/H?(X) inputs. While they are being transmitted, ...

After approximately 2N/I(X;Y) samples have been sent, we send the final coded block of data
and the verification message. This technique allows us to use the computer and channel efficiently.
We can see that the computer must be fast enough to process n channel inputs in the time required
to send nH(X|Y)/H(X) channel inputs.

Empirical evidence indicates that the technique works even when using the variable-length pre-
coding and source coding subsystems. For very long blocklengths, we would expect this behavior
because the lengths of the outputs from these variable-length subsystems cluster sharply around
the expected value of the length. But even for relatively short message lengths, such as 100 bits,
the technique seems to work. However, analysis seems to be difficult, although some preliminary
arguments for why the technique should work are given in Appendix A.10.

2.8.2 Variability of Transmission Length

Because our scheme produces variable-length transmissions, buffer overflows are possible. How-
ever, for large blocklengths, preliminary experiments suggest that variations in transmission length
due to the varying lengths of the precoder and source coder outputs are modest; for example, in an
experiment in which E[Ap, + F] =~ 204500, the maximum value of Ag, + F in 100 trials was
about 206336, and the sample standard deviation of L* was about 794. Again, this behavior is not
surprising — for long blocks, most of the relevant sequences are “typical” and are compressed to
“typical” lengths, which are close to the corresponding expected length.
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2.8.3 Number of Iterations

The number of iterations By need not be chosen strictly according to (2.9). A variety of choices
of By allow the asymptotic theoretical results to follow. In practice, we find that for a particular
channel and value of NV, the length of the transmission on the ith iteration tends toward some positive
constant as ¢ increases. A good choice of By is the value of ¢ at which this positive constant is first
reached. As a general guideline, By should increase as IV increases and decrease as the quality of
the channel increases.

2.8.4 Feedback Delay

When communicating over large distances, a significant delay in feedback may be present. That is,
the transmitter at time k may only know Y*—¢, where d is some fixed delay. The primary effect of
this delay is that at the beginning of an iteration, the transmitter may not yet have enough feedback
to start the iteration. In this case, the transmitter may send information-free filler data. This wastes
at most Byd samples, which is negligible as N — oo. If feedback delays are large compared to
the desired blocklength, however, one could use a multiplexing strategy whereby one sends another
message during the periods that would otherwise be idle.

2.8.5 Inaccurate Channel Modeling

The variable-length version of the scheme we have described has some attractive robustness prop-
erties that make it well suited for use on channels that are modeled inaccurately. As an example,
reliable communication over the BSCy is possible even when the parameter ¢ is a noisy estimate
of the true crossover probability. The price paid for this mismatch is in terms of rate: the smaller
the mismatch, the closer the achievable rate is to capacity. When the iterative coding scheme is
appropriately designed, the resulting degradation can be quite graceful. Note that this robustness
contrasts sharply with the behavior of more traditional FEC codes. In particular, with pure FEC
coding the probability of error can go sharply to 1 when the channel signal-to-noise ratio exceeds a
code-dependent threshold.

To understand how the graceful degradation property can be obtained with iterative coding, it
is important to understand the factors contributing to the rate gap. One component is due to the
fact that the source coder is unable to operate at the appropriate entropy rate, if the source coder is
not accurately tuned to the pmf of the true channel. In fact, the source coding rate that is achieved
increases compared to the true source entropy by an amount given by the Kullback-Leibler distance
between the true channel and the assumed channel model [14]. A second component to the rate gap
in the iterative coding scheme under mismatch conditions occurs because the capacity-achieving
input distribution of the channel model may not be the capacity-achieving distribution of the true
channel.

Achieving this graceful degradation property requires that the final block of data be mSB coded
in such a way that it can be decoded correctly with high probability even when there is channel
model mismatch. When we know the channel has some minimum quality (e.g., in the case of the
BSCy, if we know that the crossover probability € is always less than ¢y < .5), we can termination
code for this worst-quality case without sacrificing overall rate.

We show in Chapter 4 that with appropriate modification of the subsystems, a system that incurs
no rate loss due to channel mismatch can be designed — in fact, the system needs no channel model
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at all.

2.8.6 Simulation

To verify that our scheme behaves as predicted by our analysis and that the asymptotic performance
is approachable in practice, we implemented the scheme and simulated its performance on a digital
computer with finite-length registers.

To simultaneously demonstrate that the coding scheme is viable on continuous-valued channels,
we applied it to the Gaussian channel. To use the scheme on a continuous-valued channel, the chan-
nel inputs and outputs must be quantized and the corresponding channel transition probabilities de-
termined. In a preliminary experiment, we used the fifteen input symbols {—7, -6, —5,--- , 5,6, 7}
and chose an approximately Gaussian input distribution with variance 4.0 as an input to a discrete-
time channel with zero-mean additive white Gaussian noise of variance 4.0. We then quantized
the output to the twenty-one symbols {—10,-9,—8,---,8,9,10}. We simulated the Gaussian
channel to empirically calculate the channel transition probabilities for this quantized channel, and
used this channel model in our coder. With N = 105, and v = 1000, our coder achieved a rate'?
of 0.483. The probability of error can be determined to be less than 1 — F(,/v), where F is
the cdf for a unit-variance, zero-mean Gaussian random variable, which is upper bounded [41] by
exp{—v/2}/v2nv. Comparing this performance with the capacity of the discrete-time Gaussian
channel with a 0 dB signal-to-noise ratio, which is 0.50 bits per channel input, our scheme appears
very promising for use with continuous-valued channels and has certain advantages over the scheme
of Schalkwijk et al. [49]. Namely, our scheme can be easily adapted to achieve rates near capacity
on non-Gaussian channels such as fading channels and also allows quantized feedback.

We note that the characterization of the overall time complexity as linear in IV seems to accu-
rately reflect the time taken to run the algorithm on the digital computer. Indeed, the fact that a
108-bit message could be encoded and decoded is evidence that the computation per bit is reason-
ably low even though the message length is large.

2.8.7 Summary and Future Directions

We developed a linear-complexity coding scheme giving exponentially decaying error probabilities
at any rate below the capacity of any DMCy. The error exponent achieved by the scheme is the
highest possible. We explored variations of the scheme and also implemented the scheme on a
computer to show it is practically viable.

A particularly interesting direction for future research includes the development of a “sequen-
tial” scheme based on the compressed-error-cancellation framework. A sequential scheme is one in
which each of an infinite sequence of bits is transmitted and decoded individually rather than as a
block. Horstein's scheme [30] is an example of such a scheme. A sequential scheme is useful in
practice when the delay caused by long blocklengths is undesirable. For example, when transmitting
speech in a two-way conversation, only very short delays are tolerable.

2The theoretical capacity of this DMC approximation to the Gaussian channel is 0.493 bits/input. In our simulation,
this rate was not approached more closely in part because our implementation of the source coder and precoder used 32-
rather than 64-bit integers, which did not allow for sufficiently accurate characterization of the channel transition pmf.
This shortcoming can easily be remedied with a more sophisticated implementation.
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While we have not been able to develop a sequential scheme based on the compressed-error-
cancellation framework, we believe that Horstein's scheme may be related to the scheme developed
in this chapter. The relationship between these two schemes may be worth further exploration and
may reveal a corresponding sequential version of the compressed-error-cancellation framework.

Additional interesting directions for future research that are not addressed in the remainder of
this thesis include finding the pmfs or higher moments of L;, and L{ for all <. Also, one could
attempt to analyze the scheme without the randomizing function r. Extensions to channels with
countable and uncountable input and output alphabets may also be of interest.
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Chapter 3

Channels with Memory

3.1 Introduction

While DMC's provide accurate models for some channels used in practice, they are not accurate
models of channels with memory. A channel has memory if the output of the channel at a particular
time k depends statistically on the input or output of the channel at a time other than k.

An important example of a chanrel with memory is a wireless electromagnetic channel rely-
ing on non-line-of-sight propagation. In practice, such channels may arise, for example, in high-
frequency-band communication and cellular telephony. The memory in such channels arises be-
cause the transmitted signal arrives to the receiver via multiple paths, each of a different length,
at several different times [44]. Such “multipath propagation” gives rise to a phenomenon referred
to as fading, in which the transmitted signal is attenuated or boosted because of the destructive or
constructive interference of the multiple signals. The amount of the fading may depend on certain
elements of the physical environment such as location of clouds, or temperature, which may vary
randomly but also smoothly with time so that the amount of attenuation is a random process with
memory.

Many researchers have studied fading channels and other channels with memory (see, for ex-
ample, [44] and the references therein). A number of techniques have been proposed for fading
channels without feedback, and some have been used with success to communicate over such chan-
nels. An example of such a technique is interleaving, in which the symbols of the channel are
scrambled to make it appear memoryless. In contrast, the use of feedback on channels with memory
has been comparatively less explored.

In this chapter, we apply the compressed-error cancellation framework to coding for channels
with memory. In particular, we restrict our attention to channels whose statistical parameters are
known a priori (o both transmitter and receiver. In Chapter 4, we extend our results to the important
case in which neither transmitter nor receiver has prior knowledge of the channel parameters.

A useful and rather general model of channels with memory, and the one we use, is the discrete
finite-state channel (DFSC) [23]. A DFSC is described by the 4-tuple (B, X, gy, ,x,,3,, ¥), Where
B is a finite set of possible states of the channel, X is a finite set of possible channel inputs, Y is a
finite set of possible channel outputs, and gy, g,|x, g, is the conditional probability mass function
(pmf) describing the statistical relationship between channel inputs and outputs as well as the state
evolution. Given the state of the channel, the channel acts as a memoryless channel, and the next
state of the channel depends on the previous state as well as the most recent input and output. To be
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more precise, we make the following definition:

Definition 3.1.1 Let {X;}22,, {Yz}22, and {8}, random processes. The processes {Ye}2,
and {B; }32, are the output process and state process, respectively, resulting from passing {X [ 5
through a DFSC (B, X, gy, p,x, .50, ¥) (Or just gy, s, |X1,80) Without feedback if for all n > 0,

n
Py gn|x= 6o (¥", B"|2", Bo) = H vy ,811X1,80 (Yk> BTk, Bre—1) (3.1
k=1

forall z" € X, all y* € Y*, and all 5 € B+,

(Note that only the distribution of the output process is necessary to describe the channel; the state
process is defined to facilitate analysis.) A DFSC with feedback (DFSCy) consists of a DFSC as the
forward channel (or just “channel”) and a feedback channel, which is assumed noiseless and free of
delay—i.e., at time k, the transmitter knows with certainty the value of Y*~!. A DFSC;s is defined
analogously to the DMCy:

Definition 3.1.2 Let M be a random variable taking values in M. For all m € M, let {fn:}$2,
be a sequence of functions, where fn,; : Y"~! — X maps a sequence of i — 1 channel outputs to
a single channel input, and f,  takes a constant value in X. The processes {Y;}52; and {5 12
are the output process and state process, respectively, resulting from passing M through a DFSCy
(B, X, ay,,811X1,80> Y) (or just dy, ,ﬁllxl,ﬂo) via {{fm’i}?gl}m ifforalln > 0,

n
Py= grint,50 (Y™ B7m, Bo) = [ [ avi,o1x1,80 Wi Bl Frmpe (9% 1), Br—1) (3.2)
k=1

forall m € M, all y" € Y, and all 33 € B+,

We further restrict our attention to indecomposable DFSCy's, which have the property that the
effect of the channel's initial state 3y dies out over time (see, for example, [23] for further details).
As a result, the coding scheme we develop and the analysis of its asymptotic properties requires no
knowledge of the the initial state 3.

An expression for the capacity Cy¢ of indecomposable DFSC's without feedback was given by
Gallager in [23] as

Cpf = lim max lI(X"; Ym, (3.3)
n—oc pxn N

where {Y}} is the output process resulting from passing { X} through the DFSC, starting from any
channel state. In most cases, it is unknown how to even compute (3.3), although Mushkin and Bar-
David [40] derived algorithms for computing the capacity of a simple subclass of DFSC's with two
states known as Gilbert-Elliott channels. Goldsmith and Varaiya [26] studied a somewhat broader
subclass of DFSC's and developed a capacity formula for this subclass that is easier to compute than
(3.3); they also identified a subclass of DFSC's for which capacity is achieved with an i.i.d. input
distribution and gave a relatively simple capacity formula for this subclass.
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While feedback can be used to increase the capacity of a DFSC in at least some —but not
all' —cases, little appears to be known about the availability and extent of such an increase.

We focus here on using feedback to reduce computational complexity rather than to increase
capacity. We describe a variable-length coding scheme that achieves error probabilities that decay
exponentially with the number of bits IV in a block, at any fixed rate below the mutual information
induced by an input distribution in a class of finite-memory ergodic Markov processes. When the
feedback-free capacity Cy¢ is achieved by a stationary and ergodic input distribution, then this im-
plies that the scheme can approach rates near Cys. By exploiting a computationally efficient method
for Shannon-Fano source coding, the scheme's encoding and decoding computational complexity is
made linear in the number of channel inputs used.

We now embark on a detailed development of the coding scheme. This coding scheme is most
easily described by building on the results of Chapter 2. For this reason, we begin in Section 3.2 by
discussing how those results can be generalized, showing that to achieve certain performance char-
acteristics, it is sufficient that the subsystems have certain properties. We then follow in Section 3.3
by describing subsystems having these properties. We argue in Section 3.4 that the computational
complexity for the scheme is linear (and in some cases uniformly linear) and end in Section 3.5 with
a discussion of certain remaining issues and future directions.

3.2 Generalization of the Coding Scheme

In this section, we generalize the results we obtained for DMCy's in Chapter 2 to DFSCy¢'s. In
particular, for coding schemes that use precoding, source coding, termination coding, and synchro-
nization subsystems in the same way they are used in Sections 2.3 and 2.5, we develop an analog of
Theorem 2.4.1 that gives the reliability of such schemes in terms of certain key properties of these
subsystems. As a result, the problem of developing a coding scheme for DFSCs's that attains this
reliability function is reduced to the problem of developing subsystems with certain properties.

We begin by appropriately modifying the formulation of variable-length coding. For DFSCy's,
a variable-length code is just as described in Section 2.2, containing the same four elements. To
describe the code's rate and probability of error, let 3y be a known starting state of the channel, let
W be defined as in Section 2.2, and let {Y;} and {8}, be the output and state processes, re-
spectively, resulting from passing W through the DFSCr qy, g, |x, 5, Via {{€i(m, ")}, Ymeto}¥
with starting state Gy = Bo. With L*(By) and W (3;) defined analogously to (2.5) and (2.6), re-
spectively, the code's rate is defined to be N/(supj .3 E[L*(Bo)]), and the code's probability of

error is defined to be supg .5 Pr{W" £ W¥(3). A coding scheme and its properties are then
defined in the same way as in Section 2.2. This formulation is appropriate for the case in which the
transmitter and receiver do not know the starting state of the channel.

Proceeding with the development of the analog to Theorem 2.4.1, we first observe that the proof
of Theorem 2.4.1 follows entirely from Subsystem Properties 1-4. That is, if we use another set
of subsystems {7}, {on}, ¢™, and {(&,,0!"[n])}, within the framework of Section 2.3, then
Theorem 2.4.1 still holds as long as Subsystem Properties 1-4 are satisfied.

Suppose that cgs is a coding scheme mapping N and v to a code that is the same as the code

'For example, Alajaji [4] showed that if the channel adds (modulo-q) an independent noise process with memory. then
feedback does not increase channel capacity.
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described in Section 2.3 with the modifications from Section 2.5 except for the fact that it substitutes
different subsystems for the corresponding ones in Sections 2.3 and 2.5. Suppose that these different
subsystems are such that Subsystem Properties 1-4 hold, from all starting states of the DFSCy of
interest, with some constant H: taking the place of H(X) in Subsystem Property 1, some constant
H, taking the place of H(X|Y) in Subsystem Property 2, and some constant Ej taking the place
of Fic,, in Subsystem Property 3.

Then the following theorem regarding the error exponent associated with cgs holds instead of
Theorem 2.4.1:

Theorem 3.2.1 The coding scheme cgg attains the error exponent function Fgg : (0,H—H;) > R
defined by

Ers(r) = (1 - H_{T) Eo, (3:4)
Proof: Follows in the same way as the proof of Theorem 2.4.1. O
Note that Subsystem Property 3 may be satisfied with multiple values of the constant Ey. The

largest value leads to the strongest statement of the theorem. As discussed in Section 2.4, the

constant Ey may be chosen arbitrarily large in some cases, causing (3.4) to degenerate and and
become somewhat meaningless.

From the theorem above, we see that the achievable rate and reliability of the overall scheme
hinge on what values of H;, Hr, and Ey emerge from a particular precoder, source coder and
termination coding scheme design. In Chapter 2, capacity-achieving precoder and source coder
designs are given for DMCy's, in which H, = H(X) and H, = H(X|Y), where X is distributed
according to the capacity-achieving inpnt distribution, and Y is the random variable resulting from
passing X through the DMC. Subsystems appropriate for DFSCy's are given in what follows.

3.3 A Coding Scheme for DFSC¢'s

Before giving a precise description of the various subsystems of which the coding scheme is com-
posed, we must consider what sort of channel input process we should use.

In the development of our coding scheme for the DMC in Chapter 2, the achievable rate of the
scheme is highly dependent on the choice of the channel input process. For DMCy's, the optimal
input process is within the class of i.i.d. processes, so a natural choice for the input process is the
optimal one. Fortunately, such a process can be generated (approximately) with low complexity by
the precoder described in Section 2.3.1.1.

For DFSCt's, the choice of input process is not as clear, because (3.3) does not suggest an easily
described ideal input process. On one hand, we would like the class of allowable input processes to
be as large as possible. On the other hand, the input process must be sufficiently structured that the
required precoder, which must generate the input process, has low complexity.

We can satisfy both of these desires by constraining the output process feeding the channel to
be a Kth-order Markov process, where K is finite but can be arbitrarily large. We adopt the usual
definition of such processes [14]:

Definition 3.3.1 A process {Xy}}_, is a Kth-order Markov process with transition pmf q X11XO_
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and initial state distribution qq, if

n
pxn(z") = D dao(#3-x) [T axypxo_ (@lzfk)- (3.5)
k=1

0
Ti-k

Clearly, Px;| Xtk = 9, |X0_ for all j > K + 1. The state of the process at time k is defined

as X,’f_ K+1- With o = X ,’c‘_ K+1» We note that {ax} can be considered as a first-order Markov
process or Markov chain.

The finite-order Markov distributions constitute a rich and flexible class of channel input dis-
tributions into which data can be precoded with low computational complexity. Furthermore, we
conjecture that these processes are sufficient to make the mutual information between channel in-
put and output arbitrarily close to the feedback-free capacity of the channel, but are aware of no
existing proofs of this conjecture. As seen in the previous chapter, analysis of a scheme using the
compressed-error-cancellation framework often requires that we work with the joint distribution for
the channel output and input after passing the input through the channel without feedback. From
Definition 3.1.1, we see that specifying the joint distribution for (X™, §p) determines the joint dis-
tribution of the channel input and channel output (X™, Y ™). In this chapter, the input processes of
interest take the following form: X™ is Markov according to g, |xo_  with an initial state distribu-

tion gq,, and the joint distribution for (X, 3y) has the form

Px50(z™ B0) = Y Ppojao(Bolzl— k) a0 (z3—x) [ [ axyixo_, (@512d k)- (3.6)
J

0
Ti-K

This form of the joint distribution models the case in which the starting state of the channel is
dependent on the input to the channel only by being dependent on the initial state of the Markov
process. Actually, in all of the analyses in this chapter, 3y and ¢y are independent, but this definition
allows some extra flexibility. It is convenient to make the following special definition:

Definition 3.3.2 Let { X} };_, be a Kth-order Markov process with transition pmf gy | x9_,.- Then

the processes {Yx}7_, and {8k}, are the output process and state process, respectively, resulting
from passing the Markov process {X}}_, through a DFSC gy, B1|X1,80 Without feedback with
initial states jointly distributed according to qq, g, if

pX"vyny,B",ao,ﬁo(xnv yn, ﬂnv &Oa IBO)

n n
= qao,ﬂo(&07 ﬁo) H qXIIXf'_K(:L'jl&j—l) H qyl,ﬂ1|X1,ﬂo(yk7 ﬂklxk’ ﬁk—l)»

Jj=1 k=1
Vz" € xn’ \/yn c yn’ Vﬁg € 3n+1’ Yég € xK’ 37
Where d] = x;:—K-}-l’ forj = 1,... ,n'

One of the benefits of using a Kth-order Markov input distribution is that it allows the joint
channel input and output processes to be viewed as resulting from a Markov chain. Suppose that
{Xk}32, is a Kth-order Markov process with some initial state distribution, that {Y3}22, and
{ Bk}, are the output and state processes resulting from passing the Markov process { X } through

57



a DFSC without feedback with some joint initial state distribution. We can first view a Kth-order
Markov process in terms of appropriately defined deterministic functions f and f as

ar = f(ak—~1, V;c) (3-8)
Xy = flar-1,W), (3.9)

where {V} is a sequence of random variables that are i.i.d. uniformly over [0, 1) and independent of
ag and . Next, we can view the finite-state channel in terms of appropriately defined deterministic
functions g and § as

Bk = g(Br—-1, Xk, Z) (3.10)
y;c =g(ﬂk—-11Xk3Zk)’ (3-11)

where {Z;} are i.i.d. uniformly over [0,1) and independent of {Vk} and ¢ and 3;. We now see
that if { Xy} is passed through a DFSC, then we can view the joint state (o, 3i) as a stationary
Markov process that evolves according to

(ak,ﬂk):h(ak laﬂk 17Vk1Zk)7 (3-]2)
(Ye, X&) = hlak—1, Bre—1, Vi Zi) (3.13)

where h and h are deterministic functions. It can be shown that  and % can be defined so that
X™, Y™, 8", ao, Bo have the distribution given in (3.7). Therefore, (ax, B) is the state of a Markov
chain, which we refer to as the joint input/channel state. This new description allows us to see cer-
tain facts more easily. For example, it is now clear that (X7, Y;?) is independent of (X*~1,Yk—1)
conditioned on knowledge of (ak—1, Bk—1).

As a final restriction on the channel input processes, we require that the Markov process corre-
sponding to {(ax, G¢)} contain only transient states and a single ergodic class2. In Appendix B.1, it
is shown that all input processes for which the state process { oy } is an ergodic plus transient Markov
chain are admissible under this restriction. We restrict our attention to such input processes, the set
of which we denote by €. One convenient feature of Markov chains with transient states and a
single ergodic class is the existence of a stationary distribution over the states of the chain [25]. If
the distribution of (ay, Bp) is equal to this stationary distribution, then the process {(Xy, Yx)}52,
is said to be stationary.

When we choose an input distribution gy, |xo_, from & for use with the DFSCy

(B, X, gy, 3,1 x1,80+ ¥)» the coding scheme we develop is able to achieve the rate
lim I(X™Y")/n = Ho(X) — Hoo(X|D), (3.14)
n—o0

where X = {X} }22, is a K'th-order Markov process with the stationary initial state distribution
and transition pmf gy, xo__, and Y = {Y,}$2, is the output process resulting from passing the
Markov process X through the channel dy;,611X1,8, Without feedback with the stationary initial joint
input/channel state distribution for (ag, ﬁo) In addition, in (3.14), (X,Y) = { (Xk,Yk)}k s a
stationary process; also, He (X), Hoo(Y), and Hoo (X, ) denote the entropy rates for X, Y, and

*We refer to such processes as ergodic plus transient Markov processes or Markov chains.
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the joint process (X, ), respectively.? As additional notation, Hoo(X|)) 2 Hoo(X,Y)—Ho ().

To construct our coding scheme, we design subsystems that satisfy Subsystem Properties 14
with H, = H(X) and H, = H(X|Y), for all starting states of the channel. When we do,
Theorem 3.2.1 establishes that the scheme using these subsystems achieves a rate equal to the right-
hand side of (3.14).

3.3.1 Precoder

We now define a precoder s, : {0,1}" — X to be used in place of the function 7, in Chapter 2.
This precoder also relies on the principles described in Section 2.3.1.1, but has a different target
output distribution. Because the output of the precoder 7gs, : {0,1}" — Xt should be a process
distributed (approximately) according to gy | X9_, » We must define a different cdf Fig 3 whose
inverse is used to transform the uniformly distributed variable 0,.D™ + 27" Z, where Z is as in
Section 2.3.1.1. To define Fig 3, assume without loss of generality that X ={0,1,--- ,M — 1},
and let the base of all expansions in this section taken to be M. Choose & to be any ergodic state,
and let X = {X;}32, be a K'th-order Markov process with transition pmf gy, xo that starts
in the state & Mapping these sequences bijectively to the unit interval [0,1) (i.e., discarding the
sequences that end in an infinite sequence of (M — 1)'s), we let X be a random variable defined by
X =0p-X1 X2+, and we let Fg 3 be the cdf for X.
The precoder 7gs , is then defined by

Trsn (u) = ultFsn @) (3.16)

s n(d") = Tn (Fig' 4 (02.d" + 27" 2)), (3.17)

where the expansion in (3.16) is M-ary, and lgs, : [0,1) — N is defined as follows to ensure that

the output of the precoder stops in state & after enough digits of the M -ary expansion of FF"S1 X’(s)

have been put out to uniquely determine the first n bits of s:
Ipsn(u) = min{k : Fg([0p.ul¥), 0070 + 447%)) C 127, (i + 1)27") and u{’;}_ml] = a)
(3.18)
foru e FZ'([i2™, (i +1)27")) fori = 0,--- ,2" — L. (3.19)
This definition of s , gives rise to the analogs of the key precoder properties held by 7, from
Section 2.3.1.1:
Losslessness For any d"{0,1}", d" can be recovered from n and 7gs ,,(d").
Approximation If D™ is uniformly distributed over {0, 1}", then the elements of 7gs ,,(D™) form

a random process that can be generated by taking a Kth-order Markov process with transition
pmf gy | X0_,. and truncating it according to a stopping rule.

*The entropy rate Hoo ({ P,}32,) of a process { P, }32, is defined as [14]

Ho({P)20) = lim HE) (3.15)

59



Efficiency If D" is uniformly distributed over {0, 1}", then
Elf(mesn(S))] < (n+ Cfr)/Hoo(')?),

where C is a constant that is independent of n.

The losslessness and approximation properties are evident from the precoder definition, and a proof
of the efficiency property is provided in Appendix B.2. The efficiency property implies that Sub-
system Property 1 is satisfied, while the approximation property is needed to show that the precoder
with the source coder in the following section together satisfy Subsystem Property 2.

3.3.2 Source Coder

We define a source coder opsn, : X™ x Y* — {0,1}' to be used in place of the function o,, in
Chapter 2.
Like the source coder o, from Chapter 2, ogs , uses a Shannon-Fano strategy but must now
use a different statistical model for the dependence between the channel input and output. Let
= {X } denote a Markov process with transition pmf X, |X0_ and uniform initial state pmf,

andlet) = {Y}z 1 and {ﬂl =0 denote the output and state processes respectively, resulting from
passing the Markov process X through the channel 931,811 X1,60 without feedback with uniform

initial joint channel/input state distribution. Then, with X = 0ps.X™, and with FX|Y" denoting the
cdf for X conditioned on yn, OFs,n is defined by

orsn(z™,y") = ull, (3.20)

where the expansion in (3.20) is binary, and

u= Ffflf”‘ (Orr-2™|y™) + wxeny= (z"|y™) /2 (3.21)
l=[~logwyny(z"y"™)] + 1, (3.22)

where
Wxnyn (2"y") = p)a(nif,n(xnly"), for all z" € X", y" € Y. (3.23)

While the statistical model used in the source coder is again somewhat inaccurate as it was
in Chapter 2, it is sufficiently accurate to produce the following key bound, which is shown in
Appendix B.3:

E[L{,|] < E[L;) H(X|Y) + 5log E[L;] + Cy, (3.24)

where Cj; is a constant. Comparing to (2.40), we see that this source coder design satisfies Subsys-
tem Property 2, with H, = Hu(X|Y).

While it seems initially that evaluating F'g ... (Opr.z™[y™) is computationally expensive without
the convenient properties of DMC's and i.i.d. channel inputs, we can use actually use principles from
the Bahl algorithm [5] to perform this evaluation using a number of computations that is linear in n.
An algorithm for performing the evaluation is presented in Appendix B.4. This algorithm leads, in
turn, to a linear complexity algorithm for source coding and decoding.
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3.3.3 Synchrenization Sequence and Detector

Similar to the development of the replacement precoders and source coders, a replacement synchro-
nization subsystem for the code with parameter IV, consists of the detector

1 if ppey gen (¥ [0V [N]) > 2900)pg,  (y'Y)

| (3.25)
0 otherwise,

Srs,en (WY, OV [N]) = {

where {X;} and {¥;} are defined as in Section 3.3.2, and w(tx) is any function that is o (tn) but
bounded below by 3log ¢ty + oy (1). For concreteness, let us set w(ty) = /In. As the form of
(3.25) suggests, dfs ¢y (y*V) = 1 signals that *~¥ [N] has been detected.

With ¢ty set, as in Section 2.5, to v/N, we show in Appendix B.S that there is a choice of
@'~ [N] such that the p-bability of both false alarm and missed detection satisfy (2.56) and (2.57)
in Subsystem Property 4. The purpose of the term 2«(t¥ ) in (3.25) is to make this proof easier than
it might otherwise be.

3.3.4 Termination Coder—Modified Schalkwijk-Barron Ceder

The termination coding scheme remains an mSB coding scheme, with the two parameters « and
v taking the same meaning as in Section 2.3.1.3. The difference is that the inner codebook and
verification sequences ¢” and w" are chosen appropriately for the DFSCy. The coding theorem
for DFSC's [23] guarantees the existence of an inner codebook with probability of error decaying
exponentially in k. The same theorem also implies that the verification sequences can be chosen
so that the probability P, of confusing w” for ¢ and the probability P, of confusing ¢” for
w” decay exponentially in v, although, unlike the mSB coder for the DMC;, it is unclear what
choices of ¢ and w” give the minimum value of F,,,. Random coding arguments at least guarantee
the possibility of choosing the inner codebook and verification sequences so that the error decays
exponentially with v with exponent Ej ., the zero-rate random coding exponent.

To show that Subsystem Property 3 holds, consider the sequence of mSB codes corresponding
to the sequence of parameters xy = N'/4 with vy = [aN]. Then, using the same arguments as in
Section A.3, the expected output length is easily seen to be alN + on (N). Subsystem Property 3 is
therefore met with Ey equal to Fy .

3.4 Complexity

Because these subsystems satisfy the Subsystem Properties 1-4, Theorem 3.2.1 holds for the overall
compressed-error cancellation scheme that employs these subsystems. To complete the performance
characterization, we show that the scheme has linear time and space complexity under the uniform
cost criterion.

Because linear-complexity arithmetic coding algorithms exist for Markov sources [14], the pre-
and postcoder, which operate in a similar way, also have time complexity that is linear in the number
of precoder outputs under the uniform-cost criterion. This in turn, implies that the total arithmetic
operations required by these subsystems are linear in L*. Space cost is linear in L* when space for
buffering inputs and outputs is counted. Using a variation of the arithmetic coding algorithm in [63],
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we can also develop an implementation on a digital computer with fixed-length registers that runs
in linear time and space.

Using the linear-complexity method of Appendix B.4 for computing the relevant source cod-
ing cdf, the source coders and decoders also require a total number of computations that is linear
in L* under the uniform-cost criterion. When analyzing the running time of the algorithms on a
digital computer, however, we have to be careful. Certain quantities that must be computed in the
source coding algorithm need not be done with arbitrary precision, but the final answers that are
computed should be close to the true answers. But under floating-point arithmetic with p digits
allowed after the decimal point, with no limit on the size of the exponent, empirical studies indicate
that only O,(2P) computations can be performed with negligible ioss in accuracy. A source coder
based on the equations in Appendix B.4 requires that O, (n) computations be performed. To obtain
acceptable accuracy, then, it seems that we must allow O, (logn) digits after the decimal point for
a length-n input. Since additions or multiplications of n-bit numbers takes time proportional to n,
it appears that the actual time used on a computer may grow as O, (n logn).

The synchronization subsystem and mSB coding subsystem can both be shown to have total time
and space costs that are O~ (L*) under the uniform-cost criterion, because a recursion can easily be
developed so that the hypothesis tests required for decoding take a number of computations that is
linear in the length of the sequences being tested. On a digital computer, Oy (¢x) computations are
required for computing the relevant likelihoods each time égs ¢, is used. Because these likelihoods
may be in error by a multiplicative factor growing exponentially in ¢, On(ty) time seems to be
sufficient for each use of ds ¢, .

By combining these facts with the reasoning given in Section 2.6, we may conclude that the
coding scheme described herein has Or-(L*) time and space complexity.

While the time and space complexities are linear in the number of channel inputs for a fixed Kth-
order Markov input distribution, the number of computations needed per channel input increases
with K. Consequently, in the case in which arbitrarily large values of K are required to approach the
feedback-free channel capacity arbitrarily closely, the scheme cannot be said to have uniform linear
complexity in the sense described in Section 2.6.2. Note, however, that there do exist channels for
which the feedback-free capacity is achieved with a finite-order Markov input distribution; examples
include the Gilbert-Elliott channels and the class of channels Goldsmith and Varaiya [26] identified
as having i.i.d. capacity-achieving input distributions, which includes additive white noise channels
with symmetric PSK inputs and time-varying noise statistics or amplitude fading [26)].

3.5 Discussion

3.5.1 Choosing the Synchronization and mSB Sequences

In contrast to the coding scheme we developed for DMCy's, we have not given an explicit con-
struction for the synchronization sequences {0*~ [N]}x or for the various sequences used by the
mSB coder. The reason is that it is not evident how to construct such sequences. It is well known,
however, that random selection of sequences is adequate with high probability. That is, Markov's
inequality dictates that a sequence yields an error probability less than K times the average with
probability at least 1 — 1/K. Our view is that practically, random selection should suffice. While
random selection of codewords is traditionally objectionable because the resulting codebook has so
little structure that decoding and encoding complexity is exponential in the codeword length, this
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Figure 3-1: Diagram of a finite-state channel with feedback capacity of 1 — H (e) bits per channel
input but with feedback-free capacity zero. The label ({0,1}, 1/3) on the arc from state 3 to state 2
means that if O or 1 is put in to the channel in state 3, then with probability 1/3, a transition to state

2 occurs. The other labels have analogous meanings.

objection is not relevant in this case. An alternative to random selection of a single sequence is
pseudorandom generation of a new sequence each time the synchronization sequence is sent or each
time the mSB encoder is used. The performance of, say, the synchronization subsystem, would
then be equal to the performance, averaged over all sequences, and the bounds on average error

probability would apply directly.

3.5.2 Beyond Feedback-Free Capacity

Unlike a DMC, a DFSC may sometimes have a feedback capacity that is greater than its
feedback-free capacity. An example of a DFSC with such a property, which we note is not in-
decomposable, is given in Figure 3-1. The channel in this figure has input alphabet X = {0, 1,2},
state space B = {1, 2,3,4}, and output alphabet Y = X x B. The probability law associated with

the channel is defined as follows:

for all (s,zo,z1,2%) € {(1,1,2,0),

(2,0,2,1),

(3,0,1,2)},
qy,s,|x,5, ((%1,7), j|T0,8) = €/3, §=1,2,3, (3.26a)
qy,s,1x,50 ((z0,7), 3lz1,8) = €/3, j=1,2,3, (3.26b)
qy,5,1X,50 ((Z0,5), 3lT0,1) = (1 —€)/3, j =1,2,3, (3.26¢)
qy,s,1x,50 ((Z1,5), j|z1,1) = (1 —€)/3, j=1,2,3, (3.26d)
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QY,SllX,So((‘T*’ 4)’ 4|$*’ 1) =1 (3263)

The meaning of this probability law is as follows: State 4 is an absorbing state that has zero capacity
when viewed as a DMC; the transmitter must avoid using the symbols 0, 1, and 2 from states 1, 2,
and 3, respectively to avoid entering state 4. In state 1, an input of 1 yields output (1,-) with
probability 1 — € and (2,-) with probability ¢; an input of 2 yields output (2, -) with probability
1 — e and (1,-) with probability €. In other words, in state 1, if only inputs 1 and 2 are used, then
the channel is like a BSC with crossover probability € and moves to states 1, 2, or 3 with equal
probability. In state 2, the inputs O and 2 behave similarly, and in state 3, the inputs 0 and 1 also
behave similarly.

The channel output symbol contains information about the next state. With feedback, the trans-
mitter can know the current state of the channel and therefore which symbols it may use and which
symbol it must avoid, allowing 1 — H(e) bits per channel input to be transmitted. Without feed-
back, the transmitter has no way of knowing which symbols it may use and must avoid all the input
symbols, resulting in zero capacity.

For this channel, we can still use the principles of the compressed-error-cancellation framework
but must modify the precoder so that its input distribution adjusts according to the feedback. Assume
that the initial state is known to be state 1. The source symbols input to the precoder are a sequence
of 0's and 1's. Then the precoder performs the following mapping, which depends on the current
state of the channel: in state 1, the source symbol 0 is mapped to channel input symbol 1 and the
source symbol 1 to the channel input symbol 2; in state 2, 0 is mapped to channel input symbol 0
and 1 to channel input symbol 2; and in state 3, 0 is mapped to channel input symbol 0 and 1 to
channel input symbol 1.

The subsequent source coding step is straightforward. The locations of all “crossovers” (e.g.
an input of O becoming an output (2, -) in state 2) could be coded using about N H (¢) bits, and the
same process could be used to precode this second message. Continuing in this fashion, it appears
that rates approaching 1 - H(¢), far greater than the feedback-free capacity, might be achievable.

It is unclear to what extent this example can be generalized. One obstacle toward complete
generalization seems to be that in the general case, the precoder does not necessarily seem to be
able to generate even its first channel input without knowledge of the input distribution of second
channel input. But the proper input distribution for the second channel input may depend on the first
channel input. We were able to circumvent this problem in the above example only because it was so
contrived. This difficulty may lend some insight into why so little progress has been made on finding
feedback capacity of DFSC's and feedback-capacity-achieving coding strategies. Furthermore, we
do not believe the difficulty is unique to our framework. Any feedback-capacity-achieving coding
scheme would seem to involve adaptive adjustment of the input distribution. Yet even mapping the
message bits to an appropriately distributed channel input sequence seems to present a significant
challenge.

3.5.3 Computational Delays

We first observe that the issue of computational delays discussed in Section 2.8.1 is important for
this coding scheme because the feedback sequence y™ is needed in its entirety before the source
coder can perform its function. Because of this requirement, the interleaving technique outlined in
Section 2.8.1 is especially relevant for this coding scheme.
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But for the same reasons that proofs for fixed-length source coders and fixed-length precoders
are difficult, it appears difficult to argue rigorously that interleaving would not affect the total rate
asymptotically. Because the central limit theorem holds for sums of random variables from a wide
variety of processes [10], we conjecture that interleaving does not reduce the rate of the scheme
asymptotically.

3.5.4 Fixed-Length Precoding and Scurce Coding

We observe that the techniques used in Appendix A.9 to prove that the fixed-length precoders and
source coders have exponentially decaying probability of decoding error would not carry over for
the analogously defined fixed-length precoders and source coders for DFSCy's.

If the precoder were made fixed-length, we believe that it would be possible to use results like
the central limit theorem for a-mixing processes [10] to prove similar results for the precoder.
Whether we could prove the analogous results for an appropriate fixed-length source coder is less
clear.

3.5.,5 Summary and Future Directions

We have developed a linear-complexity coding scheme giving exponentially decaying error prob-
abilities at any rate below what is essentially the mutual information induced by passing a given
finite-order Markov input distribution through an indecomposable DFSC.

Aside from some of the research problems discussed above, we would like to determine higher
moments or exact pmfs of L; and L7. We would also like to prove that finite-order Markov input
distributions are sufficient to achieve feedback-free capacity. Since the amount of memory in the
Markov input process does affect complexity, it is of interest to determine the relationship between
memory and achievable rate.
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Chapter 4

Unknown Channels

4.1 Introduction

The statistical characterization of a channel is often not given. Rather, it must measured. In many
cases, the measurement process results in an accurate model of the channel for all time. The results
of the previous two chapters are useful for these cases. But if the channel's statistical characteri-
zation varies with time in an unknown way, then a measurement at a given point in time may not
describe the channel at other times. As an example of a channel that varies with time in an unknown
way, suppose that one has a wireless link from portable computer to a network node fixed in the ceil-
ing. One might send a message from the computer to the node, move the computer, send another
message, move it again, etc. Because each position of the computer results in a new set of physical
paths over which the signal travels, the channel varies with time. Because each message is only
affected by one position of the computer, each message is effectively transmitted over a different
channel. The transmitter has to send data reliably over a number of possible channels. We say in
this case that the channel is unknown, because it is one of a set of possible channels. The channel
that actually prevails is called the realized channel.

When feedback is not available on an unknown channel, a predetermined, fixed-rate codebook
must be used independent of the realized channel, and information learned by the receiver about
the channel (either implicitly or explicitly) can only be used to optimize the decoding portion of
the system. In such scenarios, in addition to the task of designing the single codebook that must be
usable on every realizable channel, one must construct universal decoders that can reliably decode
the transmitted message without explicit knowledge of the channel no matter what channel is real-
ized. Examples of powerful universal decoders that work with unknown DMC's and with a subclass
of unknown DFSC's are described in [15] and [66], respectively; these decoders yield the same
error exponent as maximum-likelihood decoders, which must know the channel. More recently, the
results of [66] were extended to arbitrary unknown DFSC's [38].

For unknown channels with feedback, it is possible to develop communication schemes that im-
plicitly or explicitly learn the channel parameters and use this information to adapt the transmission
rate to the channel quality, jointly optimizing both the encoding and decoding processes; these can
be viewed as universal communication schemes.

Simple forms of universal communication are increasingly used in practice. Examples include
current voiceband modems, which use a two-way protocol for determining an acceptable rate based
on the quality of the channel. More generally, a variety of simple universal communication schemes
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involve the use of training data. In particular, channel measurements obtained during a prelimi-
nary training phase are subsequently used to specify the transmitter and receiver parameters for the
system. However, on time-varying channels, the system must be continually retrained, which can
substantially reduce throughput. More efficient universal communication schemes avoid the use of
training data and effectively learn what they need about the channel from the received data symbols,
i.e., in a blind manner.

In this chapter, we develop universal communication counterparts to universal decoding schemes
of this type for unknown channels with feedback. For unknown DFSCy's (UFSCy's) (i.e, the real-
ized channel is a DFSCy), we show that a compressed-error-cancellation approach can achieve some
attractive asymptotic characteristics. In particular, exploiting low-complexity Lempel-Ziv type uni-
versal source coding [66] in this framework allows us to achieve rates approaching the mutual infor-
mation between input and output determined by the realized channel and a fixed input distribution.
Moreover, the complexity of the scheme is of the same order as that of the corresponding scheme for
known DFSCy's, and the error probabilities also decay exponentially with average decoding delay.
Only the mutual information rather than the feedback-free channel capacity of the realized channel
1s achieved (although the two may be the same in some cases), because we specifically avoid having
the input distribution to the channel vary as a function of feedback to simplify both implementation
and analysis.

We begin the detailed development of our universal communication scheme by defining what
constitutes a variable-length universal communication code and how its performance is measured
in Section 4.2. We then move to a description and analysis of a universal coding scheme in Sec-
tions 4.3-4.5, and end with a discussion of remaining issues and future directions in Section 4.6.

4.2 Formulation of Variable-Length Coding for Unknown Channels

We define an unknown discrete finite-state channel with feedback (UFSCy) to be a set of DFSCy's
Q, with given starting states, with a common input alphabet X and output alphabet Y.

A variable-length code for an unknown channel is specified just as for the known-channel case
as the 4-tuple (V, e, {x:},A), where the elements of the tuple have the same meaning as in the
known-channel case (see Sections 2.2 and 3.2). If we apply this code to a channel g € Q, we obtain
a certain rate and probability of error as defined in Section 3.2. Thus, the rate and probability of
error for the code are functions of q. We call these functions the rate function and error function
associated with the code.

A coding scheme is exactly as defined in Sections 2.2 and 3.2, namely, a function of two param-
eters p; and p, whose output is a variable-length code.

Diverging somewhat from the formulation in Section 2.2, we find that for analysis of universal
communication schemes, it is convenient to consider properties of sequences of codes rather than
coding schemes. We say a sequence of codes {a,}, attains a rate function R : Q — [0, oo) if for
each g € Q, the corresponding rate sequence { R,,(g)} and probability of error sequence {P,(q)}»
satisfies

liminf Ry (q) 2> R(q) 4.1)
limsup P,(q) = 0. 4.2)
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We say the code sequence attains an error exponent function F' : Q — R if for each ¢ € Q, the
corresponding rate sequence { R, (q)}, and probability of error sequence { P,(g)}, satisfy
lim inf — Fn(9) 1og Pa(g)
Nn

n—00

> F(q), (4.3)

where N,, is the number of message bits in the code a,,.
Because the notion of uniform convergence to rate functions or error exponent functions leads
to some complex issues, we defer a discussion of this notion until Section 4.5.

4.3 A Universal Communication Scheme for a Class of UFSC's

The coding scheme developed in Chapters 2 and 3 for channels whose parameters are known a
priori can be extended rather naturally to UFSCy¢'s. In developing such extensions, it is convenient
to restrict our attention to UFSC¢'s Q whose constituent DFSCy's are indecomposable.

To begin our development, we first choose a Kth-order Markov input distribution gy, X9_,

from the class & (defined in Section 3.3) of admissible distributions, just as we did at the outset of
Section 3.3. Given a particular choice of input distribution, then the coding scheme we describe

achieves the rate function I : Q — (0, 0o® defined by

1(q) £ Hoo(®) — Hoo(X|I(q)), (4.4)

. and Y(g) =
{Y:(q)}2, is the stationary output process that results from passing the Markov process X through
the DFSC ¢ without feedback.

Note that in contrast to the behavior described above, a feedback-free communication system
cannot transmit at a rate above the capacity of the compound channel corresponding to Q [23],
which is less than or equal to the capacity of every channel in Q. At the same time, it is important
to stress that because we do not consider adapting the input distribution to the realized channel, the
rates our strategy achieves are not, in general, the best possible for a feedback scheme. Indeed, in
principle, at least the feedback-free capacity of the realized channel can be achieved by varying the
input distribution using, for example, a training-sequence based method. Nevertheless, there are
many practical situations in which the capacity-achieving input distribution is the same for all the
possible realizable channels, in which case the fixed input distribution causes no harm.

To achieve the rate function I, it is sufficient that the various component subsystems are such
that the following four properties are satisfied:

where X = {X;}$°, is a stationary process distributed according to 9x1 X0

Universal Subs; stem Property 1 Subsystem Property 1 from Section 2.4 is satisfied with H(X)
i2placed by Hoo(X).

Universal Subsystem Property 2 The precoders {7, }52; and the source coders {o,, : X" x Y* —
{0,1}1}%2, are such that for each channel ¢ € Q, there is a function )\,

E[qu+l} S E[Ll] H(A_/'J_)(Q)) + ’\Q(E[Ll])a fori = 03 ttt ’BN - 1’ (45)

where ), also has the properties that A\;(z)=o0.(z) and ), is non-negative, monotonically
increasing, and concave (M) over [1, 0o).
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Universal Subsystem Property 3 The termination coding scheme c'™ takes two parameters « and
v and returns a code. For any a > 0, there exists a sequence of parameters {(kn,¥n(a))}2,

such that for each ¢ € Q, ¢*™(kp, vp(a)), whose corresponding encoder is denoted e,
encodes k, = [n!/ 4] message bits into an average number of channel inputs 7,(q) =

an + ¢1,4(n), where @1 4(n) = 0,(1). Furthermore, for each channel ¢ € Q, there ex-
ists a constant Ey(g) > 0 and a function ¢24(n) = 0,(1) such that the error probability
P term,n (q) associated with "™ (k,,, v, () operating on g is bounded according to

Pen(0) < expa{ ~1n(@) ( Eala) = onqlr) b 4.6)

Universal Subsystem Property 4 With {¢,}52, a sequence satisfying ¢, = 0,(1), the sequence
of detector-sequence pairs {(d;,, 0" [n])}32, is such that on each channel g € Q, there exists
a constant Mump(g) < 1 and functions 91 ¢(n)=0,(n"3) and Y3 4(n)=0,(1) such that the
false-alarm and missed-detection probabilities Pra ¢, (¢) and Pup,s, (¢), respectively, associ-
ated with each use of §;, by the receiver satisfies

Pra g, (q) < 91,4(n) 4.7
Pup,t, (9) < Mmp(g) + ¥2,4(n). (4.8)

Then let cy be a coding scheme mapping N and v to a code that is identical to the code described
in Section 2.3 with the modifications from Section 2.5 but for the fact that it substitutes subsystems
having the properties above for the corresponding ones in Section 2.3.

We can then prove the following theorem:

Theorem 4.3.1 Let {(kn,v,(a)}32, be the sequence of termination-code parameter values de-
scribed in Universal Subsystem Property 3. If I(q) > 0 for all ¢ € Q, then the sequence of codes
{(cu(N,vn (@)}, attains the rate function 7 : Q — (0, 0o) defined by

r(q) = I(q)/(al(q) +1) (4.9)

and the error exponent function Ey 4 : Q — (0, 0o) defined by

r(9)
Boale) = (1- 12 o) (4.10

Remark: This theorem immediately implies that the rate function I is achievable, since as « —
0,7(q) — I(q).

Proof: Let us fix ¢ € Q. Then Universal Subsystem Properties 1-4 imply that Subsystem
Properties 1-4 from Section 3.2 hold for ¢, and the theorem follows by using the same arguments
used to prove Theorem 2.4.1. o

In the following sections, we describe and analyze precoding, source coding, synchronization,
and termination coding subsystems that satisfy the Universal Subsystem Properties. We discuss
uniform convergence in Section 4.5.
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4.3.1 Precoder and Source Coder

To begin, note that because the input distribution is fixed regardless of the realized channel, the
precoder described in Section 3.3.1 for DFSCy's can be used as-is in our extension to UFSCy's.
However, as we develop in the remainder of this section, the source coder for this case is substan-
tially different. The source coder we develop, which we refer to as a conditional Lempel-Ziv coder,
is based on the universal decoder introduced in [66].

The conditional Lempel-Ziv encoder ocrz : Xt xYt — {0, 1} codes a sequence z* € X™ based
on a sequence y™ € Y" so that =™ can be recovered from ocrz(z™|y™) and y™. This is accomplished

via a Lempel-Ziv parsing (1978 version, [67]) of the sequence 2", where z; = (z;,y;) € Z = XxY.
This parsing is completely described by the phrase indices {p; §=1> where cis the resulting number

of phrases. In particular, the jth phrase is zﬁj“_l and has length p; 1 — p;.
In describing the encoding, it is convenient to define!

Jgl=1{ : ¥ =73}, 4.11)
so that?
]2 1))

denotes the number of phrases in the parsing of 2™ that match the tuple 7 in their y-components.

clg

With this notation, the z-component of the jth phrase of 27, i.e., azgj“ !, isencoded by the final

letter z;, ., -1 of the phrase along with the index in J [ygj +1_2] of the phrase whose z-component is

x£j+1_2; this encoding requires approximately log | X'| + log c[y,’,’j +’_2] bits. The decoder can then
recover z™ from this encoding provided the encoder also sends the phrase lengths {p;+1 — p; }§=1-
The encoding process is depicted in Figure 4-1.

To analyze the expected length of the conditional Lempel-Ziv encoding, we exploit the follow-
ing bound, which we prove in Appendix C.1:

Uocrz(™[y")) < ~ 108D gn gn(y) (@"ly™) + Aq(n), @.12)

where

< A . (n+2)loglog(n +2)
Ao(n) =G log( + 2)

t

with C; a constant independent of n but dependent on g (in particular, on the size of the state space
of q). The processes { X} and {Yy(q)} referred to in (4.12) are defined in the same way as in
Section 3.3.2, with the dependence of the channel output process on the realized channel ¢ shown
explicitly.

Using this property, it can be shown that a variant of (3.24) describing the interaction between

'For typographical reasons, we use square-bracket notati: 1 as a substitute for subscript notation.
’The cardinality of a set A is denoted by | A|.
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Figure 4-1: Graphical representation of conditional Lempel-Ziv encoding of z" € {0, 1}" based on
y" € {0,1}".

the source coder and precoder still holds. In particular, we have

E[LY,,] < E[L;] Ho(X|Y(q)) + 5log E[L;] + Cy 4 + E[M(L;)] (4.13)
< E[L;] Hoo(X|Y(q)) + 5log E[L;] + Cy 4 + A(E[L;)), (4.14)

where Cj ; is a constant independent of E[L;] but dependent on q. To obtain (4.14), we exploited the
concavity® of Aq with Jensen's inequality. Letting Ay(z) = A,(z)+5log z-+C, 4, we see that Agisa
non-negative, monotonically increasing, concave function over [1, c0) and that limg_, o, Ag(z)/z —
0. Thus, Universal Subsystem Property 2 holds for this source coder.

4.3.2 Synchronization Subsystem

For the synchronization subsystem in a particular universal code with parameter N, we use a se-
quence @'~ [N] that is independent of the channel, and modify the detector for the sequence so as
not to rely explicitly on knowledge of the channel statistics.

Following the general universal decoding strategy developed in [66], a universal method for

*The second derivative with respect to z of (2 + z) log log(2 + z) /log(2 + ) is

_ (log(z +2) — 2)(loglog(z +2) ~ 1) + 1
(= +2)log*(z + 2) ’ (4.15)

which can be shown to be negative for all z > ~1.



detecting the presence of the sequence §'~[N] involves a detector of the form

: t | (At tNY) _
Suen (W™, OV [N]) = {1 ifup(y™ 0% [N]) < (y™) = C(tw). (4.16)
0 otherwise,
where
2
ogin

In (4.16), the function u; : Y! — N returns the length of a Lempel-Ziv encoding of ¥ € Y, while
the function us : YT x Xt — N returns the length of the conditional Lempel-Ziv encoding of yty
given Q!N [N].

As in Chapters 2 and 3, we let ty = [v/N]. We then show in Appendix C.2 that by choosing
the sequence Q¥ [N] randomly and using the detector dy;, , (4.7) and (4.8) are satisfied; in the
process, why ( is chosen as the strange looking function in (4.17) becomes evident. Hence, we
design the synchronization subsystem to pseudorandomly generate a new sequence ('~ [N] each
time a synchronization sequence is sent over the channel.

4.3.3 Termination Codes

We can again use mSB codes for encoding the block of data generated after By iterations of the
compressed-error-cancellaiion procedure, though the decoding process required at the receiver is
more elaborate. In particular, to decode the inner code and to distinguish ¢” from w”, we use the
universal decoders developed by Ziv in [66]. It is shown in Ziv [66] and Lapidoth and Ziv [38]
that under certain conditions, Ziv's universal decoder performs, in a certain sense, asymptotically as
well as a maximum-likelihood decoder. While these results do not specifically address the universal
decoding of a codebook containing exactly two codewords, which is of greatest interest for our
purposes, they can be extended for this case [37]. In particular, the extended results state that if the
codewords of a two-codeword codebook are drawn uniformly from a permutation invariant set, then
the error exponent associated with average probability of error incurred by Ziv's universal decoder
is asymptotically the same as the error exponent associated with the average probability of error
incurred by a maximum-likelihood decoder.

The effective channel input distribution is restricted, because a uniform distribution over some
permutation-invariant set corresponds to some i.i.d. input distribution. It is unclear which i.i.d.
input distribution would be the “best” to use for Q, so to be specific, let us consider the case in
which the input distribution is uniform over all channel inputs, bearing in mind that this need not be
the case. Using the extended results from [37], we can say that Ziv's universal decoder achieves the
error exponent E vy (g) associated with maximum-likelihood decoding on such a randomly chosen
two-codeword codebook.

Using now the same mSB scheme as in Section 2.3.1.3, with all the necessary sequences as-
sumed chosen according to the appropriate distributions, we find that Subsystem Property 3 is sat-
isfied with Eg(q) = E2mL(g). Note that we must assume that the necessary sequences are chosen
pseudorandomly. Since the sequences are assumed to be i.i.d. uniformly over the input distribution,
it is particularly easy to generate such sequences pseudorandomly.
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4.4 Complexity

The universal communication strategy has some attractive complexity characteristics. In particular,
it is straightforward to verify that the complexity of the overall scheme for UFSCy's is of the same
order as that for known DFSCy's under the uniform-cost criteria. To see this, it suffices to note that
under both cest criteria, the time and space complexity of conditional Lempel-Ziv encoding and
decoding can be shown to be linear in the length of the input, and that the time and space complexity
of Ziv's universal decoding procedure, which is based on conditional Lempel-Ziv coding, can also
be shown to have the same time and space complexity as maximum-likelihood decoding. Since
real numbers are not manipulated anywhere in the source coding, synchronization or termination
coding subsystems, this characterization should accurately reflect the behavior of the algorithms on
a digital computer. We note finally that the space complexity of the conditional Lempel-Ziv coder is
linear and would be linear even if memory used for buffering inputs and outputs were not counted.
This behavior differs from that of, say, an arithmetic source coder of an i.i.d. source, which requires
only constant space when buffering requirements are ignored.

4.5 Uniform Convergence

For universal decoders, Lapidoth and Ziv [38] distinguish between non-uniform convergence of
their decoder's performance to the maximum-likelihood decoder, which they call weak universality,
and uniform convergence, which they call strong universality.

For a feedback scheme, one natural notion of uniform attainment of a rate function r would
mean that some sequence of codes would have a sequence of rates { Ry(q)} and probabilities of
error { Py(q)} so that

limsup inf Ry(q)/r(q) > 1 (4.18a)
Nooo 9€9
liminfsup Py(q) = 0. (4.18b)
N-ooo qeQ

Similarly, uniform attainment of an error exponent function F' would mean that

limsup inf —Rn(q) log Pn(q)/(NF(q)) > 1. (4.19)
N—ooo 9€9

With ¢y denoting the universal coding scheme that uses the subsystems described in Sec-
tions 4.3.1-4.3.3, the sequence of codes {cy(NV,[aN])}n does not uniformly achieve the rate
function r defined by r(q) = I(g)/(aI(q) + 1) without constraining Q. For example, let Q be the
set of all BSCy's, and choose the input distribution to be i.i.d. and uniform over {0,1}. Then for
any value of IV, a channel would exist such that the verification sequences used by the termination
coder would be nearly indistinguishable. The probability of error could not, therefore, uniformly
approach 0.

Could the error exponent function Ey , be attained uniformly? The answer still seems to be
“no.” For any particular N, the number of iterations By would be fixed, and there would be a
channel q with crossover probability €(g) such that the expected number of final message bits would
be about N/2, i.e., H(e(g)) = 2~'/B¥, requiring more than aN2/(2x) channel inputs to transmit,
giving an error exponent less than about 2Eysa/N. But Eyo(q) ~ Epa(l — 271/BN) which
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approaches 0 much more slowly than 2Eyx/N, which implies that the error exponent function
cannot be attained uniformly in the sense described above.

Even if we were allowed to know the channel and could use the scheme from Chapter 3, but
had to fix N and v before knowing the channel, we would not be able to uniformly attain these rate
or error exponent functions. That they are not uniformly attainable is not so much a product of our
universal scheme as a product of Q. We would like to separate the analysis of properties of Q from
the properties of the universal coding scheme. In Lapidoth and Ziv's work on universal decoding,
analogous difficulties are avoided by competing with the maximum-likelihood decoder, rather than
by evaluating convergence to a particular error exponent function.

The maximum-likelihood decoder is a natural benchmark, because it is the optimal decoder in
the sense of minimizing probability of error. But when feedback is available, it is not clear what
scheme would represent a natural benchmark. One possibility is to compete with the scheme of
Chapter 3. The drawback of such an approach is that we do not know if that scheme is optimal
in any sense. If the universal scheme does not converge to that scheme in some sense, then noth-
ing prevents us from changing that scheme for the worse until the universal scheme does achieve
uniform convergence.

In the absence of a better alternative, let us explore this comparative approach. It happens
that is it still difficult to prove that any interesting uniform convergence properties hold. Let ¢4 s
be the coding scheme described in Chapter 3, designed for channel ¢, with the additional con-
straint that the mSB verification sequences ¢” and w" are chosen randomly and uniformly from a
permutation-invariant set and distinguished with a maximum-likelihood decoder. Also let cy draw
its mSB verification sequences from the same permutation-invariant set. If P, is the probabil-
ity of error associated with cqrs(n, [an]), and Py 4, is the probability of error associated with
cu(n, [an]) operating on g, then an extension [37] of the results of Lapidoth and Ziv [38] imply
that lim,, o Supgeq log Py gn / P, , = 0. The reason is that the probability of error for the univer-
sal scheme is essentially determined by the probability of confusing w” for ¢”. On the other hand,
the rates of the two schemes cannot be shown to converge uniformly to one another. The fault lies
with our inability to show that the probability of confusing ¢” for w” under maximum-likelihood
decoding is uniformly small for all g. Without this fact, the degraded performance introduced by
universal decoding can cause an unacceptably large number of mSB retransmissions. Similarly, we
must also show that the probability of missed detection of the synchronization sequence is also uni-
formly small for all g. We believe restrictions on Q may be required to show that these probabilities
are uniformly small.

For uniform convergence to the actual rate function — rather than to the rate of an opponent
scheme — to occur in the sense of (4.18), some constraints must be placed on Q itself. For a uni-
versal coding scheme satisfying the Universal Subsystem Properties 1-4, the most straightforward
constraints allowing uniform convergence to the rate I(q)/(al(q) + 1) are the following:

inf I{q) > 0 (4.20a)
¢€Q

inf Ey(q) >0 (4.20b)
gqeQ

lim sup Ag(n) =0 (4.20c)
n—00 qEQ

lim sup ¢ 4(n) =0 (4.20d)
n—co qu
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nan;o ‘sltelg p24(n) =0 (4.20e)

. 3 _
Jim 2161811 P1,4(n) =0 (4.20f)
Jim sup D2,4(n) =0 (4.20g)
sup MMD,tn <1 (4.20h)
q€Q

These conditions are also sufficient to give uniform convergence to the error-exponent function Ey o
in the sense of (4.19) (actually, (4.20b) need not hold).

These conditions essentially say that for each subsystem, there is a most antagonistic channel
in Q. The parameter /N must then be chosen large enough so that each subsystem copes reasonably
well with its most antagonistic channel.

As an example showing that the constraints can actually be met, we note that if, for example, Q
were composed of all BSC¢'s with crossover probabilities less than z, where = < 1/2, then Q would
meet the above constraints. We have already shown that there are sets of channels Q such that the
constraints are not met.

4.6 Discussion

4.6.1 Choice of input distribution

The range of rates achievable with this scheme depends on the choice of input distribution. Because
the coding scheme achicves a different rate for each realized channel, trying to optimize the rate
leads to a multicriteria optimization problem, whose solution depends in general on the goals of the
system designer. Nevertheless, as a default, one reasonable choice of input process for an arbitrary
set of channels Q is an i.i.d. sequence of random variables uniformly distributed over X. This choice
at least guarantees some positive mutual information for every channel having positive capacity.
This is easily shown by verifying that the expression n log |[X| — H(X™|Y™) > 0 for some n unless
for all n, pyn|x»(y*|z") = py~(y™) for all z" and y", which would imply a channel with zero
capacity.

4.6.2 Computational Delays and Maximum Quality

Recall from Section 2.8.1 that if a computer providing a fixed number of computational resources
per unit time is used to carry out the encoding, then we require the computer to be at least fast
enough to be able to source code and then precode n channel inputs in the time it takes to transmit
nF(q) samples, where F(q) = Hoo(X|V(q))/Hoo(X). In the case of universal communication,
because F'(g) may be different for each g, it seems that infycq F'(g) must be strictly positive to
be able to choose a computer that is sufficiently powerful to carry out the interleaving solution
described in Section 2.8.1.

4.6.3 Summary and Future Directions

We have developed a linear-complexity coding scheme giving exponentially decaying error prob-
abilities at any rate below what is essentially the mutual information induced by passing a given
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finite-order Markov input distribution through an unknown indecomposable DFSC.

The universal communication scheme we have introduced is not practically viable at rates near
the mutual information, because extremely long blocklengths are required before the rates of the
conditional Lempel-Ziv coders become reasonably close to their asymptotic values. Since the com-
putation per channel input used is approximately a constant, long blocklengths present no problems
in terms of time spent computing, but at some point, delay and storage may become the limiting
factors. It may be more practical to probe the channel with training data first, identify the channel,
and then use a feedback scheme such as that described in Chapter 3.

Nevertheless, the universal communication scheme we have described is important, because it
shows that universal communication at rates that vary with the realized channel can be accomplished
without the use of training data, which in general reduces the attainable error exponent. While
the universal communication scheme we have described may not always attain the best exponent,
because the input distribution does not adapt to the channel, there are cases in which variants of
the scheme could achieve the maximum error exponent achievable by any feedback scheme that
knows the realized channel a priori. An example of such a case is when the unknown channel is
the set of all BSCy's with crossover probability less than some upper bound z < 1/2. In this case,
the mSB scheme would be able to use the all-zeros and all-ones sequences as ¢” and w”, which
could be distinguished optimally without knowing the channel by using a simple majority vote.
In this case, the error exponent of the universal coder would be the optimum achievable by any
scheme. While this sort of performance is not necessarily typical, it demonstrates that the universal
scheme we have developed can achieve performance that could seemingly never be achieved with a
training-sequence-based approach.

Among a variety of interesting and promising directions for further research with this approach
to communication with feedback are extensions to the scheme that involve adapting the input dis-
tribution according to the feedback to achieve the feedback capacity of the realized but unknown
DFSC.
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Chapter 5

Multiple-Access Channels

5.1 Introduction

In the preceding three chapiers, we develop and apply the compressed-error-cancellation frame-
work to the single-user case, i.e., the situation in which a single transmitter must send data to a
single receiver. But often in practice, multiple transmitters must simultaneously send data to mul-
tiple receivers. If the transmitters share the same channel in some sense, then the complications
introduced by the mutual interference invalidate the single-transmitter, single-receiver model.

Of particular importance are multiple-access channels, which, by definition, arise when multi-
ple transmitters send data to a single, common receiver. Most wireless networks and many wired
networks employ a multiple-access channel in the following way: a number of end users send data
to a central hub (e.g, a base station) which forwards the data to another hub, which forwards the
data to another end user; the channel from the end users to the common hub is a multiple-access
channel.

An expansion in the number of data networks, especially wireless ones, such as cellular tele-
phone networks, has given rise to a parallel expansion of interest in multiple-access channels. One
of the central questions of interest is, just as in the single-user case, how to send data at high rates
with a reasonable amount of computation and low probabilities of error.

Much of the information-theoretic work on multiple-access channels has focused on finding the
maximum rates at which it is possible to send data reliably, given unlimited computation and delay.
Liao [39] and Ahlswede [2] determined the set of achievable rates, known as the capacity region, for
discrete memoryless multiple-access channels (DMMAC's), which are discussed further below. But
since the proof of the achievability of these rates is non-constructive in the same sense as Shannon's
coding theorem is non-constructive, much practical work has been focused on finding computation-
ally feasible methods for achieving rates close to the frontier' of the capacity region. The dominant
approach in practice has been to partition the channel according to time (time-division multiple ac-
cess), frequency (frequency-division multiple access), or some other space (code-division multiple
access) into several (nearly) independent channels. After partitioning, each user communicates to
the receiver as though the channel were a single-user channel and can employ coding techniques
developed for this case. In general, these methods do not allow rates arbitrarily close to the frontier

"The frontier of an achievable region in rate-space is the set of achievable points at which one user's rate is maximized
given the other user's rate is fixed.
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of the capacity region.? Moreover, excepting the time-division technique, these methods are inap-
plicable to all but a small (albeit very practical) subset of multiple-access channels, namely those in
which the transmitters' input symbols and noise are additively combined to form the output symbol.

The question we address in this chapter is whether and if so, how feedback can be used to
reduce the computation required for coding over a multiple-access channel. In particular, we focus
on two-user DMMAC's with feedback (DMMACY's), primarily for the sake of simplicity.

A two-user DMMAC is described by a 4-tuple (X1, Xo, qy|x,,x,> 9), which specifies the for-
ward channel. The finite set X, is the range of allowable inputs to the channel by Transmitter 1
(Tx-1); the finite set X is the range of allowable inputs by Transmitter 2 (Tx-2); the finite set Y is
the range of possible channel outputs; and the function dy|x,,x, describes the statistical relationship
between the two transmitters' inputs and the channel output. The following definition completes the
meaning of this 4-tuple:

Definition 5.1.1 Let {Yj}22,, {X14}22; and {X5;}22, be random processes. Then {Y;}$2 | is
the output process resulting from passing {X),}32, and {Xo4}32, through a DMMAC
(X1, Xa, @y |x,, x5+ ) (or just ay|x,,x,) Without feedback if for all® n > 0,

n

pynxp xp (Y"1, 25) = H ay(x,,x2 (Yk|T1,k, To k) (5.1
k=1

for all z7 € X7, 25 € X7, and y" € Y".

Like a DMCy, a DMMAC; has feedback channels that are noiseless, delayless, and have sufficient
capacity to feed back the receiver's complete observation. At time k, both transmitters know the
value of the channel outputs from time 1 to time kK — 1. A DMMAC; is then defined analogously to
a DMCs as follows:

Definition 5.1.2 Let M be a random variable taking values in M. For all m € M, let {f,,,;}%2, be
a sequence of functions, where f,; : Y~! — X; x X maps a sequence of 7 — 1 channel outputs
to a single channel input pair, and f, ; takes a constant value in X; x X5. Then {Y%} is the output
process resulting from passing M through a DMMAC; (X1, Xa,qy|x,,x,,Y) (or just qy|x,,x,) via
{{fmi}2 tmem if foralln > 0,

n
pym(y"|m) = H qy|X,,X2 (k| fme (WF 1)) (5.2)
k=1

forall y" € Y* and all m € M.

The capacity region of a DMMAC is defined as the closure of the set of achievable rate pairs.
The capacity region of a two-user DMMAC gy x, x, is known [39, 2] to be the closure of the set

?In theory, CDMA in conjunction with optimal decoding allows rates arbitrarily close to the frontier of the capacity
region on additive white Gaussian noise channels. Optimal decoding, however, is computationally very expensive.
*We rely on context to distinguish between z3's denoting (2,1, - - - ,E2,n) Versus (T2, -, Tn).
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R, which is defined by

R=co {(T‘l,’r‘g) < I(Y;Xlng),Tz < I(Y;X2|X1),and 1+ 79 < I(Y;Xl,Xg)

for some random variables X;, X5, and Y satisfying

Py, X1,x2 (¥: T1, T2) = px, (T1)Px, (T2)ay|x,,x, (Y21, 72)

forall z; € Xy, all z3 € Xp,and ally € ‘j}, (5.3)

where coA denotes the convex hull of a subset A of Euclidean space. Any rate pair outside
the closure of R is known not to be achievable. An example of a capacity region is depicted in
Figure 5-1.

In this chapter, we design a linear-complexity cod-
ing scheme for two-user DMMACy's that can be used
to achieve rate pairs on tl.e frontier of the feedback-free R,
capacity region. We derive this low-complexity coding
scheme by extending the compressed-error-cancellation
framework introduced in Chapter 2. The presence of feed- IY;X:0X))
back is also known to extend the capacity region for DM-
MAC's. The schemes we develop do not achieve points
in this extended region, although the compressed-error-
cancellation framework does yield an interesting perspec- 10Y:X) |
tive on why feedback extends the capacity region.

!
I(Y;Xp) I(Y;X1X;) R,

To facilitate the discussion in this chapter, let X; and
X7 be independent and distributed according to some given )
pmfs gx, and gx,, respectively. Let Y be such that Figure 5-1: An example of a capacity
Py|x1,%, (U1%1,T2) = qy|x, x, (y|z1,22) forall z; € X, Tegon.
9 € Xg,and y € Y.

With this notation, we can discuss a natural extension of the framework for the two-user DMMAC;.
This extended framework is illustrated as follows, with the perspective of Transmitter 1 (Tx-1) on
the left and that of Transmitter 2 (Tx-2) on the right, where corresponding events on each side are
not necessarily synchronized in time:

o Source 1 produces N; message bits to be e Source 2 produces Vo message bits to be

sent by Tx-1 to the receiver (Rx). sent by Tx-2 to Rx.

o Tx-1 precodes its N} bits into the N| = o Tx-2 precodes its N, bits into the N} =
N1/H(X;) channel inputs XIN;. N, /H(X3) channel inputs Xévé.

o The channel corrupts the transmitted data o The channel corrupts the transmitted data
according to gy x,  x.- according to gy x,  x,-
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* Rx feeds the corrupted data Yi back to e Rx feeds the corrupted data Y3 back to

Tx-1. Tx-2.

e Tx-1 compresses XIN ! into N{H(X;|1h) o Tx-2 compresses XZN 2 into
bits, and precodes these bits into N' = NjH(X,|Y, X;) bits, and precodes these
N{H(X|Y1)/H(X,) samples. bits into Ny = NJH(X,|Y,X:)/H(X>)
. samples.

If both processes continued through an infinite number of iterations, the resulting rate for Tx-
1 would be I(Y; X;), and that for Tx-2 would be H(X2) — H(X2|Y,X1) = H(Xa|X:) —
H(X,|Y,X1) = I(Y;X3|X;). This rate pair is ci1 the frontier of the multiple access capacity
region for certain choices of the input distributions of both transmitters.

But a substantial obstacle blocks the path from this high-level illustration to a low-complexity
coding scheme. Namely, a sort of conditional Slepian-Wolf coding is required for Tx-2 to encode
its previous block of inputs with N;H(X,|Y, X;) bits without knowledge of what Tx-1 sends.
Since no techniques for computationally efficient Slepian-Wolf coding and decoding at this rate are
known, we cannot quite use this approach.

Notice, however, that if the receiver can eventually know what Tx-1 sends, then Tx-2 must also
eventually be able to know what Tx-1 sends, since it observes the received data via feedback. The
problem then is the time Tx-2 must wait to decode Tx-1's transmission. To make this waiting time
small, suppose that N; < N,. Let Tx-1 use the coding scheme for (single-user) DMC's from
Chapter 2, and suppose that Tx-1 sends many N;-bit messages in a row. Let Tx-2 send its message
using the scheme described in the illustration above, which takes several iterations. After the ith
iteration, suppose Tx-2 waits until the current message of Tx-1 is decodable, sending filler data
during this waiting time, and decodes it. Since all previous messages of Tx-1 can also be decoded,
Tx-2 can know what Tx-1 sent during iteration ¢, which allows Tx-2 to perform iteration i+ 1. Since
Ny <€ Nz, Tx-2's waiting times can be made small and so can the number of channel inputs that
pass unused during these waiting times.

Iin the following sections, we describe and analyze a transmissicn scheme based on this idea.
We begin with a formulation of variable-length coding for DMMAC+'s in Section 5.2. We follow in
Sections 5.3-5.4 with a description and analysis of a coding scheme, and end in Section 5.5 with a
discussion of certain related topics and future directions.

5.2 Formulation of Variable-Length Coding for Two-User Multiple-
Access Channels

A variable-length code for a DMMAC; is described by the 6-tuple (N7, €1, Na, €2, {xi}2o, Q).
The encoders €; and € have the following form that reflects the timing of the availability of the
feedback:

€1 (w{VI ’ yoo) = (51,1 (w{VI)v 51’2(10{\/1 7y1)v ";:1,-'3("”{\/l ) y2)1 e ) (54)

ez(wévz,yoo) = (gz,l(wévz)véQ,Q(wévz’y1)75~2,3(wévzvy2)) T )7 (5.5)

where the range of €, ; is X, foru = 1,2andi =1,2,3,---.
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To define the rate and probability of error for this code, we first define a sequence of functions
{£i}2,, each of which defines the joint channel input at time ¢

FiwM wl?) = (6 (w7, Ea s (wh2, P 1)) (5.6)

Next, we let W'IN ! and WQN 2 be two independent random sequences, uniformly distributed over
{0,1}™ and {0, 1}"2, respectively. We then let {Y}} be the output process resulting from passing
(W, W3") through the DMMACs gy x,,x, via {{fi(w]",w}"?, - )}, } M vz With

L* = min{k : xx(Y*) =1}, (5.7

the receiver makes an estimate (Wl ! WQJZ) of both messages using the decoding function A :
Yt — {0,1}™ x {0,1}"2. That is, the estimate is given by

WM W) = AyL). (5.8)

The rate of Tx-u is defined to be N, /E[L*] for u = 1,2, and the error probability for the code is
defined as Pr{(W"*, W;2) # (W], W)}

We define a coding scheme to be a function mapping three parameters (p;, p2,p3) to a code,
but as in Chapter 4, we work primarily with particular sequences of codes. A code sequence {ax }
achieves a rate pair (r1,72) if the corresponding rate-pair sequence {(R1 x, Rz x)} and probability-
of-error sequence { Py} satisfy

liminf Ry > 7y, u=1,2 5.9)
k—o00
limsup P, = 0. (5.10)
k—oc

The code sequence achieves the error exponent F, if

lim inf — log P,/ E[L}] > F, (5.11)
k—o00

where E[L}] is expected number of channel inputs used by the code ay.

Other formulations of variable-length codes for multiple-access channels are possible. This
formulation is particularly simple, but somewhat inflexible in that it does not allow different proba-
bilities of error and different transmission lengths for the transmitters. We discuss other possibilities
in Section 5.5.2.

5.3 Low-Complexity Coding Scheme for Two-User Multiple-Access
Channels

We now describe code sequences that achieve rate pairs arbitrarily close to (1(Y; X;), I(Y; X2|X1)).
Because the input distributions gx, and gx, are arbitrary, these sequences can effectively be used
to achieve any of the points on the frontier of the feedback-free capacity region for a DMMAC (see
Section 5.5.1). Furthermore, the computations per channel input required for encoding and decod-
ing is upper bounded by a constant that is independent of rate and probability of error; i.e., the time
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Figure 5-2: A graphical representation of the proposed multiple-access communication scheme.

complexity is uniformly linear.

As we state above, our scheme is based on the idea that with feedback, Tx-2 can know what
Tx-1 sends with some delay. We must make this delay small, while maintaining a high probability
of decoding Tx-1's data correctly. The scheme we propose operates at a high level as follows; a
graphical representation of the scheme is also given in Figure 5-2:

e Source 1 produces Ny = k;n; message bits e Source 2 produces N2 message bits to be
to be sent by Tx-1 to Rx. sent by Tx-2 to the Rx.

o Tx-1 breaks groups these bits into k; mes- o Tx-2 precodes its N, bits into the Nj =
sages of length n; each. Ny/H(X3) channel inputs X2'2. It also

e Tx-1 sends the first n;-bit message using puts D> < 7**® random filler inputs into the
the fixed-length variant of the scheme from channel.
Section 2.7.1, taking 7**® channel inputs, ¢ The channel corrupts the transmitted data
where ny /7" = 11 + 0n, (1), where 1y < according to py | x, x,-

I(Y, X1 ) ,
. _ e Rx feeds the corrupted data Y V21D2 back
e Tx-1 sends the second n;-bit message using to Tx-2

the same fixed-length scheme. ) N
e From Y V2+Dz Tx-2 determines X, 2 (with

high probability of success).

'

o Tx-2 compresses X;V 2 into
N;H(X,|Y, X;) bits, and precodes these
bits into N = NJH(X,|Y,X;)/H(X>)
channel inputs.

e Tx-1 sends the k;th n;-bit message using
the same fixcd-length scheme. o After some fixed number of iterations, final
residual data is FEC coded and sent.

> Simuitaneously, Tx-1 and Tx-2 each send a length-v sequence indicating whether retransmis-
sion is required for their respective data.
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Note that because the length-v verification sequences are sent by both transmitters simultane-
ously, N1 and N, must have a particular relationship to avoid excessive waste of the channel caused
by one transmitter's waiting for another to finish its main transmission. For now, we just say that
Ny = hs(N2), and defer specification of hg until later.

We now give a more precise description of a coding scheme based on these ideas. With § > 0
given, we describe a scheme cma 6 capable of generating a sequence of codes that achieves the
rate pair (1(Y; X)) — 26, 1(Y; X2|X1) — 26). Todo so, we let (hs(N2),e1, N2, €2, {x:}520. D) be
the code returned by cma 5(/V2, ), and describe the encoders €; and £,, which implicitly specify
the other parts of the code as well. This coding scheme cma 5 takes only two parameters, which
implies that there is a dependence among the rates of the two users and the probability of error.
Nevertheless, this coding scheme can generate an appropriate sequence of codes achieving the rate
pair (I(Y; X;) — 26, I(Y; Xo| X1) — 26).

5.3.1 Encoders

Both £; and €2 have the same structure. For u = 1, 2, Tx-u sends a length-7),, feedback inner code-
word €’ (WM« Y>°), where we enforce the constraint 77; = 7. If the receiver decodes this inner
codeword incorrectly (via the corresponding inner decoder Ai) for either u = 1 or 2, then both
transmitters retransmit their inner codewords, after first signaling whether their data need retrans-
mission via a length-v verification sequence. More precisely, for u = 1,2, ¢, is the solution to the
following set of equations:

eu(W,, Y °) = (el (W, ™), 0y (W, Y™), pu (W, Y™)), (5.12)
M = £(el (W', Y™)) (5.13)
voif An(Y) £ W N
uu(qu,YW):{wu if Ay (Y7) # Wy (5.14)
¢, otherwise,
(e ooy = JEulWal Y0, 1)) i 6, (VY of wf o ug) = 1, 5.15)
v (ch,ch,--+) otherwise,

where A'M and Al are the decoders associated with the inner encoders el and ell', which are defined
farther below, and 6, and the verification sequences ¢y, wy, ¢4, and ws are defined as follows: The
verification sequences are chosen according to

cf = (21, ,Tp,21,- 0, 21) (5.16a)

vy

~” ~

nEMwl  wBu-aw]

! /
wlfz(flv awlaflv"' 1ZL) (5]6b)
PA v2
Cg = (‘\22"" 722173:2’ e 7-'1:2) (5]6C)
n vo
! !
’11)’2/ = (221 Tt 3 22,Tgy st)a (5]6d)
\"—\r " ~ -
v v
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where

(z1,71,22) =  argmax  D(qy|x, x, (|71, 22) || gyix, x, (|2}, 22)) (5.17)
(Il,:r'l,zz)efx%Xfxz
(z2,29,21) = argmax  Dl(gy|x,,x, (|21, %2) || yix, x, (|21, 25)), (5.18)

(z2,xh,21)EXZ XX,
and X satisfies

AD(gyix,,x, (‘215 22) | @y ixy,x, (121, 22)) = (1 = A)D(gyx,,x, (121, 22) || @yx, x, (121, 25)).
(5.19)

The detector J,, used by the receiver to determine whether either transmitter's data need be retrans-
mitted is defined by

: (U1 V1, V1Y v v v —
S (Y’ w. o’ wl) = 1 lfdl,l’l(z »C1 Wy )_ 1or62,”2(zu1+17c2,u1+1’q2,u1+1) =1,
l/(z acl7w1’c27w2) .
0 otherwise,

(5.20)

where ¢1,, is the function that would be used by an mSB decoder to distinguish ¢i* and wy" on the
DMC pyx, x, (| 22), returning 1 after detecting w}* and O otherwise; d5 ,, is the analogous func-
tion for the DMC PY|X1,X,(|21,-). Note that é; ,,, and d5,,, are not maximum-likelihood detectors
(see Section 2.3.1.3 and [65] for details).

Note that the stopping functions {x;} return O unless i is an integer multiple of ; + v = 12 + v,
and 6, (Y, 1, ¢f, w¥,cs,wy) = 0, i.e., no retransmission is needed.

Let us now define the inner codes used with ¢; and e5 in terms of the number of bits N; =
hs(N2) and N; they each encode. The resulting lengths of the inner codes, ; and 7, are functions
of N1 and Ny, respectively. We then define hs so that the constraint 77; = 7, is satisfied. We defer
a complete definition of & until after the definition of the inner encoders; assume for now only that
hs(N2) = n1k;, where k; is some positive integer, and

ny = [VNa). (5.21)

Inner Encoder for Tx-1

To send its N;-bit message, the encoder el for Tx-1 breaks this message into k; ni-bit sub-
messages. The sub-message size n) given by (5.21) is one of a number of adequate choices that 1)
makes the delay that Tx-2 must wait to decode Tx-1's bits small and 2) makes the probability of
decoding error for any one of these n;-bit messages small.

Each sub-message is then sent using a low-complexity encoder designed for the single-user
channel py| x,. While the code developed in Chapter 2 seems like a good choice for such a code, its
output has a random length, which is incompatible with the overall coding scheme. For this reason,
it is convenient to define a low-complexity, capacity-achieving coding scheme with fixed overall
length.

We define an auxiliary encoding function e**® that encodes n; message bits using a fixed number

of channel inputs as follows: Let m; , : {0,1}" — DC{“'S(”), where f) 5(n) = [n/(H(X;) — )]
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be a fixed-length precoder as described in Section A.9, and let 01, : X7 x Y* — {0, 1}91'5("),
where g, 5(n) = [n(H(X1|Y') + 6)] be a fixed-length source coder, also described in Section A.9.
The enccder e, which is essentially the same as the single-user encoding scheme described in
Section 2.7.1, is defined in terms of these subsystems by

Initialization:
1§ = nilo = [I§/(H(X1) — )], Ao = 0 (5.22)
o = W' e0 = m15(r(Z0,0)) (5.23)
fort=1,---, B:
17 = [(H(X)|Y) + )1 ] (5.24)
li = (I /(H(Xy) = )] (5.25)
A=A, 1+ 1 (5.26)
i = o1y, (€1, Y,f,'_lﬂ) (5.27)
€ =m0 (r(Xq,1)) (5.28)
Number of channel inputs:
n® = Ap, +£(Zg,)[n"] (5.29)
Aucxiliary encoding function:
esub(W{“,Y“’) = (g, - ,53_1,6}3/41(231)) (5.30)

(5.31)

where 7 is the same binary randomization function used in Section 2.3, and B is chosen as

_ 3logn;

so that 1%, = ny'/%; the encoding function eF codes its data by using a two-codeword codebook
of length k to encode each of its input bits.

The inner encoder ei' is then defined in terms of e as follows:  With
Wit = (WA, W k),

eiln(WIIVI’YOO) — (esub(Wle[l]’ YOO)’esub(WlNl [2], "?uob+l),

. ,ESub(WlNl [kl]’y(z?—l)nwbﬂ))' (5.33)
Note that the total length 7, is k7.
Inner Encoder for Tx-2
As suggested by the high-level view of the scheme above, Tx-2's inner encoding scheme is, in
most respects, the same as the single-user coding scheme discussed in Chapter 2. The two major
differences are the following: 1) Tx-2 decodes the feedback to estimate the data sent by Tx-1 with

a delay of at most 7**® samples, and 2) Tx-2 performs its compression step using a statistical model
of the dependence of X3 ;. on both Yj and X .
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Tx-2's fixed-length inner encoding scheme e, which codes N, bits, is defined as follows:
Let m, : {0,1}" — x,f-”""’, where fy5(n) = [n/(H(X,) — d)] be the fixed-length pre-
coder described in Section A.9, and let 03, : Xp x Y x X} — {0,1}924(") where g25(n) =
[n(H(X,|Y, X1)+6)] be a fixed-length source coder described in Appendix D. Then define el by

Initialization:

l§ = Na,lo = [lg/(H(X2) — 8)],40 = 0,90 = 0 (5.34)
Yo= W"ZN’Z. €0 = w7 (r(Xo,0)) (5.35)

fori =1,--- . By:
7 = [(H(X2[Y, X)) + 8)l-1] (5.36)
l, = 17 /(H(X2) - 0)] (5.37)
Al=4,,+1,_, (5.38)
A= T4/ (5.39)
G =g + A — A (5.40)
X::,:_IH = Asub(l:{“l.1+l) (5.41)
%= 0o (6o, Y L XA L) (5.42)
€, = Ty o (r(Z,,7)) (5.43)

Number of channel inputs:
mh = Ap, + {(Tp,) [Ny (5.44)

Length of final filler:
F = [ny/n*® 1™ ~ 13 (5.45)

Inner encoding functions:

VY ™) = (o B, s s g0 () Fe )

(5.46)

The sequence {F,}°2, used in (5.46) is filler used to satisfy the causality conditions that must hold
for a feedback coding scheme; the filler sequence is transmitted whenever Tx-2 is waiting to decode
Tx-1's channel inputs. The length F' of the final filler is chosen so that 7, is an integer multiple of
n*®. The function A" uses the decoder for e*® to estimate Tx-1's channel inputs by decoding the
sub-messages encoded by e and then finding the corresponding input sequence. The number of
iterations By is chosen according to

B, - 3log N,
> 4(log(H(X;) — 8) — log(H(X2]Y, X;1) +0))’

(5.47)

which makes the £(3p,) ~ NJ/*.

Choosing N; as = function of NV

88



To complete the specification of the encoders for Tx-1 and Tx-2, we must specify the relation-
ship between N; and No, i.e., hs. We can see that to constrain 7; and 772 to be equal, we must
simply define hs by

hs(N2) = nima/n™. (5.48)

(Note that the right-hand-side of this equation is indeed a function of only N3, 4, and the channel
parameters.)

5.4 Performance Analysis

5.4.1 Reliability

In this section, we analyze the reliability function of the coding scheme cma . Specifically, we
prove the following theorem:

Theorem 5.4.1 Let 6,0 < 6 < I(Y;X)/2, be given. Then for any a > 0, the code sequence
{cMa,6(N2, [aN21)}%,—, has rates converging to the rate pair (r1(a), r2(a)), where
I(Y; X;)—26
) = 5.49
n(@) = ST X =20 7 1 (5.49)
I(Y; Xo|Xy) — 26

= 5.50
() = IV Xl X)) — 29 + 1 30
and attains the error exponent F,, defined by
_ ri(a)
F, = (1 T _25)1% (5.51)
ra(a)
= — F 5.52
(1 T(Y; X2 X)) 25) 0 632
where
Fo = AD(qyx,,x, (121, 22) || ayx,,x, (|27, 22)) (5.53)
= (1 — A)D(gyix,,x, (121, 22) || @y 1x,,x, (121, 23))- (5.54)

Remark 1: As a — 0, both r; and 7 approach I(Y; X;) — 26 and I(Y; X2|X;) — 26, re-
spectively, uniformly. It follows that a sequence of codes achieving the rate pair (I(}"; X;) —
20,1(Y; X2|X1) — 26) can be generated by cma -

Remark 2: By changing the verification sequences in (5.16), the value of I can be changed. We
do not know, however, what the optimal choice of sequences is or what the optimal error exponent
is.

Proof: We begin the proof with some useful observations. First, we note that prior to the
transmission of the length-r sequence, where v = [aN,|, the channel inputs of Tx-1 and Tx-2 each
form a process that is i.i.d. according to ¢x, and gx,, respectively. This fact follows immediately
from the way the precoder is defined and from the use of the randomizing function r in (5.28).

89



Second, we argue as follows that with the encoders defined as above, the channel input streams are
statistically independent: Consider the beginning of the transmission when both transmitters are on
their first iterations. Both of these transmissions are easily seen to be independent, because they are
derived from independent sources, and they are not functions of feedback. Suppose Tx-1 finishes its
first iteration first and then moves to its next iteration. It source codes the data it sent on its previous
iteration conditioned on the feedback. This data is certainly dependent on what Tx-2 sent during
Tx-1's first iteration. But then Tx-1 XORs a pseudorandom sequence of bits to this data via the
function r, which makes the data independent of Tx-2's channel inputs. When Tx-2 finishes its first
iteration, because of the use of - again, the data Tx-2 sends on its second iteration is independent of
what Tx-1 sends. A continuation of these arguments shows that the two streams are independent.
Of course, the streams are only “independent” to the extent that the data generated by the relevant
pseudorandom number generators appear to be independent. Also note that to ensure that this
independence holds, we must generate the codewords for the repetition coders independently each
time they are used. These two observations allow vast simplification of the analysis of what would
otherwise be an enormously complicated problem and allow us to prove the theorem easily, which
we do as follows.

Consider the code ¢ma 5(N2, [eN2]). We can see that this code uses the same principles as
does an mSB code, sending an inner code followed by a verification sequence. Consequently,
the probability of error is controlled entirely by the probability P, that the detector 6, returns a
0, which indicates that no retransmission is required, when it should return a 1, which indicates
that retransmission is required. Retransmission is required whenever either Tx-1 or Tx-2's inner
codeword is decoded incorrectly.

The total expected length of the sequence is then determined by the lengths 7; and 7, of Tx-1
and Tx-2's inner codewords, the probability P, that §, returns a I when it should return a 0, and
the probability that either Tx-1 or Tx-2's inner codeword is decoded incorrectly.

The lengths of the inner codewords for both Tx-1 and Tx-2, which are equal, can be easily
shown to satisfy

m =mn2 = No/(I(Y; X2]X1) — 26) + o, (N2) (5.55)
= N1/(I(Y; X)) — 28) + on, (N}). (5.56)

What is left is to find the probability that either is decoded incorrectly, which we upper bound
(union bound) as the sum of the probability P, ,, that Tx-1's inner codeword is decoded incorrectly
plus the probability P, j, that Tx-2's inner codeword is decoded incorrectly.

To prove the theorem, it is sufficient to show that P, i,, Ps s, and P, are op,(1), and that
Pey < expy{—v(Fp — 0,(1))} for some Fy > 0, which we do as follows, starting with analysis of
P 1,m-

To find P, ;,, the probability of error for the inner code, note that the probability of error Py,
for eU® satisfies

P < expy{—(E™*P(6) — on, (1))n}/*} (5.57)
= expy{—(E™(8) — on, (1)) N3/#}, (5.58)
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for some constant E‘"h(é) > 0, where (5.58) follows from (5.21). Since the inner code uses the
fixed-length code k; = N;/n; = On,(V/N2) times, P, ;, satisfies

P in < k1 Poyp = on,(1). (5.59)

We move now to analysis of P% ,,, which can be upper bounded according to

Py < Pr{é (W2, 1) is decoded incorrectly or et (W2, Y72) # &n(W N2 Yy™)}  (5.60)

< Pr{é® (W2, Y™) is decoded incorrectly} + Pr{eil(W,¥2,Y2) # éin(W 2, ym)},
(5.61)

where ¢! encodes just like e but with perfect estimation of Tx-1's transmissions substituted for the
estimates in (5.41). The second term in (5.61) is equal to the probability that Tx-1's transmissions
are wrongly estimated, which, using results from the previous section, is less than P, ;5, which, as
we just saw, is oy, (1). The first term in (5.61) decays exponentially in Né/d. Therefore, Po,, =
on,(1).

We now consider P.,,. With the choice of verification sequences given in (5.16), it is clear
that we can regard the verification sequences as really two verification sequences, of lengths v; and
vy, respectively. The first 1 samples are used by Tx-1 to communicate whether retransmission
of its codeword is necessary, while the last 5 samples are used by Tx-2 to communicate whether
retransmission of its codeword is necessary. The sequence (z2, - - - , 22) sent by Tx-2 during the first
v samples is designed to give Tx-1 the best possible channel to the receiver. Likewise for Tx-1's
transmissions during the last v, samples. It can be shown using the reasoning from [65] that P, is
upper bounded according to

Py <expo{—vA(D(gy|x,,x, (|21, 22) | gy px,,x, (|21, 22)) — o, (1))} (5-62)
+ expo{—v(1 = A} (D(gy|x,,x, (121, 22) | gy x,,x, (121, 22)) —on, (1)} (5.63)

It can also be easily shown that the probability Py, = on,(1).

Since the total error probability for the scheme F. n, is equal to P, and the expected length
E[L*] is upper bounded by 72 /(1 — Py in — Pajin — Pyc) = No/I(Y; X2| X1) + aNy + on, (N2),
(5.52) follows by taking the limit of — log Pe n,/E[L*] as Ny — o0; (5.51) follows by also using
(5.56). =

5.4.2 Complexity

The scheme we have described has the same order of growth of time and space as the single-user
scheme we described for DMC's in Chapter 2. That is, for both transmitters and the receiver, the
growth in computation time and space required per message is uniformly linear in the number of
channel inputs used per message.
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5.5 Discussion

5.5.1 Achieving Other Rate Pairs

By adjusting the rate of Tx-1's inner sub-message code, it is clear that the line in rate-space from
(0, I(Y'; X2|X1)) to (I(Y; X,),7(Y; X2|X,)) can be achieved. By exchanging the roles of Tx-1
and Tx-2, the line from (0, I(Y; X|X3)) to (I(Y; X2), I(Y; X1|X3)) can also be achieved. By
timesharing, the entire frontier of the pentagon in Figure 5-1 can therefore be achieved. By further
timesharing, all the points on the frontier of the capacity region can be reached.

5.5.2 Variations

A number of variations on the scheme presented in Section 5.3 can be made. For example, the
receiver could use separate stopping functions for each transmitter as well as separate decoders; the
two transmitters' verification sequences would not need to be synchronized, and the retransmissions
of their data could be done independently. This modification would allow the transmitters to satisfy
independent delay and error requirements. But the stopping times for the transmitters' messages
would not coincide, the technique would only make sense if each transmitter had an infinite stream
of messages to send. Within a scheme such as this one, we could also substitute variable-length
encoders for e**® and e, which might give better performance for a given value of N,. Unfortu-
nately, the use of a variable-length encoder is difficult to analyze, because the output lengths are
statistically dependent on the other transmitter's channel inputs.

Other variations include changing the verification sequences. We chose the verification se-
quences according to (5.16) for ease of analysis.

5.5.3 Beyond the Feedback-Free Capacity Region

While we have no concrete ideas for how our framework can be used to achieve rates beyond the
feedback-free capacity region, we have made some observations that suggest a new interpretation
of why feedback extends the capacity region. The research of Cover et al. [12] on sending data
generated by correlated sources over multiple-access channels shows that if two sources are corre-
lated, then their data can be sent more efficiently over a DMMAC than if they are not correlated.
That is, one can achieve rates higher than would be achieved by Slepian-Wolf coding the correlated
sources and then transmitting them as though they were not correlated. There seems to be a rela-
tionship between this fact and the fact that the feedback capacity region of a DMMAC; is larger
than its feedback-free capacity region. This relationship seems to come out in our framework. In
our framework, the two transmitters first send independent data uncoded over the channel. On the
second iteration, the data they must transmit is correlated; hence, the need for Slepian-Wolf coding
as discussed earlier. If used as discussed earlier, this Slepian-Wolf coding leads to rate pairs on the
frontier of the feedback-free capacity region. But the result of Cover et al. suggests that the data
on the second iteration can be sent even more efficiently than by Slepian-Wolf coding followed by
transmission as though the sources were independent. A technique that sends the data in this more
efficient manner may enable one to reach points beyond the feedback-free capacity region. This
observation seems worthy of further study.
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5.5.4 Summary and Future Directions

We have developed a linear-complexity coding scheme for DMMAC¢'s that, with timesharing, al-
lows any point on the frontier of the capacity region of a two-user DMMAC to be achieved. The
probability of error for the scheme decays exponentially with the number of channel inputs used.

An interesting direction for future research stems from a practical problem. While the scheme
described in Section 5.3 achieves good performance asymptotically, we suspect that in practice
very large blocklengths may be required for reasonable error probabilities at rates near the pair
(I(Y;X1),I(Y;X2|X;)). For example, (5.21) dictates that if n; = 10, then N, ~ 10%. But
experiences with running simulations for single-user channels indicate that use of a message length
of 10% on the 0 dB quantized Gaussian channel described in Section 2.8.6 leads to rates of only
about 0.3 bits per channel input (well below the channel capacity of 0.5 bits per channel input)
for only modestly small probabilities of error. Although deviating from the relationship (5.21) —
for example, by setting n; = 3 x 10* and N, = 10® — allows significantly better rates for Tx-
1 to be achieved with little sacrifice in Tx-2's rate, very large values of Ny are still required to
achieve rate pairs near the frontier of the capacity region. Even larger blocklengths are required
when the scheme is extended under the framework developed in this chapter to accommodate more
than two users. Although larger blocklengths do not require faster processors because of the coding
scheme's linear time complexity, storage capacity and delay requirements may limit the allowable
blocklength. Consequently, an interesting and important direction for future research is to modify
the scheme so as to require smaller blocklengths.

It is also interesting to consider how one can apply the iterative coding framework to other
multiuser channels with feedback. Thus far, it is unclear how the framework can be applied to
such channels as the interference channel or the broadcast channel. Investigations of such channels
represents an interesting direction for future research.

Other interesting problems include dealing with multiple-access channels with memory, and
unknown multiple-access channels. We believe that the universal coding techniques of Chapter 4
can be directly adapted to create a universal coding scheme for unknown DMMACy's. However,
proofs of good performance may be hard to obtain, because the universal coding scheme must use
a variable-length source coding subsystem.
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Chapter 6

Channels with Partial and Noisy
Feedback

6.1 Introduction

In Chapters 2-5, we consider channels with feedback links that provide complete noiseless feed-
back. But in practice, some feedback links may not be accurately modeled as being noiseless. Some
may also have insufficient capacity to provide complete feedback. While some research, for exam-
ple [6] and [33], has been done on coding for channels with noisy and partial feedback, it has been
sparse, and many questions remain unanswered.

In this chapter, we consider channels with noisy and partial feedback within the compressed-
error-cancellation framework. We focus in particular on coding for channels with partial noiseless
feedback, and discuss only briefly coding for channels with noisy feedback. We justify this choice
as follows: If the feedback channel is noisy, one can apply a low-complexity error-correcting code to
the data sent over it; if the feedback rate after coding is large enough to provide complete feedback,
then we have, effectively, complete noiseless feedback; if the feedback rate is not large enough
to provide complete feedback, then we have, effectively, partial noiseless feedback. We should,
however, remember that there may be other ways of coping with noisy feedback besides applying a
block error-correcting code to the feedback data, so noisy feedback channels may still warrant more
attention than is given here.

We also focus on single-user channels, exploring only brietly the multiple-access channel with
partial feedback. For simplicity, within the class of single-user channels, we consider only discrete
memoryless forward channels, at times restricting further to BSC's. For the remainder of the chap-
ter, we let (X, gy x, Y) be the forward DMC with input alphabet X, output alphabet Y, and transition
pmf gy x. We let C' be the capacity of this channel, achieved with input pmf ¢x. For convenience,
we also let X and Y be random variables such that px y (z,y) = gx(z)gyx (y|z) forallz € X and
y € Y. Except in Section 6.5, where we consider noisy feedback, the feedback channel is considered
noiseless and delayless but with limited capacity, so that at each time, the receiver chooses some
element of the feedback channel's input alphabet F to send back to the transmitter. The feedback
rate that can be supported by the feedback channel is then log |F| bits per channel output.

In what follows, we show that the compressed-error-cancellation framework is, with appropriate
modifications, useful for developing coding schemes requiring only partial noiseless feedback. We
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show that the framework leads to coding schemes with a wide range of required feedback rates and
provides a systematic way of integrating FEC codes with feedback.

We begin in Sections 6.2-6.4 by discussing how Slepian-Wolf coding and concatenated coding
principles can be used to modify the coding scheme of Section 2.5 so that the required feedback
rate is less than H(Y") bits per forward channel output (which is the iate required by that coding
scheme if source coding of the feedback data is performed). We then briefly explore in Section 6.5
what modifications can be made to the coding scheme of Section 2.5 so that noisy feedback can
be accommodated. We end in Section 6.6 with a discussion of some interesting related topics and
future directions.

6.2 Feedback Rate Reduction

In this section, we introduce the idea of using Slepian-Wolf coding for feedback rate reduction,
describe and analyze a coding scheme for BSC's based on this idea, and then comment on the
extent to which the scheme can be generalized for DMC's.

6.2.1 An Approach Based on Slepian-Wolf Coding

Let Y™ be the result of passing a sequence X™ that is i.i.d. with marginal pmf gx through the
DMC gy x without feedback. Suppose that the receiver and transmitter know only Y and X",
respectively. Then the Slepian-Wolf coding theorem [55] states that it is possible for the receiver to
use only about nH (Y |X) bits to describe the sequence Y™ to the transmitter (since the transmit-
ter knows X™). This remarkable theorem thus suggests that it ought to be possible to reduce the
required feedback rate of the scheme in Section 2.5 to H(Y'|X) bits per output sample.

But at least one obstacle hinders construction and decoding of such an efficient description
of Y™ to the transmitter: high computational complexity. Since we are intent on preserving the
low computational complexity of the scheme in Chapter 2, we demand that Slepian-Wolf coding be
performed with low complexity. Unfortunately, no techniques for computationally efficient Slepian-
Wolf coding at the minimum possible rate H(Y'|X') have yet been discovered.

It is, however, possible in some cases to perform Slepian-Wolf coding at rates substantially
above H(Y|X) with low complexity. Indeed, it is well known [64] that parity-check matrices of
linear error-correcting codes can be used for Slepian-Wolf coding of two sequences differing by an
independent additive (mod ¢) noise. In other words, a iow-complexity linear error-correcting code
may serve as a low-complexity Slepian-Wolf code in many cases.

To understand how linear error-correcting codes may be used as Slepian-Wolf codes, let Y'” and
X" differ by an additive (mod 2) i.i.d. Bernoulli-(§ — «) noise process, where a < 6. Let I, be
the (1 — r)n x n parity-check matrix of a binary linear code of rate r that corrects up to a fraction
d of errors, i.e., dn errors. Then Y™ can be correctly determined with high probability from X™
and the length-(1 — r)n sequence K Y™ as fillows: Compute K,Y" — K, X™; find a sequence
Z" of (Hamming) weight less than dn that satisfies K,Z" = K,(Y™ — X"). Since the code
corrects a fraction of errors 4, and because Y™ — X™ has weight less than dn with high probability,
Z"™ =Y™ — X™ with high probability.

But Slepian-Wolf coding with an arbitrary linear code with the above properties does not allow
the uniform linear complexity we desire. The computation required for Slepian-Wolf encoding
is that required to compute K,Y ™, and the computation required for Slepian-Wolf decoding is that
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required to compute K, X™ plus that required to find Z". Mere computation of K,,Y™ is an O,,(n?)
operation for a general linear code. We must instead use a special class of linear codes for which
matrix multiplication by K, and estimating (Y™ — X™) from K,(Y™ — X™) can be done with
O, (n) computations.

One method appropriate for additive (mod-2) channels is to let the K, be the parity-check matrix
of an expander code [54]. The important properties of these codes are as follows [54]:

1. They are a subset of low-density parity check codes, which were introduced by Gallager [24].
Low-density parity check codes are linear codes and have the property that K,Y™ can be
computed in Oy (n) time.

2. (Theorem 1 from {54]) For all € such that 1 — 2H3(e) > 0, where Hy(-) is the binary
entropy function, there exists a polynomial-time constructible family of expander codes of
rate 1 — 2H5(e) and minimum relative distance arbitrarily close to €2, in which any o <
€2 /48 fraction of errors can be corrected in linear time on a random-access machine under the
uniform cost model.

3. A sequence Z" can be recovered from K, Z™ in Op(n) time if the weight of Z™ is below an.

While these properties of expander codes make them suitable for linear-complexity Slepian-
Wolf encoding and decoding, they have only limited applicability for several reasons. First, ex-
pander codes are designed to cope only with binary symmetric channels (BSC's), not general
DMC's. Second, it is ot known how to construct expander codes that correct an arbitrarily large
fraction (< %) of errors; rather, Theorem 19 of [54] only guarantees the existence of expander codes
with positive rate correcting a fraction 0.112 /48 of errors (since Hy(0.11) ~ 1/2). Therefore, the
use of expander codes to carry out Slepian-Wolf coding of the feedback is limited to situations in
which the forward channel is a BSC with crossover probability less than 0.112/48.

Still, this Slepian-Wolf coding scheme allows us, in the follcwing section, to demonstrate the
general concept of Slepian-Wolf coded feedback and to show that uniform linear complexity can be
maintained with a feedback rate smaller than H (Y") bits per channel output.

6.2.2 A Reduced-Feedback-Rate Coding Scheme for BSC's

In this section, we describe how we modify the transmission scheme of Chapter 2 to use low-
complexity expander-code based Slepian-Wolf coding for the feedback. Because of the limitations
of expander codes, we assume for the remainder of this section that (X, gy |x,Y) is a BSC with
crossover probability e < (0.11)?/48. For general DMC's, we discuss in Section 6.2.4 how the same
principles would apply were an appropriate low-complexity Slepian-Wolf coding scheme available.

To avoid repeating most of the details of the scheme in Chapter 2, we describe the modifications
at a high level. As the base on which we make mudifications, we use the base code cpmc (N, v),
which is a complete noiseless feedback code from Section 2.3, including the modifications from
Section 2.5.

The main modification to cpmc(V, v) is that the receiver uses Slepian-Wolf coding to send feed-
back to the transmitter in blocks of nf samples using the parity check matrix K, € {0, 1}{1=7)mxm
of an expander code of rate r, where r < 1 — QHQ(\/Z-S—G), which corrects ang > enge.rors. If Y™
is an n;-sample block of received channel outputs to be fed back to the transmitter, we refer to the
length-((1 — r)n¢) sequence K, Y™ as Slepian-Wolf coded feedback.
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The Slepian-Wolf coded feedback introduces two new problems, feedback errors and feedback
delay, the seriousness of which are determined by the choice of Slepian-Wolf coding blocklength
ng. Feedback errors arise because Slepian-Wolf coding is not lossiess — i.e., Y can be incorrectly
estimated by the transmitter, an event we call a Slepian-Wolf decoding error, if X™ and Y™ do not
behave typically, where X™ is the block of channel inputs that gave rise to Y™. Feedback delay
arises for three reasons: 1) the time required to transmit k bits over the noiseless partial feedback
channel is [/ log |F|] channel input (or output) samples; 2) the transmission of Slepian-Wolf coded
feedback over the feedback channel cannot begin until the receiver obtains the entire block Y™ of
channel outputs; and 3) the Slepian-Wolf coded feedback cannot be decoded by the transmitter
until it receives the entire block K, Y™. If we assume instantaneous Slepian-Wolf encoding and
decoding, the total delay is [(1 — 7)ns/ log|F|] channel input samples; for simplicity, we assume
the delay to be exactly linear in n¢ and let A denote the constant of proportionality relating delay to
number of bits of feedback.

Note that there is a tradeoff between feedback delay and the rate of feedback errors. As ny
increases, feedback delay increases, but the rate of feedback errcrs decreases. As nf decreases,
the reverse happers. As a result, additional modifications to the base scheme are needed to cope
adequately with both feedback errors and feedback delay. We next describe these modifications as
well as how we choose ny.

We set
ng = [VN] (6.1)

for the following reason. In the compressed-error-cancellation framework, the transmitter commu-
nicates a message by sending the message followed by a series of correction messages. Feedback
delay may require the transmitter to wait between iterations while it receives the feedback needed
to construct the next correction message. We restrict attention to the case in which the feedback
rate is sufficiently large so that the start of each iteration beyond the first one, of which there are
On(log? N), is delayed by at most n¢ samples, during which the transmitter sends information-free
filler. (We determine in Section 6.2.3.2 more precisely what constitutes a “sufficiently large” feed-
back rate.) Thus, (6.1) makes the number of channel inputs consumed by information-free filler an
asymptotically negligible Oy (v/N log? N).

But we pay for choosing ny = Ox (v/N) with an elevated rate of Slepian-Wolf decoding errors.
Such errors occur when the forward BSC makes more than ang crossovers within an ng-sample
block. If the forward BSC's crossover probability e is less than a, then the probability P, sw of such
an event is upper bounded [21] according to

P.sw < 27 D2(elle) (6.2)
— 9—VNDs(alle) (6.3)

where D is the binary Kullback-Leibler distance defined by

Dy(a || €) = alog % + (1 —a)log i___?, (6.4)

which is always non-negative.
While F.sw — 0 as N — 0, it does not do so exponentially with N. Were we to declare an
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Figure 6-1: Graphical representation of the main elements of a coding scheme based on Slepian-
Wolf coded feedback.

overall decoding error whenever a Slepian-Wolf decoding error occurred, the probability of error
associated with the overall scheme would not decay exponentially with N as we desire.

To achieve an overall error probability that does decay exponentially with IV, we install the fol-
lowing additional security mechanism: First, after each block of ¢y samples is received, the receiver
sends one bit back to the transmitter indicating whether or not it has detected the synchronization
sequence. After the synchronization sequence is first detected by the receiver at, say, time S + ¢y,
the receiver sends to the transmitter a parity-check sequence of length proportional to S. This se-
quence enables the transmitter to determine whether it made any Slepian-Wolf decoding errors on
the first S channel outputs. If it has — and the synchronization sequence detection is not a false
alarm — then the transmitter restarts the transmission process from the beginning, first sending a
special mSB coded message to the receiver indicating its intention. If the synchronization sequence
detection is a false alarm, the original /N message bits are simply mSB coded as described in Sec-
tion 2.5. To be more precise, let X be the first S symbols that are put in to the forward channel.
Let Y5 be the S corresponding receptions, and let Y5 be the transmitter's estimate of Y5 based
on the Slepian-Wolf coded feedback. Let Kg € {0,1}2H2(v9)SxS pe the parity-check matrix of a
length-S' binary expander code with minimum distance 4.5, where § > P.gsw. Then the receiver
sends the sequence KsY S over the feedback channel. The transmitter computes KsY$ and checks
whether K5(YS — Y'S) = 0. If not, it initiates a retransmission.

Let us now summarize our modifications to the base code, the main elements of which are
depicted graphically in Figure 6-1:

1. The receiver gives feedback as follows: After receiving its ith block of n¢ outputs Y™ [z],
it forms K, Y™[i] and sends it over the feedback channel; this action is performed for i =
1,2,- -, until the receiver detects the synchronization sequence 9~ [N].
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2. The transmitter decodes the ith block of feedback by forming K, X™[i], where X™[i] is the
tth block of nf channel inputs, computing K, (Y™[:] — X™[i]) and then finding an estimate
Z™[4] of Y™[1] — X™(3].

3. Until it sends the synchronization sequence 0!~ [ V], the transmitter puts out the same channel
inputs as the base code with one difference: since it now must wait a time proportional to 7
for the feedback, it sends a filler sequence during this waiting time.

4. Every ¢y samples, the receiver also sends back a single bit that communicates whether or not
the synchronization sequence has been detected.

5. Once the synchronization sequence is detected at time S+, the receiver sends the sequence
KsYS to the transmitter. The transmitter idly sends filler data during this time. The trans-
mitter computes KsY S and compares this sequence with KsYS. If the two sequences difier,
then the transmitter sends an mSB-coded message indicating that a retransmission must occur
and then begins a retransmission, starting from the first iteration — unless the synchroniza-
tion sequence detection is a false alarm, in which case it sends the original N bits mSB coded
as described in Section 2.5.

6. If no retransmission is required, then the normal terminating procedure involving mSB coding
of the final data and side information is begun.

7. During all mSB coding phases, decision feedback is given for both the mSB inner codeword,
and the verification sequence. Decision feedback means that the decoded data is fed back
rather than the raw received data; e.g., decision feedback for the verification sequence should
only be 1 bit.

6.2.3 Performance Analysis of the Modified Scheme

We now determine bounds on the error exponent associated with the modified scheme and find that
the error exponent is positive for all rates below capacity. We also calculate the feedback rate needed
to carry out the scheme and comment on the overall complexity of the scheme.

6.2.3.1 Reliability

To bound the error exponent for the modified scheme, we first upper bound the probability of error
as the sum of the probability of error associated with the base scheme and the probability of new
error events introduced by the modifications. We next iower bound the rate of the modified scheme
in terms of the rate of the base scheme. We then combine these bounds on rate and probability of
error into a lower bound on error exponent that is positive at all rates below capacity.

Upper Bound on Probability of Error

We begin by assessing the effect of the modifications on the error probability. Compared to
the base scheme, the modified scheme has one additional source of error: the possibility that a
Slepian-Wolf decoding error goes undetected (an “undetected feedback error”). To upper bound
the probability of error for the modified scheme, we assume that when an undetected feedback
error occurs, the received data are unraveled incorrectly, and an overall decoding error occurs. An
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undetected feedback error can only occur in the unlikely event that so many of the Slepian-Wolf
coded feedback blocks are decoded with errors that the final security mechanism is foiled.

To upper bound the probability Py of an undetected feedback error, note that only if V'S differs
from Y° in at least 65 places is there any possibility that KsYS = KgsYS when Y5 # Y5,
Moreover, only if §5/n¢ of the S/ns blocks sent are decoded erroneously can V'S differ from Y5 in
45 or more places. Therefore, Py can be upper bounded as follows:

> (d1og(1/Pesw) + (1 — 6)log(1/(1 — Pesw)) — Hz(é))} (6.5)

Pye < expy { — n_f

< expz{—S(6D2(a Il €) + oN(l))}, (6.6)

where (6.6) follows from using (6.3) with (6.5). Since S is always greater than N/p, where!
p = —log(min{gx (z) : gx(z) # 0,z € X}), (6.7)
we can further upper bound the error in terms of /N according to
Pute < expa{—N(8D2(a || €)/p + on(1))}- (6.8)

With this upper bound on the probability of undetected feedback error, we can upper (union)
bound the probability of error P, , for the overall modified scheme as follows:

Pc.m < Pe.b + Pufev (6~9)

where P.p, is the probability of error associated with the base code. With R}, denoting the rate of
the base code, we set

_ . -].__ 1 Ecw[l 2
6—mm((Rb I(X;Y))Dz(a i 6),0.11 ), (6.10)

where E,, is given by (2.38). This choice of § makes the exponents for upper bounds on the two
sources of error in (6.9) asymptotically equal for sufficiently small values of (1/Ry, — 1/I1(X;Y"))
and otherwise minimizes the upper bound on undetected feedback error, since 6 can be chosen to be
at most 0.112. For future reference, let R} be the largest value of Ry, for which § = 0.112.

Lower Bourd on Rate

Since (6.9) with (6.8) and (6.10) gives us an upper bound on P, p, in terms of the rate R}, of
the base scheme, we need only find the rate of the modified scheme in terms of R}, to lower bound
the error exponent associated with the modified scheme. We do this by examining the expected
length of the modified transmission, which is increased by two effects: First, while the sequence
KgYS is transmitted from receiver to transmiiter, the transmitter sends filler data (it could begin its
next message, but for convenience, we assume it sends filler), which consumes a number of channel
inputs proportional to 2H,(v/6)S. Second, the possibility of needing to restart and retransmit after

! Actually, a false alarm could cause this inequality to not hold, but we can just change the receiver so that hypothesis
testing for the synchronization sequence does not even begin until after N/u samples have been received.
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a feedback error is detected increases the expected length. Fortunately, this addition to the total
expected length decreases to 0 as IV approaches infinity. There may seem to be a third possibility
for increasing the length, but it is an illusion. One might think that if a Slepian-Wolf decoding error
occurred then the transmitter's next correction message might be unusually long because it sees an
atypical channel output. Actually, the opposite is true. The Slepian-Wolf coding causes atypical
noises to be decoded as typical noises, resulting in a typical-length correction message. This fact,
combined with the fact that Slepian-Wolf decoding errors are rare allows us to ignore this effect.

Accounting for these increases in length, we write the expected total length E[L*] for the mod-
ified scheme in terms of the expected length N/ Ry of the base scheme as

N N P, N
¥ < z
E[L*] < o +2H2(\/5)AI(X;Y) + =B I(X.7)

+ on(N). (6.11)

The second term accounts for the transmitter's waiting for the parity-check sequence KgY S, since
E[S] < N/I(X;Y)+ on(N); the third term accounts for the retransmissions that occur as a result
of Slepian-Wolf decoding errors, where P, is the probability of such a retransmission and satisfies

P < Pe.SWE[S]/Tl,f (6.12)

by the union bound; the ox (V) term includes the length of the filler transmitted during the between-
iteration delays. Using (6.3) with (6.12), we can see that

N P,
I(X;Y)1-PF

=on(1), (6.13)

which allows us to write

E[L*] < % + 2H,(V6) (N). (6.14)

N
A__I(X;Y) + on

To write the rate R = N/E[L*] of the modified scheme in terms of Ry, we let

1

= 6.15)
K 2H,(V9)A (
and use (6.14) to write

R 2 yRoI(X;Y)/(Ry +vI(X;Y)) + on(1), (6.16)

which can also be expressed as

RI(X;Y )y

< — 1). 6.17
=Ty - R oW @1

Lower Bound on Error Exponent

We can now combine the bounds on rate and error probability to find a lower bound on the error
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exponent. Since, for R, > Ry, (6.10) and (6.8) together say that

N Ry
Pe‘m<eXp2{——R;Ecw(1~T()(—;},—)) +0N(N)}, (6.18)

we can substitute (6.17) into (6.18) to obtain

—log P, I(X: _
En(R) £ liminf log Pem Ry ) (X;Y)y—R

—= S Bl 6.19
N—oo  E[L*] > ‘”"( I(X;Y)y-R/) I(X;Y)y '’ ©.19)

which holds for R corresponding to Ry > Ry,. If we examine (6.17), we see that as Ry, 1 I(X;Y),
d = 0,y = oo, and R — Ry,. Furthermore, from (6.18), we see that the error exponent is positive
for any rate R, < I(X;Y"). There must therefore be rates arbitrarily close to I(X;Y) for which the
error decreases exponentially with V. For R, < Rj, the probability of undetected feedback errors
dominates the error behavior, and a lower bound on the error exponent can be determined from (6.8)
and (6.17). This bound is positive for any fixed positive rate (although it is approaches zero as the
rate approaches zero). Hence, the error exponent for the overall modified scheme is positive for any
fixed rate below I{X;Y).

6.2.3.2 Feedback Rate

Let us now examine the feedback rate required to carry out the scheme with the above reliability.

That is, if the feedback channel carries Rg a log |F| bits of information per forward channel input
(or, equivalently, output), what is the minimum value of Ry that will support the scheme described
above?

The feedback rate Ry causes delay in the transmitter's acquisition of the feedback data. As
mentioned above, the foregoing analysis was conditioned on Ry being large enough for us to assume
that the delay between iterations was proportional to ns. To satisfy this condition, it is sufficient that
R¢ be such that K, Y™ samples can be fed back in a time less than or equal to the time taken to
input n¢ symbols to the forward channel. Since K, Y™ has length (1 — r)ny, we see that we must
have Rg > 1 —r.

Let us now verify that R = 1 — r is sufficient to support the other aspects of the scheme
described above. First let us argue that this value of Ry supports the feedback required for the mSB
coding stage. Modified Schalkwijk-Barron coding consists of two stages, the transmission of the
inner code and the transmission of the one-bit verification message. During transmission of the inner
code, we give decision feedback, which requires ky = v/N bits. No matter what the value of Ry
(as long as R¢ > 0), adelay of Oy ( v/N) samples is introduced before the verification message can
be sent; this delay is asymptotically negligible. During transmission of the verification message, no
feedback is required, except at the end, at which point only one bit of feedback is needed to tell the
transmitter whether a retransmission is expected. This feedback introduces a constant delay, which
is also asymptotically negligible. Likewise, the one-bit messages required to tell the transmitter
whether the synchronization sequence was detected adds negligible load to the feedback. Finally,
for any Rs > 0, the delay required for the transmitter to receive the sequence KsYS is proportional
to S as assumed in the form of the constant A above.

These arguments imply that a feedback rate of Ry = 1 — r > 2H,(1/48¢) is sufficient to give
exponentially decaying probability of error at any rate below I(X;Y"). This function is plotted on
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Figure 6-2: Plot of required feedback rate versus crossover probability on the forward BSC when
using expander codes for Slepian-Wolf coded feedback.

a log-log scale in Figure 6-2. As is evident from this figure, the required feedback rate is less than
one bit per channel output only when the crossover probability is less than about 2.5 x 10~%. It
follows that only BSC's with small crossover probabilities can benefit from expander-code based
Slepian-Wolf coded feedback. Also note that larger values of Ry can improve the error exponent by
reducing A.

6.2.3.3 Complexity

Because we have designed the Slepian-Wolf coding system to have linear encoding and decoding
complexities that are essentially independent of the transmission rate, the overall complexity re-
mains the same as for the scheme in Chapter 2, namely, uniformly linear in N. The same arguments
in Section 2.8.1 apply when delays due to computation are taken into account.

6.24 Comments on Slepian-Wolf Coded Feedback for General DMC's

For general DMC's, the essential principles developed in Section 6.2.2 can still be applied to de-
velop reduced-feedback-rate coding schemes. Similar rate and reliability performance — i.e., error
probabilities decaying exponentially with average blocklength at all rates below capacity — can still
be obtained. However, the complexity of the scheme depends on the complexity of the Slepian-Wolf
coding scheme used to code the feedback. While we have found no low-complexity Slepian-Wolf
coding schemes appropriate for general DMC's, there are special cases for which appropriate low-
complexity schemes do exist; one such case is discussed in Section 6.4.

It is useful, therefore, to consider how we can use an appropriate given Slepian-Wolf cod-
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ing scheme to construct a reduced-rate-feedback coding scheme for a general DMC. Suppose we
have a Slepian-Wolf encoder €SV : Y™ — {0, 1}F™ with corresponding decoder dS% : X" x
{0, 1}Fm with the following property: with (X1,---,Xp,) and (Y1, - , Yy,) distributed accord-
ing to pxe yne (2™, y™) = [T7L ax (%i)gyx (ilzi),

Posw 2 Pr{dSW(X™, eS¥ (Y™)) # Y™} < expo{~nrEsw + 0n (ng)}. (6.20)

Then for each block of n¢ output samples Y " [i], the receiver feeds back 5% (Y[4]). The transmit-
ter decodes these data using dSW.

The security mechanism that checks for Slepian-Wolf decoding errors can be implemented using
expander codes as follows: Let b be any invertible mapping from Y to {0, 1}”, where v = [log |Y|].
Suppose that S channel inputs have been transmitted as above before the synchronization sequence.
Let K, be a parity-check matrix of an expander code with minimum relative distance § > Pesw.
With

BS? = (b(Y1),b(Yz2),- -+ ,b(}¥5)), (6.21)

the sequence K SUBS“ is sent as a check sequence. If the transmitter has made an estimate Y'S of
the feedback, then it compares K 5y B5? with K 5y B5?, where

BS¥ = (b(Y1),b(Y2),-- - ,b(Ys)), (6.22)

initiating retransmission if the two terms are not equal. The probability of an undetected feedback
error can easily be shown to be less than

expy{—(S/nf)D2(0 || Pesw)} < expy{—S(6Esw + on (1))} (6.23)
which is less than
expo{—N(6Esw/p + on(1))}, (6.24)

where p is defined as in (6.7). This expression parallels (6.8).
Choosing ¢ in a way analogous to (6.10), the resulting coding scheme can be shown to have
error probability decaying exponentially in IV for all rates below I(X;Y).

6.3 A Concatenated Coding Framework for Combining FEC Codes
with Feedback Codes

While the scheme we describe in Section 6.2.2 requires feedback rate 2H,(+/48¢) bits per channel
output, which can be substantially less than the one bit per channel output required by the scheme
of Chapter 2, a scheme needing even lower feedback rate would, of course, be more desirable. That
pure FEC codes achieve capacity with no feedback at all (albeit with higher complexity) suggests
that integrating FEC codes with feedback codes could lead to feedback coding schemes requiring
lower feedback rates. We develop a framework in this section for systematically integrating FEC
codes with feedback codes, which results in a class of coding schemes capable of operating at any
of a wide variety of feedback rates.
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Figure 6-3: Ilustration of concatenated coding with a feedback outer code.

6.3.1 Main Idea

The inspiration and main idea of the framework are as follows: For a forward BSC with crossover
probability ¢, the Slepian-Wolf coded feedback (SWCF) coding scheme described in Section 6.2.2
uses feedback rate 2H,(1/48€), and the Slepian-Wolf coding scheme suggests that Hy(e) bits per
output sample is the lowest feedback rate possible under an SWCEF strategy. Therefore, for small e,
the feedback rate decreases as € decreases, suggesting that feedback rate can be lowered if € can be
lowered. But if € is a fixed parameter of the forward channel, how can e be lowered? One solution
is to transform the channel into a channel with effectively smaller € by applying an error-correcting
code, which we call the inner code. After the channel is transformed, the SWCF scheme, which
we call the feedback outer code, can then be applied. This solution is graphically represented in
Figure 6-3. When FEC codes rather than feedback codes are used as outer codes, the family of
codes known as concatenated codes, which were studied by Forney in [21], result. For this reason,
we call the feedback schemes we develop based on this framework concatenated SWCF (CSWCF)
coding schemes.

A precise description of CSWCF coding is most easily given using the concept of a superchan-
nel [21]. A superchannel is induced when a block of symbols is considered as a single symbol. Of
particular interest is the superchannel induced by the inner FEC block code and its decoder. To be
precise, let C be a length-n, rate-r inner block code, and d its decoder. Let 2™ € € be sent over a
DMC called the original channel, and let the original channel put out the n symbols Y™ in response
to . Then we consider z" to be a single input to the superchannel and d(Y™) € € to be the
corresponding (single) superchannel output. The probability distribution

Pr{d(Y™) = 2" | X" = z"}, (6.25)

for all 2" € C and " € C then describes the superchannel, which is itself a DMC. The set of
codewords € is both the input and output alphabet, and the above conditional probability distribution
is the corresponding channel transition probability mass function (pmf). We call this channel the
super-DMC induced by the code (C, d). Since the super-DMC can be regarded as just another DMC,
we can apply the (SWCF) scheme described in Section 6.2.4 to this super-DMC.

Recall, however, that we can construct an SWCF scheme only if we can construct an appropriate
Slepian-Wolf coding scheme for the feedback data. A low-complexity, expander-code-based imple-
mentation of Slepian-Wolf coding exists when the inner code has very low probability of error, as
we show in the next section. In principle, though, the inner code need not have this property; we
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discuss such inner codes in Section 6.3.3.

6.3.2 Superchannels Induced by Strong Inner Codes

We can explicitly construct SWCF coding schemes requiring very low rate feedback for super-
channels induced by strong inner codes, i.e., inner codes with low probability of decoding error.
Note that such codes must have rates below the capacity of the original DMC. Since we already
describe how SWCEF codes work for arbitrary DMC's with a given Slepian-Wolf coding scheme in
Section 6.2.4, all that remains for a construction of a coding scheme is to construct an appropriate
Slepian-Wolf coding scheme.

To facilitate the discussion, let us introduce some notation. Let (C,d) be a rate-ry, length-nj,
codebook and corresponding decoder inducing a superchannel, whose inputs we denote by X, and
outputs we denote by Y;. The superchannel transition pmf Py, %, satisfies py- I, (z™z™) =1 - Py
for all z" € C, where F,, is the probability of decoding error associated with (C, d).

Slepian-Wolf Coding Scheme

To create a Slepian-Wolf coder for this superchannel, we can adapt the expander-code based
method of Section 6.2.2. Conceptually, the inner code transforms the DMC into a BSC with effec-
tive crossover probability less than P;,, and the expander-code based method of Section 6.2.2 can
be applied.

To be more precise, let b : € — {0, l}r’m"m] be an invertible mapping from € to a sequence
of [rinnin| bits. To Slepian-Wolf code a length-n¢ block of superchannel symbols Y™, we let
fif = nglTinNin] be the number of bits used to represent n¢ superchannel symbols, and let Ky, €
{0,1}{1=7)7x7 be the parity-check matrix of an expander code with rate r > 1 — 2H,(\/48F;,)
that corrects afif > Py fis errors in linear time. Then let €5V be defined by

SV(Y™) = K5 Y™ (6.26)

The decoder d3V is defined by

dSV(X™, B™) = ¢ (K5 X™ — B™) (6.28)
X% = (b(X1),b(X2), - b(Xn)), (6.29)

where d®*P is a decoder for an expander code. The rate of the Slepian-Wolf code is therefore
2H5 (/48 Py)[rinnin] bits per superchannel symbol, each of which consumes nj, symbols in the
original channel. Hence, the total feedback rate is 2H2(+/48P;) [TinMin | /Min bits per original chan-
nel symbol.

To analyze the probability of Slepian-Wolf decoding error for this coder, we use that an error
cannot occur unless Y™ differs from X™ in more than asi¢ places. But this event cannot happen
unless Y™ differs from X™ in more than an; places. The probability that this event happens is well
known [21] to be less than

expy{—n¢Da(a || Pn)}- (6.30)
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Properties of the CSWCF Scheme

According to Section 6.2.4, this Slepian-Wolf coder can be used to construct an SWCF coding
scheme that operates at any rate below the capacity of the superchannel with error probabilities
that decay exponentially with the average number of superchannel inputs used, which, in turn, is
proportional to the average number of original channel inputs used since each superchannel input
uses a fixed number n;, of original channel inputs.

To determine the maximum rate of the CSWCF scheme for which arbitrarily small probabilities
of error are possible, we need only determine the capacity of the superchannel and divide it by njp,
the number of original channel inputs used per superchannel input. The capacity of the superchannel
can be lower bounded by the capacity of the corresponding “equierror” channel [21]. In brief, the
equierror channel corresponding to our superchannel is a channel with additive (mod |C[) noise Z
satisfying Pr{Z = 0} = 1 — Py, and Pr{Z = j} = P,/(|C| - 1) forall j = 1,---,|C| = 1.
The capacity of this equierror channel log |G| — H(Z), where it can easily be shown that H(Z) =
Pinlog(|€C| — 1) + H3(P,). The capacity of the superchannel is therefore greater than NinTin (1 —
Pn) — Ha(Py). Note that the channel coding theorem implies that the inner code can be chosen so
that the superchannel capacity is arbitrarily close to n;, times the capacity of the original channel,
implying in tumn that rates arbitrarily close to the original channel's capacity can be achieved with
the CSWCEF scheme.

Moving to an analysis of the feedback rate required by the scheme, we can use the arguments of
Section 6.2.3.2 to see that 2H(+/48 B;,) bits per channel output are needed. Since P,, can be made
arbitrarily small by appropriately choosing the inner code, the feedback rate can be made arbitrarily
small.

The complexity of this concatenated coding scheme is non-uniform linear complexity. While
the CSWCF scheme can approach the capacity of the superchannel with uniform linear complexity,
more and more complex inner codes are required for the superchannel's capacity to approach the
capacity of the original channel. Only by using inner codes that are capacity-achieving with uniform
linear complexity can the CSWCF scheme have uniform linear complexity. Since no uniform-
linear-complexity capacity-achieving codes are known, we can only say the CSWCF scheme has
non-uniform linear complexity.

As a practical matter, it may be of concern that the precoder and source coder for the super-
channel may be quite complex owing to large input and output alphabets associated with a given
superchannel. However, the ideal precoding distribution is just the uniform distribution over € and
therefore a simple mapping can be used. In addition, the source coder can easily be simplified so
that it simply notes the locations in which Y; differs from X; and then repeats the data in that lo-
cation. It is straightforward to show that these precoder and source coder designs give the same
asymptotic performance as those described in Chapter 2.

6.3.3 Superchannels Induced by Weak Inner Codes

The superchannel we just described has the attractive property that a very low feedback rate is re-
quired. Many other combinations of inner and outer code parameters are available to give different
combinations of inner code rate, outer code rate, CSWCF code rate, and feedback rate. The in-
ner code may even operate at a rate significantly above capacity. The extreme case of this, when
the inner code has no redundancy, corresponds to the original case of the iterative coding scheme
developed in Chapter 2. This extreme case gives no reduction of the feedback rate.
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As a middle ground, we might choose an inner code with rate r satisfying C < r < H(X). Fora
forward BSC with crossover probability e, this translates to choosing r < (1 — Ha(€),1). Assuming
a corresponding feedback rate of H(Y;|X;)/n, we then have a construction for a continuum of
capacity-achieving schemes with feedback rates ranging from Hy(e) atr = 1to O atr = 1 — Hy(e).
But can a scheme that is niot at these two extremes achieve capacity? This question is equivalent to
the question of what the capacity of the induced superchannel is. The scheme approaches capacity
only if

H(X;|V))/n=r—C. (6.31)

For the case of the BSC, the results on list decoding (see the generalized Gilbert-Varshamov bound
in [19]) imply that for sufficiently long blocklengths, there do exist codes so that (6.31) holds. This
fact suggests that our framework gives rise to a continuum of capacity-achieving schemes requiring
feedback rates from 0 to H (Y| X') (assuming the possibility of Slepian-Wolf coding at the minimum
possible rate.)

Although it is unclear why one would ever favor a long inner code with rate greater than capacity
— since the length of the inner code would render the complexity high, and the high rate would
cause the feedback ratz to be high as well — short inner codes with rates above capacity may have
use under certain sets of constraints.

Let us demonstrate this potential usefulness with the following examples, which show that sim-
ple, short inner codes used in a CSWCF scheme can substantially reduce feedback rate, while only
moderately reducing the achievable forward rate. Consider a very simple example in which we have
a BSC with partial noiseless feedback (BSCpy) with a forward capacity of 0.25 bits per input (i.e.,
crossover probability = 0.21). The Slepian-Wolf coding theorem suggests that to use an SWCF
scheme, we require at least 0.75 bits of feedback per channel output used. Now suppose we use a
3-symbol repetition code as an inner code. This 2-codeword repetition code transforms the chan-
nel into a super-BSC with capacity 0.48, taking three channel inputs per superchannel input for an
effective capacity of 0.48/3 = 0.16, significantly below the original capacity of 0.25 (a “capacity
ratio” of 0.16/0.25=0.63). However, according to the Slepian-Wolf coding theorem, the feedback
can now be coded at rate of 0.52 bits per superchannel output, which is effectively a feedback rate
of 0.52/3 = 0.17 bits per original channel output, which is far below the original 0.75 bits per
channel output that were needed originally (a “feedback-rate ratio” of 0.17/0.75=0.23). With this
same repetition code used as the inner code, we plot in Figure 6-4(a) the resulting capacity ratio
(solid line) and feedback-rate ratio (dotted line) for crossover probabilities in (0,1/2). That is, we
let § = €3 + 3e2(1 — €) be the “crossover” probability associated with the superchannel and plot
%(1 — H4(6))/(1 — Hs(€)) with the solid line and %Hg(é)/Hg(e) with the dotted line. In Figures 6-
4(b) and 6-4(c), we plot the analogous curves for a rate-1/11 repetition code and a (7,4) Hamming
code, respectively.

As an aside, we note that weak inner codes are practically useless for the linear-complexity
feedback-free concatenated codes based on Spielman outer codes discussed in Section 2.6.2. The
reason is that the outer Spielman code is so weak that the outer code's rate would have to be very low
to correct a large number of errors remaining from the weak inner code. In contrast, a feedback outer
code as we have described is so strong that any capacity loss is effectively incurred only by the inner
code. On the other hand, because our scheme is based on using expander codes for the Slepian-Wolf
coding, the full, theoretically achievable, feedback rate reduction will not be completely realized.
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6.3.4 Computational Comparison with Feedback-Free Linear Complexity Concate-
nated Coding Scheme

Although feedback-free codes exist with similar performance to the CSWCF coding scheme de-
scribed above, the superior reliability of the feedback outer code compared to (feedback-free) Spiel-
man codes [56] gives it a computational advantage over the linear-complexity concatenated coding
scheme mentioned in Section 2.6.2. .

To compare the performance of the CSWCEF scheme with the concatenated code using an inner
Spielman code (CS codes), we make several approximations to bring out the essential behavior of
both schemes. Let us assume that the outer code rates are the same for each coder and that the inner
code rates are the same for each coder, resulting in the same combined rate. Also assume that the
rate 7 of the inner code is close to capacity C and that the outer code rate R is close to one, so
that the combined rate is close to capacity. Finally, assume that the inner code is decoded using
maximum-likelihood exhaustive search. ) .

We begin by assessing the relative powers of the Spielman outer code compared to the SWCF
outer code. For CS codes, since the Spielman outer code operates at rate R, it corrects a fraction of
errors K?¢2, where K? is a small constant given in Theorem 19 of [56], and ¢, is a function of R
satisfying Ha(e;) = (1 — R)/2. In contrast, for the CSWCEF codes, since the outer feedback code
has rate R, it usually corrects a fraction of errors €2, where, because the code is capacity achieving,
€7 is a function of R satisfying Ha(e2) = 1 — R. Note also that ez = 2¢; for R very close to 1.

The power of the outer code affects the computation in the following way: The length of the
inner code must be adjusted so that the probability of error is less than K2¢? and 5 for the CS code
and CSWCEF code, respectively. Because r = C, the computation needed for decoding the inner
code is approximately n2"C. To relate the required computation to the probability of inner decoding
error Py, we make the approximation P, ~ 2-"Fn(") where Ej,(r) is the error exponent for the
inner code, which allows us to rewrite the computation in terms of P, as nPi;"C/ E‘“(T). We can
substitute K ?¢? for Py, to find the computation required per superchannel input for the CS code and
substitute €5 for P, to find the corresponding quantity for the CSWCF code. For the CS case, we
require about (K€1)~ 2¢/En(r) computations to decode the inner code. For the CSWCF case, we
require about ne, ¢/ E‘“(r). Using that €5 = 2¢; for small €; and small €5, we see that the computation
per original channel input sample for the CS code is approximately (K?/ 2)~C/En(r) > 1 times the
square of the computation required for the CSWCEF code.

In summary, when operating at about the same rate, while the complexity of both the CS and
CSWCF is linear, the computation per bit for the CS scheme is far larger than that required for the
CSWCEF scheme.

6.4 Feedback Coding on the Erasure Channel and ARQ

While computationally efficient expander codes can, as we showed in Section 6.2.2, be used for
linear-complexity Slepian-Wolf coding in some scenarios, different low-complexity Slepian-Wolf
codes can be developed for another scenario, namely, for communicating over an erasure channel,
an example of which is depicted in Figure 6-5.

Erasure channels are convenient approximations to a number of practical channels, e.g., chan-
nels on which error-detection codes are used. In part because of the ubiquity of such channels,
the automatic-repeat-request (ARQ) protocol, which operates at the capacity of the erasure channel
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Figure 6-5: Depiction of an erasure channel.

with zero probability of error, is perhaps the feedback scheme most widely used in practice. In this
section, we develop new perspectives on the ARQ protocol by showing that it can be interpreted as
a special version of the SWCF and CSWCF coding schemes described in the previous sections.

Consider an erasure channel in which the channel output Y is equal to the channel input X with
high probability 1 — P, and the channel output Y is equal to the erasure symbol e with probability
Fe;. We can easily apply the SWCF coding scheme to this channel, because Slepian-Wolf coding
of Y™ for a decoder that knows X™ is straightforward. The Slepian-Wolf encoder for Y™ need only
convey the location of all the erasures to the associated decoder, which requires about nHy(Pe,) bits
of feedback.

On this channel, a simple ARQ scheme achieves similar performance but with smaller delay.
An ARQ scheme gives one bit of feedback for each received symbol indicating whether or not the
reception is an erasure. Then if erased symbols are immediately retransmitted, the average number
of retransmissions is Pe/(1 — Pe), the total number of transmissions per symbol is 1/(1 — P,),
and the rate is therefore log |X|(1 — P.) bits per channel input, which is the capacity of such a
channel. The feedback rate of one bit per received sample is generally substantially less than the
rate of H(Y’) bits per received sample required for complete feedback.

The ARQ protocol can be viewed within the framework of this chapter, with retransmission
interpreted as a source coding step and one-bit feedback interpreted as efficient low-complexity
Slepian-Wolf coding. In particular, we can interpret the ARQ transmission scheme as a special
version of the SWCF coding scheme of Section 6.2 in which the message iength is fixed at N = 1
rather than being arbitrarily large, and the number of iterations is variable rather than fixed.

It is straightforward to see that error/no-error feedback is a very efficient code that allows an
agent with knowledge of X to know Y, which is the essential property of a Slepian-Wolf code.
Furthermore, error/no-error feedback is the most efficient such code if one insists on coding Y
in “blocks” of only one sample each. Because it is also an error-free encoding of Y, the unity
blocklength does not cause a high rate of Slepian-Wolf decoding errors as it would in most cases in
which X and Y were not related through an erasure channel.

We can also see that retransmission (and refraining from it appropriately) is an efficient source
encoding of X based on Y. When an erasure occurs (i.e., when Y = e), then the conditional
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probability distribution for X is just the unconditional probability distribution for X, which means
that H(X) bits must be expended to describe X to the receiver — i.e., X must be retransmitted,;
when an erasure does not occur, then the conditional probability distribution for X says that X is
deterministically equal to Y; in this case, no bits need be expended to describe X to the receiver,
since it has knowledge of Y.

Other applications of ARQ also have interpretations within the frameworks developed in this
chapter. For example, ARQ transmission schemes are also used on channels such as relatively clean
BSC's. In this technique, the channel is transformed into what is effectively an erasure channel
by using an “inner” error-detecting code. We can regard such schemes as a form of concatenated
coding, where the outer code is the ARQ protocol.

To be more precise, let X™ be a codeword in a rate-r, length-n error-detection code transmitted
to a receiver, and let Y be the receiver's reception of it. Let d be a decoder for the code that
operates as follows

n 3 n
d(y") = {y v € & (6.32)
e otherwise.

Suppose that d(Y™) = X™ with high probability 1 — P.; — Pyq, that d(Y™) € Cand d(Y") # X"
(an undetected error event), with probability P,4, and that d(Y™) = e with probability P.;. We now
have a new channel from X" to d(Y™), which we call a pseudo-erasure superchannel, since there
is a possibility that the symbol put in to this superchannel will result in the superchannel's putting
out a different non-erasure symbol.

If ARQ is still used for this new pseudo-erasure superchannel, then its behavior is almost the
same as for a true erasure channel except that there is now the possibility of error caused by unde-
tected error events. We can now interpret the error/no-error feedback as a Slepian-Wolf encoding of
d(Y™) whose probability of decoding error is P,q. These Slepian-Wolf decoding errors cause the
overall transmission scheme to have a probability of error P4 and rate (1 — Pe;).

That ARQ transmission schemes can be viewed as variants of an SWCF coding scheme if the
original channel is an erasure channel, or a CSWCEF coding scheme if the original channel is an
arbitrary DMC, suggests opportunities for enhancing ARQ systems. In particular, to designers
of low-rate feedback systems, the CSWCF framework may help to provide an extended range of
coding options that build on or supplant ARQ. For example, error detection codes for the BSC
used with ARQ have the following fundamental limitation: As the error-detection codes become
longer, the probability of retransmission increases, but as they become shorter, the probability of an
undetected error increases. One solution suggested by our framework is to use longer error-detection
codes. More erasures then occur. When they do, we might feed back the full superchannel symbol
corresponding to the erasure (possibly incorporating expander-code-based Slepian-Wolf coding)
and then the next correction message need not be a full retransmission of the superchannel input
symbol but only a conditional source coding of the superchannel input symbol. In this way, we can
mitigate the loss in rate due to additional erasures.

6.5 Coping with Noisy Feedback

In this section, we undertake a preliminary investigation of coding for channels with noisy feedback.
In particular, we propose and analyze, at a high level, modifications to the coding scheme from
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Chapter 2 that are appropriate when forward channel is a DMC and the feedback channel is a
(possibly different, noisy) DMC. We restrict attention to the case in which the capacity of this
feedback channel is large enough to support complete feedback even after low-rate coding is applied
to the data being fed back. Our main result is that probabilities of error decaying exponentially with
the number of channel inputs used are possible at all rates below capacity with uniform linear
complexity.

The general strategy we adopt is to apply a low-complexity error correcting code to the feedback
data. This approach has the two problems of delay and errors. Of the two, errors are more serious.
Consider, for example, an mSB coding scheme in which the transmitter sends an inner code, and
depending on whether it is received correctly, sends a verification sequence. If one verification
sequence is received, the receiver expects a retransmission; if the other is received, it does not.
Suppose the receiver feeds back, after it receives the verification sequence, 1 bit indicating whether
it expects a retransmission. If this 1 bit of feedback is corrupted, then the transmitter and receiver
may have different opinions about whether a retransmission is to occur. If only one message is sent
in total, then this difference of opinion can be made inconsequential. But if an infinite stream of
messages is sent, then this difference of opinion can wreak havoc. For example, if after the first
inner codeword and verification sequence, the receiver expects a retransmission but the transmitter
does not, then the next message the receiver obtains is interpreted as the first message, when it
is in fact the second. If all subsequent messages are received correctly, then they are all in the
wrong position. In practice, one can instail many mechanisms to make the possibility of complete
havoc acceptably small. For example, each message can carry a number indicating its position in
the message stream, or the receiver can tell the transmitter which number message it expects. The
analysis of such schemes is cumbersome, however. To circumveit these difficulties, we discuss how
a fixed-length scheme with error correction on the feedback link could work.

To develop a fixed-length, linear-complexity scheme with exponentially decaying error proba-
bility, we first note that there is a two-codeword codebook for the DMC with length n, and proba-
bility of error less than 107!2, a constant we have chosen somewhat arbitrarily, although it should
be smaller than 0.112 /48. Then there for every n, there is an expander code with rate greater than
1—-2H,(v/48 x 10-5) ~ 0.8807 that corrects at least 10~5n errors in linear time. If we take a code-
word in this binary expander codebook and substitute one codeword in our two-codeword codebook
for each 1 and the other codeword for each 0, then we will have constructed a codebook for the
DMC with rate i = 0.8807/n2, probability of error less than exp,{—nD(107° || 10~12)}, and
linear encoding and decoding complexity.

Now, let L = N(1/I(X;Y) + €), be the target length for our fixed-length code that encodes
N bits, where € < 1. We construct a scheme that gives exponentially decaying error probability
at this rate, albeit with a poor exponent, as follows: First, we let § = ¢/(8I(X;Y)?) and use an
iterative scheme similar to that in Section 2.7.1, using the fixed-length precoding and source coding
subsystems {75} and {o5n}n. We then let the number of iterations By be the smallest integer
such that

N (H(X]Y) +6

By
H(X)-6\ H(X)-¢ ) < Nertem/8. (6.33)

Notice that By is then a constant independent of IV, so we denote it by B. After B iterations, the
residual message left to be coded is less than Nereq,/8 bits. Using the termination code discussed

114



above, the final termination coded block is less than Ne/8 samples long. Now, let the feedback
be coded using some low-complexity, length-Ne/(8B) block error-correcting code, whose error
probability decays exponentially in this length. We could, for example, use the design described in
the preceding paragraph. Then the delay between two iterations incurred by waiting for the coded
feedback is less than -Ne/(8B), which in total is less than Ne/8. The total length of this coding
scheme is therefore upper bounded by

N € €
—I(X;Y)—25+N§+N§’ (6.34)
which, for small ¢, is less than N(1/I(X;Y ) +¢€). All sources of error can be shown to decay expo-
nentially in IV, so the total error probability can be union bounded by a term decaying exponentially
in V.

Because this scheme has fixed-length, the transmitter and receiver always agree on the actions
they are taking. An error in the feedback data causes at most a forward decoding error and does not
affect subsequent transmissions.

Note that if the rate of the feedback channel after low-complexity block coding is too low to
support full feedback after coding, we could in principle exploit the notion of combining block
coding on the feedback channel with the techniques for dealing with noiseless partial feedback
described above.

6.6 Discussion

6.6.1 Multiple-Access Channels with Partial Feedback

Since multiple-access channels may also return only partial feedback, we are naturally curious to
see how if at all the frameworks we develop in this chapter apply to this case. This section contains
a preliminary exploration of this question.

We begin by considering the role of Slepian-Wolf coding when communicating over a 2-user
DMMAC with partial feedback. Immediately, we encounter an obstacle: Assuming both transmit-
ters receive the same feedback data, if we use only H (Y| X3, X3) bits of Slepian-Wolf coded feed-
back, neither Transmitter 1 (Tx-1) nor Transmitter 2 (Tx-2) can obtain Y, because neither knows
the other's transmission. A crude solution is to feed back H (Y| X) bits to Tx-1 and H (Y| X3) bits
to Tx-2 for a total rate of H(Y'|X;) + H(Y|X2). We do not know whether a more efficient method
exists, although intuitively it stands to reason that one should: If D is the description of Y intended
for Tx-1, then only H(Y'| X3, D) bits should be required for the description of Y to Tx-2. But how
small can H(Y'| X2, D) be and what choice of D minimizes this quantity? This problem is beyond
the scope of this discussion, but we believe that some of the work on multiple descriptions [18],
successive refinement [20], and the broadcast channel [14] may be relevant.

That Slepian-Wolf coding in this case need not be more efficient in terms of rate than no coding
suggests that the SWCF framework developed in the previous sections may not be well-suited to
multiple-access channels.

Let us consider another approach to gaining insight into the problem. In Section 6.4, we were
able to interpret the ARQ protocol, which requires very-low-rate feedback, in terms of the SWCF
framework. Is there perhaps an analog to the ARQ protocol for multiple-access channels that will
shed light on the problem? The most relevant set of protocols seems to be the various protocols for
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communicating over the packet-switched multiple-access broadcast channel (MABC), which is a
useful model for a variety of packet switched communication systems.

The MABC is defined as follows. Time is discrete and is known by all users; at the start of each
time slot, each of M users makes a decision regarding whether to transmit or not transmit; if two or
more users in the system transmit a packet at the same time, then a collision results, and no packet
is successfully received; if only a single user transmits a packet, a packet is received successfully,
while if no user transmits, the channel is wasted; after every attempt at using the channel, all users
are immediately informed as to whether a collision (two or more users transmit), success (one user
transmits), or idle (no users transmit) occurred; packets arrive during each time slot with probability
p to each user, and each user has no buffer (sometimes called a single buffer), i.e., he can hold only
one packet waiting to be transmitted. All of the above are common and useful assumptions that
capture the essence of a class of practical problems in which a common channel is shared. The goal
is to choose protocols so that the probability of a successfully received packet in each slot, i.e., the
throughput, is maximized.

A problemn with using the MABC to garner insight into ways of handling partial feedback
multiple-access channels is that the optimal method for communicating over such channels is un-
known. As a finding that is interesting in its own right, we have established the near-optimality
of the Hluchyj-Gallager protocol [28] for two and three users. This result along with a detailed
discussion of the MABC and its relationship to decentralized control is given in Appendix E. Un-
fortunately, the Hluchyj-Gallager protocol is, in general, relatively complicated, although, as shown
in Appendix E, it reduces in some cases to the TDMA protocol, which actually ignores the feedback
altogether. In light of this fact, it is questionable and remains to be determined whether the MABC is
an appropriate canonical example. It may be more fruitfui to instead develop other multiple-access
analogs of the erasure channel.

6.6.2 An Alternative View of Coding with Partial Feedback

We discuss here another perspective on the use of the compressed-error cancellation framework
for partial-feedback channels. First, we observe that no feedback at all is required to use the
compressed-error cancellation framework if a Slepian-Wolf source coder is used as the source cod-
ing subsystem. This observation provides an important link between Slepian-Wolf coding and for-
ward error-correcting coding: if a reliable Slepian-Wolf coding scheme is available, then one can
use it to construct a forward-error-correcting code. That Slepian-Wolf coding is, in general, compu-
tationally difficult, limits the practical utility of this observation. But the observation leads to a new
perspective on partial feedback: When the conditioning variable is fully known (full feedback), the
conditional source coding task is easy, as we saw in Chapter 2. When it is unknown (no feedback),
the task is hard, as suggested above. So how hard is the conditional source coding task with partial
knowledge of the conditioning variable (partial feedback)?

To provide some insight into this quesiton, we examine a particularly natural form of partial
knowledge of the receiver's observation Y™ that could be fed back: a rate-distortion coded version
of Y. The following example suggests how hard the source coder's task is when such partial
knowledge of Y™ is given. Consider the following procedure for a BSCy¢ with forward crossover
probability € and feedback rate 1 — Hy(a) bits per channel output:

e The transmitter (Tx) sends a block BV of N data bits uncoded.

o The channel adds (modulo-2) N samples of Bernoulli-e noise Z".
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o The receiver (Rx) forms a distorted versipn’}"N of its N noisy observations YV, where DN = YN —
Y™ has Hamming weight aN. It feeds YV back to Tx using N(1 — Hz(a)) bits.

o Tx forms ZV = YN — BN = ZV + DN_ It then uses Slepian-Wolf coding to compress Z” into
H(ZN|DN) = N Hj(e) new data bits and sends these data bits over the channel uncoded. (Since the
receiver knows D it can recover Z and therefore Z )

o The channel adds (modulo-2) N H(€) samples of Bernoulli-€ noise.

This procedure, which attains the channel capacity 1 — Hj(e), still seems to require a potentially
costly Slepian-Wolf source coding step, even though partial knowledge of YV is fed back. It would
be intuitively pleasing if the Slepian-Wolf coding step were somehow less and less computationally
costly as the feedback rate increased, but we do not know if this is the case. Note, however, that if
we avoid this Slepian-Wolf coding step altogether and encode ZV with H(ZN) = NHy(€') bits,
where € = a(1 — €) + (1 — a)e, then the rate becomes 1 — Ho(€'), which is less than capacity, but
approaches capacity as the feedback rate goes to 1.

Although only a preliminary discussion of it is given here, this alternative perspective, in map-
ping the problem of compressed-error-cancellation coding with partial feedback to the problem of
conditional source coding with partial knowledge of the conditioning random variable, could lead
to new insights into the problem of coding with partial feedback.

6.6.3 Summary and Future Directions

We have shown by construction that a uniform-linear-complexity feedback coding scheme can
be devised with less than rate-H(Y) feedback. While the scheme gives a reduction in required
feedback rate that can be dramatic, the reduction is ultimately due to Slepian-Wolf coding of the
feedback. The transmitter still uses essentially complete knowledge of Y. We then developed a
concatenated-coding type of framework in which truly incomplete knowledge of Y is fed back.
However, we saw that the computational complexity increased. We have been unable to determine
whether or not the complexity can be made to gracefully increase as feedback rate decreases to
zero. We showed that if one does not demand that the rate of the coding scheme be near capacity,
then the use of short, weak inner codes within the concatenated-coding framework provides a set
of very computationally efficient feedback strategies with arbitrarilv low probability of error with
truly incomplete knowledge of Y. Still, much work remains to be done in assessing the tradeoffs
between the power of the inner code, complexity, and rate.

We conjecture that there is no capacity-achieving uniform-linear-complexity coding scheme for
DMC¥'s requiring fewer than H (Y| X)) bits of feedback per channel output. The origin of this con-
jecture is simplt that we have yet to find any uniform-linear-complexity capacity-achieving feedback
coding scheme that does not require the transmitter to have nearly complete knowledge of the chan-
nel outputs. An interesting research problem would Uz to prove this conjecture to be wrong (or
right, but this proof is likely to be much harder to obtain.)

Although the analysis in this section has been for DMC's with partial noiseless feedback, these
techniques should be extendable to DFSC's and UFSC's with partial noiseless feedback (DFSCps's
and UFSCyy's, respectively). The main obstacle for DFSCyy's is finding an appropriate method for
Slepian-Wolf coding the feedback data. For UFSCyy's, one would have to contend with some sort
of universal Slepian-Wolf coding.
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We have also shown briefly how error-correcting codes can be applied to a noisy feedback
channel without reducing the achievable rate on the forward channel and maintaining low over-
all complexity. One somewhat unsatisfactory property of the resulting scheme, however, is that
the feedback channel and forward channel are treated asymmetrically. The notion of using the
compressed-error cancellation scheme on both the forward and feedback channel would be attrac-
tive if there were a way to carry it out. An exploration into this interesting area might begin with
the case in which both the forward and backward channels are erasure channels.
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Chapter 7

Conclusions

For decades, the availability of complete, noiseless feedback has been known to be useful in re-
ducing the computational complexity of coding schemes. This knowledge has come mostly by
way of examples of low-complexity feedback coding schemes. But no general framework for low-
complexity coding with feedback has emerged as a particularly natural and useful one. In this thesis,
we developed one such framework and showed it to be useful for a number of different feedback
communication problems.

The major contributions of this thesis occur at two levels. At one level, new classes of low-
complexity feedback coding schemes were introduced. The range of channels for which these
schemes provide low-complexity coding solutions is remarkably broad, encompassing discrete mem-
oryless channels (DMC¥'s), discrete finite-state channels (DFSCy's), unknown finite-state channels
(UFSCy's), discrete memoryless multiple-access channels (DMMAC's), and certain channels with
only partial feedback. The codin_ schemes all have the lowest possible asymptotic time complexity
— i.e., the asymptotic order of growth of the number of computations used for encoding or decoding
is linear in the number of channel inputs used. Further, analysis of the performance of each coding
scheme revealed that each has high rate and low probability of error.

At a broader level, the thesis introduced a systematic, tractable framework for low-complexity
coding with feedback — i.e., the compressed-error-cancellation framework — which formed the
basis of the new coding schemes. Within this framework, coding with feedback can be done by
iterating a two-step process. In the first step, a message is precoded and sent without redundancy
over the channel. In the second step, a new message is constructed that can resolve the uncertainty
held by the receiver about the original message. The flexibility and generality of this framework
suggest that it may form the basis of still more sophisticated schemes.

But the compressed-error-cancellation framework may have shortcomings. For example, when-
ever the feedback capacity exceeds the feedback-free capacity, it appears difficult to exploit this
excess capacity via the framework. This difficulty has multiple roots, an influential one being that
the precoding distribution is always held fixed rather than being allowed to adapt to the feedback.
Developing new types of precoders for different communication scenarios is an interesting and
promising direction for future research.

It is also not clear how to view many existing feedback coding schemes in the context of the
compressed-error-cancellation framework. Consequently, another interesting direction for future
research is the examination cof existing low-complexity coding schemes such as Horstein's [30]
to see how they relate to the compressed-error-cancellation framework. Such an examination has
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the potential to reveal some very deep principles of coding with and without feedback and may
ultimately lead to further advances in coding theory and practice.
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Appendix A

Detailed Technical Information for
Chapter 2

A.1 Proof of Subsystem Property 1

To upper bound E[£(m,(D™))] as in (2.39), it is useful to upper bound , by a different function I,,,
which is easier to analyze:

Lemma A.1.1 Let b; = F)?{l(z'2‘”) fori =0,---,2", and let y(z, y) denote the index of the first

M-ary expansion digit at which = and y differ, i.e., let v : [0, 1)2 — N be defined by vy(z,y) =
min{k € N : z # yp;}- Then define I, by

v(u, b;) ifb; <u<biit
Vi=0,1,...,2" — 1 (A1)

- ) i£h: g < )
I, () = {’y(u, bit1) ifbiiv1 <u < by

where

bisi1 = Opg b G0+
(for example, if X = {0,1}, b3 = 0,.010011 - -, and by = 0.01100101 - - - then b3 4 = 0.011).
Then

In(u) < I (u) forall w € [0,1). (A2)

Proof:  To prove the lemma, we need only show that [0a7. T (w), Oar. T (w) + M%) C
[bi, biy1), where T}, (u) = uli(®)],

To see that this fact holds, first suppose that u € [I_)i,,-+1,b,-+1). Next, notice that I—)i’i+1 =
oM.bef*”’*“)]oooo---. Since b;y; starts with the same first y(b;, b;11) digits, any element in
[bi i+1,bi+1) must also start with the same first 7v(bi, bit1) digits. Since T,, truncates u only after
its M-ary expansion differs from that of b1, Opr.Tn (u) must also begin with these digits. Hence,
Onm.Tn(uw) > biiy1. Next, since u < b4, the M-ary expansion digit at which u first differs from
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bi+1 must be smaller than the corresponding digit of b;;. Therefore, 0p7. T}, (u) + M ~4Tn (),
which corresponds to T}, (u) with its last element incremented by one, may at most equal bit1-
Hence, [OM T (u) UM T (’LL) +M_[(T (u))) - [ 1,441 z+1)

Next, suppose that u € [b;, b; ;41). First, it is clear that Op.Tn(u) > by, since u > b;, and
Ui ()] > bi,[i,,(u)]' Then note that

Biie1 = Oar B P (b ) ) = DM = 1)(M = 1)(M — 1) - . (A3)

Therefore, 0p7. T (u) + M~ = 04, T (u)(M — 1) (M = 1)(M = 1)--- < b; ji-+1, since every
M-ary expansion digit of u is less than or equal to the corresponding expansion digit of b; it1-
Hence, the lemma follows. v

We now prove that E[ln( 1(S))] < (n + Cr)/H(X) for some C, < 0o, where S is defined
in (2.18). Subsystem Property 1 then follows from this bound with the lemma above.

Consider a device that takes the random process Fz (S)[l F2 (S) [2]- - -» and traverses an
M -ary tree until a leaf is reached. (An M-ary tree is a tree in Wthh every node has M children.)
We let the stopping rule I,,, which is non- anticipatory (as a stopping rule must be) and deterministic,
define the leaves and hence the tree. An example of how the tree is traversed is the following: If
M =2, starting from the root of the tree, we branch to the left if the first process value is zero, and
branch to the right if it is one; now being at a new node, we branch to the left if the second process
value is zero, and branch to the right if it is one; we continue until a leaf is reached. Each value of S
leads to a different leaf of the tree. We can think of V" = f’n(F;l (S)) as the random leaf at which
we end, and of £(V') as the depth of this leaf. It is shown in [16] that

E[e(V)] = H(V)/H(X). (A4)

To see that (A.4) holds, assume (A.4) holds for some tree (stopping rule). Take any leaf in this tree
and create M children that emanate from it. If this leaf has probability p, then the expected length
increases by p, and the entropy of the leaves increases by pH(X). Since (A.4) trivially holds for
the tree with one level and M leaves, (A.4) must hold for all trees.

We now show that H(V') < n + Cy, where Cy is independent of n, which gives us the desired
upper bound E[{(V)] < (n+ Cr)/H(X). LetV = {Tn(u)}ue[o,l) c {0,1,...,M — 1}! be
the set of all leaves of the tree. Since the stopping rule that defines the leaves is deterministic, the
probability of a leaf v € V can be written py (v) = Pr{F)El(S) € [0pr.v,0p7.v + M~4®))}, which

implies that py (v) = Hfg’l) gx((0ar.v)};)- Now, let us evaluate the entropy of V, which is, by
definition,

=2_pvl) & ov (v)

veEV

To do so, we divide the sum into manageable portions as follows. Consider for now only the leaves
v € V for which Ops.v € [b,,bl_H) for some 1. Define the sets V; = {v € V | Opr.v € [b;,bi41)},
Vi={veV|0yve [b1 i+1,0i41)}, and V7 = {v € V| Opr.v € [b;, b;,41)}, all of which have
a countable number of elements Further restrict consideration to the leaves v € \7+ Let v+ be the
element of V} such that 0ps.v]" is the smallest member of {0y;. ”}vev+ Note that 2(v; ) is also

the smallest element of £(V;), although other elements of V} may have equal length. Label the
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elements of V;" according to their length [ and their /th M -ary-expansion digit. That is, let vﬁ’m be
the element of V] that satisfies Z(vf’”‘) =l and (0ps .vﬁ’m)m = m. Note that (b;11) is the number
of elements in Vl?" with length [. Now, the probability of a leaf vf-’m € Vz7F can be written as

)
Im pV(v ) ln
pv(v;") = | l ax((0pr.v; ) (A.S)
v (™) ax ((0p1.7; )[g(,, D) k) x((Oar-2:

because all leaves in V;" have their first é(vf ) — 1 elements in common. For convenience, let

pf = pv(vj)/qx((OM.vf)[E(vjr])), and note that
Pr{V € V}} < p} <Pr{V € V}'}/Pmin. (A.6)

This inequality holds because OM.vz'-* comes from expanding Ei,i“ until and including the first
digit it differs from b;,;. Therefore, if we set the last digit of OM.U;1r , (Op.vf )“_,(vf]), to zero
to form a number ¢, then the interval [g,q + M~4)+1) includes both b; i+1 and b;y;. Since
pf = Pr{0p.V € [q,q + M-t +1)} we arrive at the left half of (A.6). The right half of (A.6)
holds because pv(v;" ) <Pr{V € V;" }. The part of the entropy contributed by the leaves in V" can
be upper bounded as

oo (bi+1)p— 1
> pv (v)log s Z Z pv(v ™) 10g e (A7)
vevy )
oo (1)1 1 +
= Z pv(vﬁ’m) (log — +log _.?117) (A.8)
I=¢(v¥) m=0 p; pv(v;™)
0o (b1)py—1
= Z Z pv(v5™) log —-+
1=g(v}) m=0 t
128 T ax(Omv™g) D> log I
I=t(w}) ™=0  fk=g(u}) k'=£(vF) gx ((Oar.v; )[k’])
(A.9)
<Pr{V e v+}1og +p; MZPW (1 log ) (A.10)
, =1 min
1
<Pr{V € V}'} | log ———— tK A.11
1
<Pr{V €V} log ———— | + 27K, A12
— r{ 1}(ogpr{vev;{-}>+ D1 ( )

where K and K, are chosen appropriately. Equation (A.9) follows from (A.5), and Inequali-
ties (A.11) and (A.12) follow from (A.6). The part of the entropy contributed by the leaves in V
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can be similarly upper bounded as

Z pv(v) log ( j <PrflVev;} (log ) +27"Kp,.

1
e Pr{V €V}

Summing the bounds on the contributions to the entropy from V. and V;L, we can upper bound the
entropy contributed by the leaves in V; by the sum of the two:

1 1 1
v) lo <PV eV }log————— +Pr{VeVilog —
g{pv( ) g ooy < P 7 }log PV SV r{ F}log BV V)
+27(K,, + Kpy) (A.13)
=27 (n + 1) + 27" (K, + Kpy), (A.14)

where (A.14) follows from the fact that

Pr{V eV}

Pr{V € V;} + Pr{V € V}}
Pr{V € V}}

Pr{V e V;} +Pr{V € V}}

-27n (A.15)

Pr{V eV }=

Pr{V eV} = .27, (A.16)

and that the entropy of a binary random variable is less than 1. Summing over all 2" intervals, we

have that H(V') < n + C; for an appropriate constant Cy that is independent of . a
As an additional note, it is straightforward to show that the lower bound

E[f(mn(D™)] > n/H(X) (A.17)

holds as well. The proof follows from the fact that the tree associated with I, has leaves whose
probabilities are always less than 27", The entropy of the leaves is therefore greater than n, which,
combined with (A.4), proves the lower bound.

A.2  Proof of Subsystem Property 2

Subsystem Property 2 gives an upper bound on the expected length E[LZ, ] in terms of E[L;],
which is obtained as follows.

Our approach is to first find an upper bound on E[¢(X;;1)|L{ = n] in terms of E[L;|L¢ = n].
To find such a bound, we must know the distribution of the precoder's output ¢’ (the source coder's
input) conditioned L7 = n. To find this distribution, we require the distribution of the precoder's
input ¥; conditioned on LY = n. Fortunately, because of r in (2.14), we can assume that U;
is, conditioned on LY = n, uniformly distributed over the set {0,1}". Given such an input, we
asserted in Section 2.3.1.1 that the precoder ,, produces output that is a stopped sequence of random
variables that are i.i.d. according to qx. Using this characterization of the precoder my,'s output, we
model the source coding of this precoder's output as follows: Let {X} and {Y1} be as defined
in Section 2.3.1.2. Let L, = I n(0a. X ), where [, is defined as in (2.22). The precoder Tn's

output is then represented by the random variable-length tuple X L~ The transmitter sends X Z»
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over the channel. The receiver feeds back ?i", and the transmitter source codes X L~ according to
HJIQI x|y (-] Y]) which results in a stream of bits of length flou,,n. Because
!
—log [ [ pxiy(X; | ¥3)| +1

j=1

bits are used to represent XL~ we can write the expected value of flom,n as

0o ~l
- s 3 Pyi(7)
E[Loun] <2+ Zpi,,, (D) Z Z Py x1 (ylixl)l’j'qim (xl|l) log . (3;i§:z) o (2)
1=1 feyl zlext pY'|XI y Pxi
(A.18)
We now prove the following lemma that bounds the length of E[Loy n):
Lemma A.2.1
ElLown] < E[L JH(X|Y) + H(Ln) +2 (A.19)
Proof: We begin by expanding the logarithm in (A.18) as
log P58 ~ log Py, (@'10) . iy, E0) tog PF (3'10)
P?t;,{rl(@llf&l)%\“—l (&) Py x1 (i[’lf:')pg,l,:n (571|l) P (53[) Py @H

we then obtain

[o ]
Ellows] =2+ ZPL,, (1) [H(X1|Yl, Ln =1)+ D(psyj, = 1 pxt) = Dpyyp, - || Py (?3'))]
=1
(A.20)

o0
<243 py, () [HEYY, Ln = 1) + Dogaz, oy | p50)] - (A21)
=1

Since Ly, is a deterministic stopping rule for {X;}, and because {X;} is an i.i.d. process and
the channel is memoryless, we have that for all integers m > 0,

Slim) 7 o1 = Pl A.22a
pXIIl ILn=1X! pktir ( )
l4m 7 e Bt Crl4m A.22b
PiiamiLa=tyt = P, (A.220)

cltm Sl4mg s ol vt = Dglem oltm. A.22c
pxlil ,yH*_'l |La=1,X1, ¥ pxlir,yl:l ( )
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From (A.22), it follows that for all integers m > 0,

ZPL,. ODPxy i, = i) = Zp,;,, OD@gm i, < | Pgm) (A.23)
=1
< I(X"‘ L) (A.24)
< H(Ly), (A.25)

and

m
> by WHEXY L, =1)

=1
Pyuj (@l | 1)
_ZZZPX‘ w11, (#,9,0) log Lo T (A.26)

=1z g P){'If/zfm(x Y |l)

_ZZZpXm om . (E™ 5™ 1) log Pf/m|f‘,n('€1m 10

I=1 gm §m Pxm ym i, (E™ G | 1)

pyl 1(yl 1)
- ZpL,, )3 pen g (E1,57) log S (A.27)
P I+1 l+l le+1v}';+1( l+1’yl+1)

141 9141

< HEX™Y™ L) - (Z:%,. () (m — l)) H(X|%) (A.28)
=1

<mH(X1|Y;) - (Zpin (O)(m — l)) H(X,[Yh) (A.29)

=1
< H(X, V) (Z pi, (1)1 + mPr{L, > m}) (A.30)
=1
< H(X,|Y1)E[Ly). (A.31)

Inequality (A.29) follows from the fact that conditioning reduces entropy and that entropy is pos-
itive; (A.31) follows from writing out the sum corresponding to E[f,n] and using basic algebra.
With (A.25) and (A.31) holding for all integers mn > 0, substituting the appropriate quantities
into (A.21) and taking the limit as m — oo allows us to upper bound E[iout,n] according to

E[Lown) <2+ H(Lyn) + E[L,) H(X1|Y1), (A.32)

which completes the proof of the lemma. \V/

Lemma A.2.1 immediately implies that
E[€(Zi11)|IL7] < 2+ H(L;|L7) + E[L;|L]] H(X|Y), (A.33)
which implies, after averaging both sides over LY, that

E[6(3i41)] < 2+ H(L;) + E[L;] H(X]|Y) (A.34)
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< 4 +log E[L;] + E[L;]H(X|Y), (A.35)

where (A.35) follows because H(L) < 2+log E[L] for any positive, integer-valued random variable
L (see, for example, Corollary 3.12 in [15] for a proof).
We may conclude from (A.35) that fori = 0,1,...,By — 1,

E[L?,,] < E[L] H(X|Y) + log E[L;] + 4 + 4 + 2E[[log L;]] + 2E{[log L?1],  (A.36)

where the last three terms are due to the encodings of L; and LY in ¥;. To express the right-hand
side completely in terms of L;, we first prove the following lemma:

Lemma A.2.2 For all d" € {0,1}",
U(mn(d™)) > n/M,, (A.37)
where M; = — 10g Pmin and pmin = min{gx(z) : gx(z) # 0,z € X}.

Proof: The probability of the sequence m,(d") must be less than 27". The shortest such se-
quence would consist entirely of the element of X with lowest nonzero probability, giving the se-
quence probability pf;,(i’,r,"(d D The lemma then follows. \V4

This lemma implies that LY < L;M,, which implies that we can write
E[L7,,] < E[L;)H(X|Y) + 5log E[L;] + 12 + log M. (A.38)

That the logarithm is concave and monotonically increasing completes the proof that Subsystem
Property 2 holds. a

A lower bound analogous to that given in Theorem B.3.2 can also be proven using the same
arguments used in the proof of that theorem.

A.3 Proof of Subsystem Property 3

To bound the probability of decoding error for the mSB coding subsystem, we observe that an mSB
decoding error occurs only if the transmitter sends w”, and the decoder mistakes it for ¢. Let Py,
be the probability of this event, and let P, be the probability of the reverse error (mistaking ¢” for
w). If ¢¥ and w" are distinguished with the detector described in [65], which makes P,,, very small
at the expense of making P, large (but sufficiently small), then it is shown in [65] that the choice
of ¢ and w” given in Section 2.3.1.3 yields the bound [65] that

Py < expy{—v(Eew — 0,(1))}, (A.39)

where E,,, is defined as in (2.38).
The average length of the mSB encoder's output 7 can be upper and lower bounded, respectively,
according to

K +v<n<(K24+v)/(1 — Py — Py, (A.40)

It can easily be shown that P, = 0,(1) and P, = o,(1).
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If we set v = [aN] and k = [N/4], then (A.40) implies that = aN + on(NN), which can
be used with (A.39) to arrive at the inequality

Pew < expy{~n(Eew — on(1))}. (A41)
The probability of error P, term, v for this mSB scheme can be written

PinPew

b _ : A.42
e,term,N PinPey + (1 — Pyp)(1 — Py,) ( !

which is less than P, for sufficiently large values of N, proving that the property holds.

As a final remark, note that we need not have chosen the “inner” code to be a bit-by-bit repetition
code, but could have used a more complex code. The repetition code happens to be have very low
complexity and is simple to construct. ]

A4 Proof of Lemma 2.4.1

To bound p1, we first use Subsystem Property 1 to conclude that
E[Li|L7] < (L] + Cx)/H(X). (A.43)

Taking expectations of both sides of this bound and combining with (2.40) in Subsystem Property
2, we find that
E[Lip] < FE[L:] + ME[Li])/H(X) + Cz/H(X) (A.44)
= FE[L;] + A(E[Ly)), (A.45)
where F = H(X|Y)/H(X), and A(z) = (M(z) + Cy)/H(X). Note that A(z)/z — 0 as z — 0o
and that ) is a non-negative, monotonically increasing, concave function over [1, 00).

Using the recursion (A.45), we obtain

i~1
E[L] < F'E[Lo) + Y _ F*ME[L;_1—g)). (A.46)
k=0

Using that F' > 0, that A\(z) > 0 forall z > 1, that E[Ly] > 1fork =0, --- , By, and that

E[Lo] < (N + Cy)/H(X), (A.47)
we can see that
By-1 Bn-1
1 N + C7r -~
= ] < 1) 1. A.48
m=3 B s 7 (e + > iz (a48)
Using that ) is concave over [1,00) with the fact that E[Lg] > 1 fork = 0,--- , By, we can bound
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the second term in (A.48) according to

By-1 . _ By-—1
> MEL)) < BN,\( > E[Li]/BN) (A.49)
=0 i=0
= By A(uu/Bn). (A.50)

Using (A.48) and (A.50), we can write

Hil 1 1 N+C7r
_—_— < -
N = N1-F\ H(X)

+ BNX(un/BN)) , (A.51)

which, using elementary algebra, implies that

K 1 )(N-FC,;)( 1-F )
£ . . (A.52)
N (H(X) - H(X|Y) N 1 — F — ByA(pu/Bn)/pn

Since lim;_, o 5\(1:) /z =0, and uy/By — oo as N — oo, the lemma follows. a

A.5 Proof of Lemma 2.4.2

To bound p;, we first use (A.37) with (2.28) to obtain
L <2¢(Zp,)+2logty +4log Lp,_; + 2log M, + 16. (A.53)

We next bound Lpg, —; as follows: Since A from (A.45) is ox(NN) and also represents a quantity
that is finite, it follows that there is some constant C such that

Az) < z+C, (A.54)
so that the bound
1+ F

E[L;iy1] < —2—E[Li] +C (A.55)

holds. Using (A.47) with this recursion, we see that

1+F\' N )
1< | —— ) —

E[L;] < ( 2 ) H(X) +C, (A.56)

where C’ is a constant. With (2.9), it follows immediately that
E[Lg,-1] < C'+on(1). (A.57)

This inequality in turn implies via (A.55) that E[{(Zp,, )]=On(1). Assuming ty ~ on(N), which
is ensured by Subsystem Property 4, we may conclude that E[L]=0Op (log N).
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Since k=0 (N1/4), it follows from (2.31) that
E[Bg] =1+ on(1). (A.58)

Coupled with the fact that Pp jerm y=0x(1), the lemma follows. 0O

A.6 Proof of Subsystem Property 4

Here, we prove that both false alarm and missed detection probability decay at least exponentially
with t .

To determine the probability of false alarm, suppose that Y;,Y>, ...,Y;, arei.i.d. with marginal
pmf py. With §*¥ = (a,--- ,a), a being defined by (2.53), we can upper bound the probability of
false alarm according to

tn i xen (YN [0 [N]) /2
Pl (YtMy =1l < (N (pYN!XN(y ) Ao
(i () =1} < tN%‘NpM(y (Rt A.59)
< Y pr(y) Ppy x (yila)/? (A.60)
yiN €Ytn i=1

191
_H > oy (k) Ppy x (klz:) '/ (A.61)

k=1
< (Bp)™ (A.62)

By the Schwartz inequality, Ey < 1, with equality if and only if X and Y are independent. The
probability of missed detection can also be bounded above by (Ep)!¥. With ¢ defined by (2.55),
Subsystem Property 4 follows. o

A.7 Modified Scheme Reliability

To find the reliability of the modified scheme, we must find the new expected length and probability
of error associated with the new coding scheme. Let é(N, vy) denote the modified counterpart to
cpmc (N, vn) defined in Section 2.4.

We have the following lemma that characterizes the length for the ¢(IV, vy ) in terms of that for
the length L* under the perfect-detection assumption:

Lemma A.7.1 With L, denoting the length associated with the é(N, vy ),
E[L%] = E[L*] + on(N) (A.63)

Proof: The increase in length L’ — L* has two sources: false alarms and missed detections of
the synchronization sequence.
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The number of additional transmissions A} due to false alarms satisfies

plaf) < (222 4 1) oy (2 ) wrya + ow) (A6
=on(1) (A.65)

where Pga ¢y is the probability of false alarm associated with detecting 0!~ [N]. (Also recall that
Ap, + 1 is the time at which transmission of the sequence corresponding to the Byth iteration of
the coding algorithm, and thus indicates the time at which the symbol (!~ [N] is transmitted.) The
reasoning behind (A.64) is as follows: There are about Ag, /tN opportunities for false alarms in
a particular transmission. If a false alarm occurs, the N source bits to be sent via the termination
coder, where each block of kx bits uses about 7, (r) channel inputs. Equation (A.65) follows by
using Subsystem Property 4 with the fact that E[Ap, ] grows linearly with N (Lemma 2.4.1).
Next, the number of additional transmissions A} due to missed detections satisfies

tNB
E[AY] < N MDity (A.66)
1 — Pup,ty
Mwmptn
1= Mup’ (A.67)

which is derived as follows. Suppose we send the stream @'~ [N], !N [N],..., and the detector
does its hypothesis test every ¢y samples. Then the number of times that #*~N[N] is transmitted
before the first detection is a random variable with mean less than 1/(1 — Pup,, ). Because we
counted the first transmission of (¢~ [N] in g1 of (2.46), the number of additional transmissions is
bounded above by (A.66). Equation A.67 follows from exploiting (2.57). Note that the additional
transmissions due to transmission of ¢(Cwmp) is on average a constant and therefore negligible, as
is large enough that E[Bg] remains as in (A.58).

Combining the sources of additional channel uses, we obtain (A.63) as desired. m|

The probability of error associated with &(V, vx) is characterized in terms of the probability of
error associated with the scheme under the perfect-detection assumption by the following lemma:

Lemma A.7.2 With P, y and P, n denoting the probabilities of error associated with cpmc (N, vy)
and é(N, vy), respectively,

P.. n<PFn+ Ppn, (A.68)
where
E[A N
Pgn < (—[T-&'—] + 1) Pra iy (—) P term,N (A.69)
N K
= on(1) Pe,term,N- (A.70)

Proof: The modified scheme introduces only one additional error event: the event that a false
alarm occurs and then one of the subsequent —],:—’ termination-coded blocks is received in error. Since
the existence of a false alarm does not affect the probability of error associated with the termination-
coded blocks, we arrive at (A.69) via the union bound. O
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Since Pey = (1 + ox(1))Pe erm,~, Lemma A.7.2 says that the probability of error is effec-
tively unchanged. Since Lemma A.7.1 says that the expected length is effectively unchanged as
well, Lemmas A.7.1 and A.7.2 together imply that the modified scheme attains the error exponent
function Ecgc defined in Theorem 2.4.1.

A.8 Precoding with Linear Complexity

Without loss of generality, assume that X = {0,1,..., M — 1}. Given a sequence d" € {0,1}" to
precode with 7y, let s = 02.d" 4+ 27" Z, where Z is a random variable uniformly distributed over
[0,1). Then let s, = 0,.5("], and let s; = s + 2~™. The precoder then finds the longest interval I
of the form I = [Opr.uy - - - uj,0pr.u1 - - - uj + M~7) such that Fg(I) C (s, s¢) and then puts out
u. The following algorithm gives a method for doing these steps efficiently:

1. $,:=0,8:=1,R:=1,l:=1.
2. If Sy > sp and Sy < s, then go to 4. Otherwise, go to 3.

3. Compute by, = bym—1 + Rgx(m — 1) form = 1,2,..., M, starting with b, o = S;. For
k=201....M—1,ifs € [bl,k,bl,k+l), then set U; := k, R := qu(k), Sy = bl,k,
St := by k41, ! := 1 + 1, break out of the loop over &, and go to 2.

4. Halt, and return (Uy, Uy, ..., U;_y).

Assuming real arithmetic requires a single computation, this algorithm has complexity that is linear
in the final value of [ — 1, which equals £(7,(s)).

To recover d", we need only recover the first n binary-expansion digits of s from 7, (d"). To do
so, we compute = Fz(0pr.m,(d"™)). Then s and x share their first . binary-expansion digits. A
convenient formula for F'y is

oo Yik—1

Fr)=> > ax m)qu(y,] | (A1)

k=1 m=0

Because the M -ary-expansion digits of 0pr.7,,(d"™) are, by definition, all zero after the first £(7, (d"))
digits, and because the product term in (A.71) can be computed recursively, F'y (0pr.m,(d™)) can
be computed with complexity that is linear in £(m,(d™)).

Like arithmetic source encoders and decoders, these methods for precoding and inversion of
precoding suffer from numerical precision problems on finite-precision computers. To avoid these
problems, we must use systems for arithmetic with arbitrary precision (see, for example, [43]), or
we must use special rescaling methods similar to those that are used carry out arithmetic source
encoding and decoding (see, for example, [63]).

A.9 Fixed-Length Precoding and Source Coding Subsystems
A.9.1 Fixed-Length Precoder

The fixed-length precoder 75, maintains the general resemblance to a decoder for an arithmetic
source coder held by its variable-length brother 7,. With d® € {0,1}", i = 2"(02.d"), m =
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2-"(i + 1/2) the midpoint of the interval [i2~", (¢ + 1)27"), X defined as in Section 2.3.1.1, and
Z uniformly distributed over [0, 1), we define 75 ,, by

a= F;l(m +27"2) (A.72)
Ton(d™) = alfs™)]] (AT3)

where f5(n) = [n/(H(X) — d)]. Itis clear that if py s;(n) (alfs(™ly < 2-7=2 then i and therefore
d" can be recovered from 75, (d") if Z is known. Furthermore, it is clear that the addition of 27" Z
in (A.72) makes 75, (W™) statistically identical to fs(n) random variables that are i.i.d. according
to gx if W™ is uniformly distributed over {0, 1}".

A possibility of decoding error now exists with this preco.si. The probability of such an error is
upper bounded by the probability that py 1) (a[55(n)]) = 2772, Let us prove that this probability
decays exponentially with n, beginning with the following lemma.

Lemma A9.1 If A;, -, A, are i.i.d. random variables with mean A < oo, then for any § > 0
there exists a constant F, (§) > 0 such that

Pr{z A; >n(A+ 6)} < exp{—F4(d)n}. (A.74)

i=1

Similarly, for any 6 > 0, there exists a constant F_ ()

Pr{z A; <n(A- 6)} < exp{—F_(d)n}. (A.75)

i=1

Proof: To demonstrate the first inequality, we use the Chernoff bound (see, for example, [41]),
which says that for all s > 0,

Pr{‘i A; >n(A+ 6)} <V(s)", (A.76)
i=1
where

V(s) = (exp{—sé}%). (A.77)

Note that V(0) = 1 and that the derivative of V with respect to s evaluated at s = 0 is equal to —4.
Therefore, there must exist some s > 0 such that V' (s) < 1, which proves the lemma. The proof of
the second inequality follows analogously. O

Corollary A9.1 If Xy,---, X, are i.i.d. according to qx, then for all § > 0, there exists a constant
F;(8) > 0 such that

Pr{—logpx~(X") < n(H(X1) — 8)} < exp{—F1(8)n}. (A.78)

This corollary implies that the probability of a precoding decoding error decays exponentially
with f5(n), where the exponent is a function of 4.
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A9.2 Fixed-Length Source Coder

The fixed-length source coder o ,, resembles its variable-length counterpart in Section 2.3.1.2 be-
cause it uses the same principles of arithmetic coding. With {X;}; and {Y;}; jointly marginally dis-
tributed according to px y- and mutually independent at different times and with X = {0,--- , My -
1}, let X=0 Mm-X1X2X3-- -, and define the source coder 0s,n as follows:

a = Fgyn (z"y") + pxnjy=(z"|y")/2 (A.79)
osn(z", q) = (alos™ly, (A.80)

where FXHIY" is the conditional cdf of X, conditioned on Y™. In this scenario, the sequence z"

is decodable as long as pxny«(z"|y") > 2795(W=2)  Coroliary A.9.2 below then implies that a
decoding error occurs with probability that decays exponentially in 7.

Corollary A9.2 If X, - -, X,, arei.i.d. according togx,and Y}, - - - , Y}, are such that Py, |x; (ylT) =
gy x (y|z) for all = and y, then for all § > 0, there exists a constant F5(8) > 0 such that

Pr{—logpxn|y~(X"|Y") > n(H(X|Y) + 8)} < exp{—F»()n}. (A.81)

A.10 Analysis of Variable-Length Interleaving

Suppose we use the same technique in Section 2.8.1 of interleaving the transmissions for two mes-
sages. Consider the first two transmissions. Their lengths L; and L, are identically distributed.
Suppose computation to process L samples of data takes the same amount of time as it takes to
transmit oL samples, where @ = H(X|Y)/(2H(X)) < 1. Because L; and L, are random and
not guaranteed to be equal, the transmitter is guaranteed to be ready to send the second iteration of
the first message only at time L; + L2 + max(0,aL; — L3). This means the channel is idle for a
number of samples

Iy = max(0,aL; — Ly) (A.82)
S_ max(O, L1 e Lz) (A83)
< |Ly — L] (A.84)
<std(L; — Lo) (A.85)
< V2std(Ly), (A.86)

where std(-) denotes the standard deviation of a random variable. Inequality (A.85) follows from
the concavity of the square root function, and (A.86) follows from the independence of L; and
L. Now, after sending at most I; samples of filler, the length-L3 correction message for the first
message is sent. We then encounter a similar situation in which the correction message for the
second message cannot be sent until time Ly + Ly + I; + L3 + max(0,aLs — L3). So the channel
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is idle for a number of samples

I = max(0,aLs — L3) (A.87)
< max(0,kLy — L3)) (A.88)
< |kLy — L3| (A.89)
< V2 max(std(L,), std(L3)), (A.90)

where k > o is chosen so that E[kL; — L3] = 0. We believe that std(L;)=On(VN), i = 1,2,3. If
this belief is true, then the wasted channel inputs during the first iteration are Oy (v/N). If similar
behavior holds on subsequent iterations, then total channel inputs wasted is By O (v/N), which is
on(N).

It remains to be shown that std(L;)=On(vVN), i = 1,2,3. It is easiest to show that
std(L;)=On(V/N) if we use a modified precoder 7, that behaves like Tsn €xcept that it stops
at a random length as soon as the probability of its output sequence falls below 2~". If L; is the
output length of this precoder, then the following lemma implies that std(L;)=On(v/N):

Lemma A.10.1 If L = {¢(7,(D"™)), where D" is uniformly distributed over {0,1}", then
var(L)=0y(n).

Proof: It can be shown that n/H(X) < FE[L] < n/H(X) + C. I we let

AL E:‘z/f (K1) _ log ¢x(X;), where {X;} is a sequence of i.i.d. random variables with marginal
pmf gx, then the variance of A, var(A), is O,(n), and E[A] = n. Whenn — A = d > 0,
L—-n/H(X,) < —d/10gpmax- When A —n =d > 0,n/H(X;) — L < —d/ log pmax. Therefore,
E[(L — E[L])?]=0y(var(A)), which proves the lemma. O

A similar lemma would seem to hold for the source coder to give us the standard deviations
of Ly and L3, but it is difficult to show because the precoder's output is not strictly i.i.d. For this
reason, we are unable to show rigorously that the standard deviation of lengths of transmissions
beyond the first two is O (v/N). But, if the precoder output were exactly i.i.d. and stopped at a
time independent of the data, then L3, conditioned on L; would have a variance that is proportional
to L;. Averaging over L, L3 has an unconditional variance proportional to expected value of Ly,
which is proportional to V. Proceeding in a similar fashion for subsequent iterations, we would see
that the time spent computing while using the channel idly is negligible.
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Appendix B

Detailed Technical Information for
Chapter 3

B.1 Ergodic Finite-Order Markov Input to Indecomposable DFSC/'s

Theorem B.1.1 Let gy, g,|x,,5, be the the channel transition pmf for an indecomposable DFSCy
with state-space B. Let K be a finite positive integer, and let g, X9_, be a transition pmf of a
Kth-order Markov process representing the channel input so that its corresponding Markov chain
has only transient plus ergodic states; let the state-space associated with this process be denoted by
A. Then the set of joint input/channel states associated with gy, g,|x,,5, and gx;| X0, contains a
single ergodic class plus transient states.

Proof: Let the ergodic states of A be denoted A = {ay1, - ,a|4,|}. Call the chain correspond-
ing to these states the input chain. Let the states of B be labeled by, - - - , big;. Then consider the
chain corresponding to the product state-space consisting of the pairs (a;, b;).

Let n be an integer such that for every ™ € X7, there is a state by such that by is reachable
under input z" from all states in B. Theorem 4.6.3 from [23] establishes that such an integer n
exists. For some 1, consider the set U(a;) = {(ai,b) : b € B}. There must be at least one recurrent
state in U(a;), or else a; would not be recurrent in the input chain as assumed. Let R(a;) be all the
recurrent states (not necessarily in the same recurrent class) in U(a;). Select some input sequence
z™ that has positive probability under the input distribution conditioned on starting in the ergodic
state a;. Then the ending state corresponding to ™ must be an ergodic state as well, because in the
input chain, only ergodic states can be reached from a;. Call this ending state a.. Then the state
(ae, by) is reachable from all states in R(a;) as well as those in U (a;). Suppose s is in R(a;). Then
(@e, by) must be in the same class as s, since recurrent states can only reach states in their own
class. But this holds for all states in R(a;), which implies that all states in R(a;) are in the same
class. Now, since ¢ was arbitrary, we can make the same argument for every 7, concluding that for
eachi = 1,--- ,|Ag|, the states in R(a;) are in the same (recurrent) class. Furthermore, there must
be a way to go from a state in R(a;) to a state in R(a;) for j # i, or else a; and a; could not be
in the same ergodic class in the input chain. Therefore, all states in R = U;R(a;) are in the same
(recurrent) class, i.e., there is a single recurrent class.

Now suppose R is periodic with period d. Then we can divide R into d subclasses T3, - ,Ty
such that states in 77 must go on the next time step to states in 75, and so on. For any ¢ =
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1,--+,|Ael, @; is ergodic in the input chain, so each subclass T} must contain at least one state
of the form (a,,b;) (i.e., U(a,) NTy # Qforall k = 1,--- ,d). If n from above is such that
(n mod d) = m, then if (a;, b;) is in subclass T, then (a,, bf) must be in subclass T}, .£-;. But
since (a;j, b;) must reach (ae,bf) forall j = 1,---,|B|, and because U(a;) N Ty # 0 for all
k =1,---,d, we find that (ac,bs) € T4 for k = 1,---,d. Since the subclasses {7} } are
disjoint, there can be only one subclass, and d must be 1. Hence, R ic aperiodic and therefore an
ergodic class. All states not in R must be transient since they are not recurrent. O

B.2 Efficiency Property of the Precoder

In the following, &, X and X are as defined in Section 3.3.1, and X is defined as in Section 3.3.
The states at time k of X’ and X’ are denoted by oy, and &y, respectively.
We need the following lemma later in the proof, so we prove it now to avoid future disruptions.

Lemma B.2.1 If { X }; is a K'th-order ergodic plus transient' Markov process taking values in X,
then there exist constants C' < 0o and pmax < 1 such that for any state o € XX,

Pxnixo_, (2"]@) < pax- (B.1)

Proof: Let P be the probablhty transition matrix associated with the A = |X|¥ states of the
chain. Suppose P4 = ]_[J 1 P contains an element with value 1. Then a deterministic trajectory
through A + 1 states must exist. But since there are only A states in total, this trajectory must pass
through one state more than once. There must then exist a deterministic trajectory that is a cycle,
which implies that the chain associated with P is not ergodic plus transient, which is a contradiction.
Therefore, P4 contains only values strictly less than 1. Let . < 1 be the maximum value in
the matrix P#. Now, let S1,°** ,Sn4 be a state trajectory, and form the sampled state sequence

= (S1,54+41,524+1,"** ,8(n—1)a+1)- Then the probability of this sampled state sequence is less
than p,,,. Since the probability of s™# must be less than the probability of 5", the lemma follows.

\Y
We now move to a general lemma about stopping rules.

Lemma B.2.2 Let L be a deterministic stopping rule for X obeying a; = @&. Then
E[L) = H(XL)/H o (). (B.2)

Proof: Parse X into phrases J;, i = 1,2,---, such that J; is a trajectory from state & to
state & that does not otherwise pass through &. Then (X1, X2,-++) = (J1,Jo,--- ), and we can
let A be a stopping rule for {J;}22, such that (Ji,---,Jz) = (X;,--+,X). Since the J; are
i.i.d., we can use Wald's equality to conclude that E[A] = H(J)/H(J;). Ekroot [17] proves that
H(J,) = Hoo(X)/pa, where 1/u4 is both the probability of being in state & in steady state and
one over the expected length of J; for all <. Thus,

E[A] = H(JMa/Hool D). ®3)

'For our purposes, an ergodic plus transient Markov process is always assumed to have more than one ergodic state.
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It is left only to show that
E[L] = E[A]/ua. (B.4)

Suppose (B.4) holds for some stopping rule L and corresponding stopping rule A. The stopping rule
A corresponds to some oo-ary tree in which each node has an infinite number of children, and each
child corresponds to a realization of J;. Consider extending this tree by creating an infinite number
of children for some leaf whose probability is p. Then E[A] increases by p, and E[L] increases by
pE[£(J;)] = p/pa, so the equality still holds. Since the equality holds for the stopping rule for
which A = 1 always, (B.4) holds for all deterministic stopping rules by induction. Substituting
(B.4) into (B.3) and using the equivalence of JA to X proves the lemma. 7
Let S be uniformly distributed over the unit interval [0,1). Letting X1, Xo,... =
1(S) FS X(S) [2]:- - - » and letting

Ly = n(Fl4(9)), B.5)

we can see that Lemma B.2.2 applies. Therefore, to complete the proof, we must show that
H(X%») < n+ Cy, which is the purpose of the next lemma.

Lemma B.2.3 There exists a constant C;; independent of n such that
H(XM) <n+Cy. (B.6)

Proof: We find it easier to prove statements about a related stopping rule L, defined as follows:
With
ln(v) = min{k : Fgg 5 ([0p-u* K] 0pr.ul®l + M%) C [:277, (i + 1)27)}
foruGFFS)-([z2 " (t+1)27")) fori =0,--- ,2" — 1, 3.7

let

L =1

n = In(F5 £(9). (B.8)

We upper bound H (XL) shortly, but let us first examine the relationship between H (XLn)
and H(XI"). Let the final trajectory from & to & in X Ln be called Jy. It is clear that there exists a
mapping f such that XL» = f(XLn Jy, L' — L, + £(Ja)), which implies that

H(X™) < H(XE) + H(Jp) + H(L!, — L, + €(Jp)) (B.9)
< H(XE) + H(J) + log E[L!, — Lp, + £(JA)] + C (B.10)
< H(XEm) + H(Jp) + log E[£(Jp)] + C (B.11)
= H(X™) + Ho(X)/pa — log ug + C, (B.12)

where C is a constant, and (B.10)—(B.11) follow from the fact that 0 < L), — L, + £(Jy) < &(Jy).
With this relationship, the final step is to upper bound H (X L%). To do so, let us first define a
function I, that upper bounds [],:
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LemmaB.2.4 Let b; = FS X(z2 ") fori = 0,---,2", and let v be the function defined in

Lemma A.1.1. Next, define [, by

)

= (b)) ifbiien <u<big
Io(u) = ) _
y(u, b)) i b <w < b

Vi=0,1,...,2" - 1 (B.13)
where
bssr = O B0,
Then
I (u) < ly(u) forallu € [0,1). (B.14)
Proof: Same as the proof of Lemma A.1.1. v
With L, = [,(FZ.(S)), and T, (u) = ul»®), it is clear that I/, < L,. This inequality in

FS,X
turn implies that H(XLn) < H(XL»). Letting V = XZ», we complete proof of Lemma B.2.3 by
showing that H(V') < n + Cy, where C is independent of n.
LetV = {Tn(u)}ue[o,l) c {0,1,...,M — 1}!. Let z%_, = &. Since the stopping rule that
defines the leaves is deterministic, the probability of a leaf v € V is py(v) = Pr{F_'_(S) €

[0ar.v,0pr.0 + M)}, which implies that

FSX

o) — 4 T1 0xaixa (Oar0)ial20 ey Oaa- D)y, Oaro)y) i 80) <K +1,
Hﬁ‘;’% QX1|X1_K((OM-’U)[J]KOM-'U)[J—K]a 5 (Opr.9)5-1)) if {(v) > K + 1.
(B.15)

As in Section A.1, to evaluate the entropy of V, we divide the sum into manageable portions as
follows. We consider for now only the leaves v € V for which Ops.v € [b;, b;4) for some 7. With
Vi, V¥, and V; deﬁned as in Section A.1, we further restrict consideration to the leaves v € V;.

Defining v;” and v ™ as in Section A.1, and assuming K(v ) > K, we bound the probability of a
leaf v2™ € V} using Lemma B.2.1 according to

pv(v;™) = oy ()
' ‘1X1|X° ((OM-'U*)[e(vj)]I(OM-'Ui )[e(uj)-K],' e a(OM-’U:-)[e(vj’)_l])

H 4x,)x0_ (OMv ™)) Oar-vy ™ —ke)s -+ 5 Oar- 07 ™) 1)) (B.16)
k=£(v]")
Cov (v )P
~ Bxapxg_ (009 )y | On-0 ey iy -+ 5 OM 0 gy )

. (B.17)

where pmax < 1 and C < oo are constants. An analogous bound holds if £(v;") < K. For

140



convenience, we also let py,;, be the minimum of the non-zero transition probabilities. Next, we let
= pv(e)/ax,xo, (Ov 0 ey Om0 ey app -+ > OO0 gy kp)s - (B-18)

and note that
Pr{V € V}} <p} <Pr{V € V{}/pmin (B.19)

for the same reasons given for (A.6) in Section A.1. From here, Equations (A.7)—(A.16) can be used
in essentially the same way as in Section A.1 to show that there is a constant C; < oo such that
H(V) < n+ Cy, which, with (B.12), proves the lemma. \V4

The efficiency property of the precoder follows immediately from Lemmas B.2.2 and B.2.3. O

B.3 Interaction between Precoder and Source Coder

In this section, we analyze how many bits are required to encode the precoder's output conditioned
on knowledge of the channel output.

The Approximation Property of the precoder allows us view the precoder's output, which is
the source coder's input, as a stopped version of a K'th-order Markov process. This is one of the
keys to being able to analyze the interaction of the precoding and source coding subsystems, which
are each quite complicated. Another key is to note that the state of the channel at the beginning
of an iteration is independent of the data the precoder puts into the channel during that iteration,
conditioned on the length of the input to the precoder. To see this fact, note first that it certainly
holds for the first iteration, because the input to the precoder is the sequence of original message
bits, which is assumed independent of the initial channel state. For the second iteration, because of
the randomization function r, we can again assume the input to the precoder 7fs 5, to be uniformly
distributed over {0, 1}", independent of the channel state. These statistical relationships continue
to hold for all subsequent iterations.

These facts allow us to model the interaction between the precoder and source coder as in the
following theorem, which is the main theorem of this appendix and relates the average length of the
output of the source coder, which can be expressed, to within an additive constant, by the left-hand
side of (B.20) below, to the average length of the input to the source coder.

Theorem B.3.1 Let X' = {X;} be a Markov process with transition pmf gy, ixo_, and initial state

pmf goo. Let Y = {V;}2, and 8 = {3;}{2, denote the output and state processes, respectively,
resulting from passing the Markov process X through the channel gy, g,|x, 5, Without feedback
with ap and ) jointly distributed according to qq, g,- Also let oy be the state of X, and let S;, =
(o, Bi)- Let L, be the stopping rule for X’ corresponding to the action of 7gs , for some n.

Then

S5 S rr izt ) log ———— z(z:‘ly j S BlLn]Hoo(¥1Y) + H(Ln) + C,  (B20)
=1 gzl yl

where w x|y (z*|y') is as in (3.23), and C is a constant independent of E[Ly,].
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Proof: For any integer . > 0, we can write

ZZZan,xr yi(l ', y') log ————— th,yr(:v'ly‘)

=1 gl

1 Pxyy! L, (='ly', 1)
P, xt o,z ’y) Io + lo, : . (B.21)
ZZZ L, X1Y ( ® Pxii L @D Y wxyi (&)

=1 £

Next, we bound the first term of (B.21) according to

Zzzplmxlyllit y)lO 1 11
’ pxiyt,z, (ZHyh 1)

=1 gl

ZZZ 1
PLaxmym (™Y )ngqul,Ln(ﬂ?qy‘,l) ®.22)

=1 z™ ym™
PYYL, (ylll)Py,f;dw,L,, (1)

= pLxmy=(l, 2™, y™) | log
;;; 3 ’ le’y1|Ln(xl,ylll)pxml,ylr;llxl,yl,lm(ZL‘IT:_I,yﬂ_l'xl’yl’l)

(B.23)

1o
Pxm ym xtyi L, (T vl v 1)
+10g I+177141 n

Py,

m
1 1
E lz E mym m,"‘l(lo —1lo )—
) L e Pxmy 2 () { log S D )

"
Zzszn,xl yi(l,z ,y)(z pr,+1,1f,+11x y! L,,($1+1,yz+1|33 9 1)

T Yt

iz, 1Y)

I 1 )
0og
Pxp, v ixiyt, L, (2 i |2t o4 1)

1

+ ,2:; §meYl Ly %pYQJYQLn (ui31 1y, 1) log (TR (B.24)

H(X™Y™, Lp) ~ émn () (m ~ D) (Hoo(X,Y) — Hx(V)) + C (B.25)

< mHoo(X|Y) ~ lf:mn ((m = )Hxo(X|Y) +C' (B.26)
=1

= Hoo(X|Y) (Em: pL, ()l +mPr{L, > m}) +C' (B.27)

< Hoo(ﬂjz)EEZ] +C' (B.28)

where C and C' are constants; the first term of (B.25) follows from the fact that the first term of
(B.24) is upper bounded by summing from [ = 1 to oo; the second and third terms of (B.25) follow
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from Lemmas B.6.3 and Lemmas B.6.4 and the fact that Y=, and L,, are independent of process
samples at time indices greater than L,, conditioned on knowledge of the state at time L,; (B.27)
and (B.28) follow from basic algebra.

Next, consider the second term in (B.21). First, for notational clarity, for all n > 0, define
A
wxnyn (2", Y") = Pgn yn (2" Y") (B.29)
A
wyn (y") = pya(y") (B.30)

Then the second term in (B.21) can be written

le,qu,. (=, ¥t | wy: (3')
ZZZPL,,,X’ UL RT)

= PY'|L,. @Dwx: y1 (2, )

= EZPY’lL,‘(y |7) log ———— o8

=5 Py, (U'1D)

(ZZZ Zan,X‘ yt.50(, 7,1, 50)

=1 gl I

log (B.31)

Y s Pxt yl|Ln,so(9«‘ 'L, s0)Pso|L.. (Soll ))
D50 Pxt 1|5, (2 ¥!|50)/ (AB) ’

where A = |X|¥ and B = |B|. Since the first term of (B.31) is negative, we can upper bound the
entire expression by the second term, which can be rewritten and upper bounded &3 follows:

m E ) ll [
PX!Y!|Ln,S0(Z5 Y |1 50)Ps,| L, (S0]0)

ZPLn () Z Z pr',yl,sew,. (z', 9, so|l) log ==

=1 !

Y50 Pxtylise (2!, 9 s0)/ (AB)

Lo
PXtYILn,50 (T Y |1, S0)Psy L. (S0ll)
< Lyt g (1, @ ,Y',80) lo : -
ZI 22 2 Pt sob T ) g T T T /(AB)

(B.32)
p UL, (1‘ 2 Y I s 8 0)
< ZZZZPL"’XI y! SO l il' ,y S()) 10 Xt Y IL So lOg(AB)

Pxtyts, (2t yls0)

=1 zl ’
(B.33)
m
= ZZZ Zan,Xm,Ym,so(l,xm’ ymaso)
=1 z™ y™ so
(log Pxmym|La,5 (™ Y™ | s0)
Pxm ym|s, (™, y™|s0)
, Py Y XY L, So (T4 U120 9 L s0) oo AB
—log o AR AR + log(AB)
X{;‘_l,)q’illxl,yl,so l+1’yl+1 » Y, S0
(B.34)
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m
< Z Z Z ZPLn,Xm,Ym,so (4, z™,y™, s0)

=1 z™ y™ s
(1 og Pxm Ym|L,,50(2™, ¥ ™|, s0)
Pxm ym|s, (2™, y™|s0)

) + log(AB) (B.35)

m
< DD PLaso(ls50) D(Pxm L =t,50=s0 Il Px ym{s9=so) + loE(AB)

=1 so
(B.36)
o0
<D PLaso(l50) D(Pxm Lzt So=so || Pxm ymise=se) + 10g(AB)
=1 so
(B.37)
<I(X™, Y™, L,|So) + log(AB) (B.38)
< H(L,) + log(AB) (B.39)
We used the log-sum inequality [14] for (B.32); to go from (B.34) to (B.38), we used that
D P Y XY Lo (T W12 ¥ L so)
2{ 193
log Pxp vy ixtyt Ln,so($z+1,yz+1|$ 915 50) (B.40)
pX1+1’Yz+1'X »Y':So(xl+1’ yl+llzc ’ y »50)
The theorem is proved by summing (B.39) and (B.28) and taking the limit as m — oo. O

Using a straightforward analog of Lemma A.2.2, Inequality (3.24) follows from this theorem in
a similar way that (A.38) follows from Lemma A.2.1.

Finally, it is interesting to note that the following lower bound also holds:

Theorem B.3.2 With X', ), 3, and L,, as in Theorem B.3.1,

ZZZ%,X' vill ') log o ,(z,,y) 2 E[Ln|Hoo(X|Y) — H(Ln) = C'  (B41)

=1 gl

Proof: Letting 2z be the right-hand-side of (B.24), we can write for all m > 0,

22 H(X™|Y™, L,) — i PL.(VH(X™Y™, Ly = 1) -
l=m+1
> L. () (m =) (Heo(X,P) — He(P)) - € (B.42)
=1
> Y b1, (VH(EID) - (L) ~ log WimPe{Lo > m} ~ &', (Ba3)

=1
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Taking the limit of (B.43) as m — oo, we have z > E[L,]H(X|Y) — H(L,) — C', since
lim mPr{L, >m} =0 (B.44)
m—00

if E[Ly] < co. Equation (B.44) can be proven as follows: For all m > 0,

mPr{L, >m} < E[La] - Y _ pr. (1)L, (B.45)
=1

so taking the limit of both sides as m — oo proves (B.44). Since the left-hand side of (B.41) is
greater than z, the theorem is proven. m]

B.4 A Fast Algorithm for Conditional Shannen-Fano Source Coding

In this section, we describe an algorithm for computing the essential quantities that lead to a compu-
tationally efficient algorithm for conditional Shannon-Fano (arithmetic) coding for a Markov pro-
cess passing through a finite-state channel without feedback.

Suppose we are given sequences £" and §™ and would like to perform the coding described in
Section 3.3.2. The primary obstacle then is the computation of

n Trp—1

FipnOm-2"15") =D D piappn (@ 2|5"), (B.46)
k=1 z=0

where { X}, and {3} are as in Section 3.3.2.

We focus then on efficient computation of py, ;. (2771, z;|§") for all z; € X and for all
7 =1,--- ,n. To do this we use concepts similar to tLose used in the algorithm of Bahl et al. [5]

First, assume we have the value of py. 15, (97+11s;) for all possible values of s;, where {5:}
i+

is the joint input/channel state corresponding to {Xi}, {¥x}, and {B;}. Also suppose we have
computed py; sy, (&7, zj, s;/97) for all values of z; and s;. Then

. g ) o
Pxi 3,195 (¥ %55 85187)Pyn 18, %5 95 (B4l 7775 25, 57)

p)‘/ﬁlp‘d (Z’?;'l+1 197)

P g v (375 54107) =

(B.47)
Pss 5,7 (37725, 85187 )Pym 15, (7 41l55)
= — ]j , (B.48)
p)‘/jr;_llfn (yj+1|?/ )
which should be computed for all s; and z;.
To find p)‘rjrg+ Vi (37%1 |#?) in the denominator of (B.48) we use

Pyn 190 (G5l9’) = EPY;;, 13, @3 1l85)pg, 174 (s5197), (B.49)

S
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where we compute P, 192 (sj]97) through the following recursive computation of p 3,79 (s5,97):

5,090 (3541, 971 = ZPSJ i (55, %°)ps, e Falg i (Si1 Gialsi, §) (B.50)
= Zps 265, 53, (851 G lsg) (B.51)

Then to find p 3,19 (sj197) we just divide by Py;(97), which can be computed by summing the joint
pmf over s;.
Now, to find all Pyr i3, (97411s5) for all j and all possible values of s;, we start with

Py5. (9n|sn—1) as given for all s,,_1, and use the following recursion:
Pyms,_ (G 1sj-1) = Zpgj,mgj_l(Sj,leSj—l)pfzngj_l,gjyj (GF4alsi-1,85,9;)  (B.52)
3
= ZPs‘j,fg;s‘j_l(Sj,@jlsg'—l)pm”gj (F541ls5)- (B.53)
5y

Finally, we find PRot15,, i+t (27, Tjt1, sjly)j) recursively as follows:

j+1
P+ s+1|y1+x(~"3J 37,1+1751+1|yJ )

=Dgr1 8,0 (& it s, Gi41) (B8.54)
s Pxi g0 @ 8il0)Py 5% 4,8, B ST 85)Px s, (@ials))
255 PY, 113,75 (Gi+1185,9)pg v (55159)

(B.55)

In this way, we determine p)-(,,gjl}-,,,(a‘:j‘l,:zj, s;|g") forall sj,z; < & —1l,andj =1,--- ,n. It
is then straightforward to determine p; lyn (71, z|g™) by summing over the appropriate states.
Thus, to encode, the evaluation of FXIY"(O M -Z"|§"), which makes up the primary computa-
tional load, can be done with computational complexity that is linear in n. Decoding proceeds
as follows: The decoder has a point s € [0,1); it chooses Z; such that s € [Fxfy,,(OM.xliy )s
Fg 9 (0a.(21+1)|g")), requiring at most computation of p X (z|g™) for all z € X; once it has
determined £, it finds £, such that s € [F %7 (Om-21.82(97), FX|Yn(OM Z1(22 + 1)|§™)), which
requires at most computation of p X2|fn (£1z|g™) for all z € X. Thus, using the recursions that are
developed in this section, decoding also requires a number of computations that is linear in 7.

B.5 Synchronization-Sequence Detection

Here, we prove that a sequence 0~ [N] can be chosen from X!V so that the probability of false
alarm and missed detection both decay exponentially with the sequence length ¢y .
Let X, ), and {,B,} be as defined in Section 3.3.2, and let X', J, and {3; } be as in Theorem B.3.1.
Let ay, and éy be the states of X and X, respectively, let Sy = (g, Bi) and S = (éx, ﬁk) and let
= |X|X and B = |B|. All other notation is taken from Section 3.3.3.
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We begin by proving that the average probability of false alarm decays exponentially with ¢
when detecting any sequence z* with Jgs ;.
Theorem B.5.1 For all ¢, and for all z! € Xt,
Pr{dps (Y%, zt) = 1} < B2~ (B.56)

Proof: Assume for the moment that 3 is uniformly distributed over B so that py:(y') =
py(y*) for all y* € Y. Using standard techniques, it can be shown that

Pr{des(Yz') =1} <Y py:(y") (M) (B.57)
" Py (yt)2¢®
=270 "pou 2. (0'l2") (B.58)
=27, y (B.59)
It must be also true that
Pr{des(V%,2) = 1} = 37 & Pr{des(¥*,2") = 1160 = fo), (B.60)
Bo

which implies that for all 5, € B

BPr{dgs;(Y*,zt) = 1} > Pr{dgs:(Y*,2%) = 1|6 = Bo}- (B.61)

Now, relaxing the constraint that Gy be uniformly distributed over B, it must be true that for any
distribution for Gy,

Pr{dps (Yt zt) = 1} < B2~v(), (B.62)

which completes the proof of the theorem. a

We now adapt the coding theorem for DFSC's in [23] to prove that missed-detection probability
decays exponentially with ¢ as well:

Theorem B.5.2 There exists Fyp > 0 such that for all integers ¢ > 0,
Pr{éps,t(Yt, Xt) = 0} < expz{—-t(EMD + Ot(l))}. (B.63)

Proof: We first need the following lemmas.

Lemma B.5.1 Forall s € [0, 1],

Pr{ops:(Y*, X*) = 0} < expy{—t(Fi(s) — w(t) — log(AB)/t)}, (B.64)
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where

log(AB?)

Fi(s) = —s———"+ mlgl E;(Go, fo, 5) . (B.65)
0,00
- = 1 ~ = 1—
Ey(Go, Bo,5) = =108 ) _ Pxtjay (°180)Pg e g, (¥'1%, Bo) Py (4)°. (B.66)
zt,yt

Proof: Assume for the moment that p,, g,(ao, 5o) = 1/(AB) for all ag, Bp. Under this as-
sumption, py+|x¢ (y*|z*) = Py x:(y'l2’) forall y* € Y, 2" € X*. Thenforall0 < s < 1,

Pr{dps(Y*,X*) = 0} = ) pxe(a")pyex: (y'le") Pr{dps, (Y4, X*) = 0]V = ¢!, X* = 2t}

:c‘,y‘
(B.67)
9wy () \°
< zcZ’ytIDXt(fUt)lﬂw)irt (v'l=") (}mf)(yy—%g‘)‘) (B.68)
<20 3 pru(e e W) o ) (B.69
i 1-s
=290 " " pxejay(2'lan) /A (zpwlxt PN ’50)/3) Py (y)’
st e (B.70)
<290 35" preje, (3t |ao)/AZ (py,,xt 5,1z ,ﬂo)/B) Py (¥")’
Tt o B.71)

= 2w

1 -
D5 2000 D Pxtiao(@t1e0)pyy g g, (012, o) 0Py (u1)°

Bo oo xt ,yt

(B.72)
< 2w(t) AB t 1-s s
AB1-s a ﬁ szﬂao(x laO)pyt Xt ﬂo(y IZL‘ , Bo) Pyt(y )

(B.73)

< 2/0(AB%)” max 3 | pxeiag (2'100)Py 1 4, (412", Bo) Py ()"
’ t gt

(B.74)
Inequality (B.68) is a standard bound adapted from [23], (B.69) follows from the fact that 2¢(t)s <

2¢() for s € [0,1], (B.70) follows from the assumption that the initial joint state distribution is
uniform, (B.71) follows from the fact that

(Z a,-) <> a (B.75)
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for s € [0, 1] [23], and (B.72)—(B.74) are straightforward.

Since
Pr{drs: (Y, X*) =0} = > Pr{dpss(Y*, X') = Olao = G0, o = fo}/(AB),  (B.76)
&o,B0
we must have that
Pr{dps+(Y?, X*) = Olap = o, B0 = Bo} < ABPr{dps,(Y?, X*) =0}, (B.77)
which imiplies that (B.64) holds for any initial state distribution pa, g3, \v4

Paralleling the development of the coding theorem for DFSC's in [23], we next prove the fol-
lowing lemma.

Lemma B.5.2 For any s € [0, 1], and any positive integers [, ¢ such that [ < ¢,
tFy(s) 2 LFi(s) + (t — D) Fi—i(s) (B.78)
Proof: Let o, and 3 be the values that minimize E;(cy, B0, s) for a given value of s.
expa{—tFi(s)} = (AB%)* Y | Pxejag (#'ag)py 5o 3, (WF17' B5) Py (1)° (B.79)

t 4t
5y

2 l t I '
= (AB°)’ Z Z le|ao($ |03)PX{+1|x',ao(-”b‘z+1|$ » 0p)
eyt 2l ¥
1-s

l L o« t
> poipusi @ Bile BOIPye 14kt Wi B i)
B

s
(Z Py g, ¥, Sl)P}‘f,z_H'g, (Y141 lst)) (B.80)

St

S(ABz)SZ Z Px1|a0($l|a3)PX‘ |x',a0($f+1|$l’a(’§)

1+1
¢
oty z) i

) I ax\1— 1-
(pr,ﬁ,mao(y Bl )" Py 4y 1, Wl B ohin)'
Bi

s

(Zl’w,g,(y’,sz)) (me l,g,(.tlfﬂls:)) (B.81)

S(ABz)sZ Z pxl|ao(xl|05)1’x' |X',ao(xf+1|$l,aﬁ)

141
oty Ty Wi
l I px\1-s t t 1-s
(ﬂzpf",ﬁllﬁ'vﬁo(y ' Bil’, Bg) P{z&lmb;&m(y1+1|,31,$t+1) )
(]
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1 S
Dy 4')*(AB)* (Z A_B_pf’ziﬂgl(yf“'s’)) (B.82)
S

2 I =
< (AB%)® Z Z PXljao( lao)PXf+1|X',ao($f+1|$ »0p)

¢
=ty Tl Y

(ZPY’ a5 Bl B)1 Py 1, (yl+1|ﬁt,$l+1)1 s)
Bi

Py(¥) (AB) Py (ui)° (B.83)

2 1 * l I pey1—
<(AB?*) > Y Pxije (@ lod)pxt, | |xt a0 (Tha1le' 00)Py1 g 10 5, (W Bulz!, B5) 2

B zlyl Th ¥

Py B0k, Wil B o) TPy (V) (AB) Py (uh10)° (B.84)
= (AB)* (A32 Z prllag(m log)py Sulxe, 50(1/ ﬂl|x ,30)1 Pyz(yl)s
Bt =y
Z Pxt,, Xt a0 (@112 08Py 15, 52, WEaalBo2i) Py (Wh41)® (B.85)
Tiy Ui
< (AB)*(AB%)® Y > pxtiae (@ 0d)Pyt g 505, Bilet, B) Py ()°
B zty!
t 2 t 1-s t
(ﬂz,a; Z Pxty e xl"'llal)pyﬂwh Xi41 (V11181 2041) pf/til(yl'*'l)s) (B.86)
T 1Yl
< (4AB)* Z prllao |aﬂ Pyt g X1, [30(y ﬁlll' ﬂo) P)‘/l (yl)s
B zly
x expa{—(t — ) F;_i(s)} (B.87)

* 1 *\1—
= (4B)* ) _ Pxtja,(a']0})B (Z BPY 5% 5Bl ) | Py (8)®

zhy! Bt
x expo{—(t — 1) Fi_i(s)} (B.88)
1-s
< (4B)° ;quan z!|ag) B (Z BPV AR L8156 | ppn()
zty
x expy{—(t — 1) Fy-i(s)} (B.89)
= (AB)* Z sz|ao(zllaB)Bspylezﬁo(yl|a:l,,Ha)l_spf,, (')*
ml,yl
X expy{—(t ~ DFii(s)) (B.90)
< (AB%® max Y Pxtiao(@160)Pguy 1 5, (8124, Bo) Py (8)°
Qo 0$l,yl
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x expa{—(t — ) F;—i(s)} (B.91)
= expy{—IF(s) — (t = [)F1—i(s)}. (B.92)

Inequality (B.80) follows from (3.8)—(3.13), and (B.81) follows (B.75) plus the fact that

pone(5) (1)

when a; > 0 and b; > 0 for all 2. Eq. (B.82) is straightforward, (B.83) follows from the uniform ini-
tial state distribution used to generate {ffk}, and (B.84) and (B.85) are just rearrangements of (B.83).
Expressions (B.86)—(B.88) are straightforward. Inequality (B.89) follows from the concavity of the
function f(z) = z* for s € [0,1] and z > 0, which implies that for s € [0, 1],

Zpiaf < (Z Piai) (B.94)

when Y. p; = 1, p; > 0, and a; > 0 for all < [23]. Expressions (B.90)—«(B.92) are straightforward

and complete the proof. \V/

Lemma B.5.3 Forall s € [0, 1] and for all &o and 3o, E:(é, fo, s) > — log | XYl

Proof: Follows from the fact that the summands in (B.66) are less than 1, and that the sum is
over |X|}[Y|t terms. v

Lemma B.5.4 For each s € [0, 1], if { F;(s)}+ is bounded above, then
Foo(s) 2 lim inf Fy(s) = sup Fy(s) (B.95)
t—o00 t

Proof: For all s € [0,1], Lemma B.5.3 implies that the sequence {F;(s)}; is bounded below.
The lemma then follows immediately from using Lemma B.5.2 above with Lemma 4A.2 from [23].

\%
Lemma B.5.5 There exists s € [0, 1] such that
Foo(s) > 0. (B.96)

Proof: Suppose that {Fi(s)}. is bounded above for all s. By elementary calculus, we find that
for all &g and Sy,

Quldio, fo) & 2000 B00) | S (@HG0) Dz, (s Bo) Il pge (). (B9T)

Js
s=0 xt

Since the channel is assumed to be indecomposable, for sufficiently large ¢, we must have Q;(éao, /3'0) >
0 unless X is independent of Y for all £, which would imply a mutual information of O under this
input distribution. If this is the case, we must change the input distribution. If the mutual infor-
mation is O for all input distributions, then the channel capacity is 0, and we cannot communicate
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reliably over it at any rate. But if the channel capacity is greater than 0, there exists some input
distribution so that (B.97) is positive. Furthermore, (B.97) can easily shown to be non-decreasing
int.

Letting oy and 3 be the minimizing values for F3(s), we have that for sufficiently large ¢,

1 « o
7 log AB? < Q4(a},8y)/2. (B.98)
For such ¢, then
SR(s)| (B.99)
Js s=0

Since F;(0) = 0, and Fy is continuous in s, it must be true that there is some s for which Fy(s) > 0.
Since we assumed { F;(s)}, to be bounded above, Fi,(s) > Fi(s) according to Lemma B.5.4, and
the lemma follows for this case.

Now suppose that there exists so € [0,1] such that {F;(sq)}; is not bounded above. Since
{Ft(s0)}t is still bounded below, it can be shown via Lemma B.5.2 and the arguments in the proof
of Lemma 4A.2 of [23] that lim inf;_, o F;(so) > C, for any constant C. This fact completes the
proof of the lemma. v

Let s € [0,1] be such that Fo(s) > 0. If {F;(s)}: is unbounded, then the theorem clearly
foilows for any value of Eyp. If not, we use that since lim inf;_, o, F1(s) = Fi(s), there exists ¢y
such that for all £ > ¢,

(Fi(s) — w(t) —log(AB)/t) > Fo(s)/2 (B.100)

Combined with (B.64), the theorem follows. a
This theorem states the average missed-detection probability decays exponentially with ¢, when
@'~ [N] is random with the same distribution as XV, implying that there exists a sequence whose
missed-detection probability decays exponentially with ¢5. Theorem B.5.1 says that for any se-
quence ('~ [N] the false-alarm probability decays exponentially with w(t ~)- Since w(tn) = o0, (1)
and is also greater than 3 logt, the synchronization subsystem we have described has Subsystem
Property 4.

B.6 Lemmas Relating to Entropy Rates

Let X, ), and {5;} be as defined in Section 3.3, and let X, Y, and {§3;} be as in Theorem B.3.1.
Let o, and ¢y be the states of X and X, respectively, let Sy = (ay, k), and let S = (G, Bi).

In this section, we show that the entropy of n samples of X, ), or both is, asymptotically, n
times the entropy rate of the corresponding stationary process.

Recall that g, IX0_ and qy; s, |x,,3, are such that the Markov chain corresponding to the joint
input/channel state process {Sj} contains only transient states plus a single ergodic class. Clearly,
the Markov chain corresponding to { S} then also contains only transient states and a single ergodic
class. With the state space of the input process denoted A and that of the DFSCy denoted B, let
8§ = A x B, and let the ergodic states of 8 be denoted Ser.
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Lemma B.6.1

1. H(Y|V* 2, a0, o) < Hool)
2. H(Xi|X*1, a0, 50) < Hoo(X)
3. H(Xg, Y| X*~1, Y571, a9, o) < Hoo(X, D)
Proof: 1) Because of stationarity,
H(V|Y*71,60, B0) = H(Vi4nl Y7 ™", @n, Bn) (B.101)

for all n > 0. Using (3.10) and (3.11), we see that {(X;,Y;)}i>k is, conditioned on (&, B),
independent of {(X;, Y;) }i<k, which implies that

H(?k-!-nl}_,:rln_l’ dm Bn) = H(Yk-}-nl?k-*-n—la Qn, Bn) (BIOZ)
< HYjqn |V 1) (B.103)

for all n, where (B.103) holds because conditioning reduces entropy. Since the inequality holds for
all n, it must hold in the limit as n — oo, which we know to be H,()).
Proofs of 2) and 3) follow similarly. O

Lemma B.6.2

1. HY"™) < nHx(Y) + C;
2. H(X™) < nHy(X) + Co
3. H(X",Y") < nHoo(X,Y) + C3
where C1, C5, and Cj3 are constants that are independent of n.

Proof: 1) Note that

H(Y™) < H(Y™|ao, Bo) + H (&0, fo) (B.104)
n
< H(ao, fo) + ) _ H(YilV*™, 6o, o) (B.105)
k=1
< H(ao,Bo) + nHo(Y) (B.106)
Because H (dp, B) is independent of n, the lemma follows. Statements 2) and 3) follow similarly.
O
Lemma B.6.3

1. HY™) < nHy(Y) + Dy
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2. H(X™) < nHy(X) + Dy
3. HX™Y™) < nHx(X,Y)+ Ds
where D1, D,, and D3 are constants that are independent of n.

Proof: 1) Since H(Y™|S,) is an average over initial states with positive probability, and only
states in Sery have positive stationary probabilities, there exists s € Serg such that H (Y”ISO =s) <
H(Y™|Sp) < H(Y™). Let L = ming{S}, | S = s} be the first-passage time from state S to state
s. Then for any s,

H(Y"|L=1,8 =s0) = HY |V, L=1,5 =so) + HY'|L =1,5 =s5) (B.107)

= H(Y%18 =) + HY!IL =1,5, = s¢) (B.108)
< 'nHoo(J—;) +1(*g [Y "Hoo(j))) (B.109)
This inequality implies that
H(Y™ L,S = so) < nHoo(Y) + E[L|So = so](log [Y] — Heo (D)) (B.110)
< nHeo(Y) + (log |4 — Hoo(Y)) Emax, (B.111)

where Epa = maxy E[L|Sy = s']. Then

H(Y™|So = so) < H(Y™|L, S = s0) + H(L|So = s0) (B.112)
< H(Y™|L, Sy = sp) + log E[L|S, = sq] + 2 (B.113)
< ’nHoo(J—)) + (log |Y] — Hoo(j))Emax + log Epax + 2 (B.114)

Since the Markov chain corresponding to {Sx} contains only transient states and a single ergodic
class, Emax < oo [8]. Since (B.114) holds for all sy € A x B, we must have H(Y™|S;) <
nHe(Y) + C, which finally implies that H(Y™) < H(Y™|So) + H(So) < nHoo(Y) + C', which
proves the lemma. The proofs of 2) and ) are similar. |

Lemma B.6.4

1. HY™) > nHyo(Y) —
2. H(X™) > nHy(X) —
3. HX™Y™) > nHy(X,)) — F3,
where F, F, and F3 are consiants that are independent of n.

Proof: Note first that H(Y™) > nH(Y) [23].
There exists a state s € Serg such that H(Y™|Sp = s) > H(Y™|Sy) > H(Y") — H(S,). Let
L=ming{S; : 5 = s}. Then for any sy,
H(YML=1,8 =s0) = HY%, [V, L=1,5 = s0) + HY L =1, =s0) (B.115)
=H({Y1,|5 =s)+ HY!'L =1,5, = s) (B.116)
> nHoo(Y) — H(S)) — lH (D). (B.117)
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It then follows that

H(Y™|L,S = s0) > nHuo(Y) — H(Sp) — E[L|Ss = s0)]Hoo () (B.118)
> nHoo()—]) “H(SO) “EmaxHoo(j}) (B.119)
£ nHw() - C, (8.120)

where Emay = maxy E[L|Sy = s']. Since the Markov chain corresponding to {S} contains only
transient states and a single ergodic class, C is finite. Since H(Y"|Sy = so) > H(Y"|L,S5, =
50) > nHy(Y)—C, it follows that H(Y™) > H(Y™|S,) > nHu()) — C, and the lemma follows.
Proofs of 2) and 3) are similar. a
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Appendix C

Detailed Technical Information for
Chapter 4

C.1 Properties of the Conditional Lempel-Ziv Coder

Let z" € X™, y™ € Y™ be the sequences given in Section 4.3.1, let A = XK, let s7~! € (A x B)"
be a given joint input/channel state sequence, and also let §; = sp; ;. Using the notation from
Section 4.3.1, let

J[g,s)={3 : 7 € J@],5; = s}, (C.1)

and let [y, s] = |J[7, s]|- Note that

il = Y clgs] (C.2)
SEAXB
c=Y Y il (C.3)
I gey!

Let Q be as in Section 4.3, and let Mg be the (possibly infinite) supremum of the cardinalities
of the state-spaces associated with the DFSCy's in Q. Let the process {X;} be a K th-order Markov
process with transition pmf gy X0, and initial state density go,. Let the processes {Y;(g)} and
{B;} be the output and state processes resulting from passing the Markov process { X} through the
DFSCy g € Q without feedback with o and (o distributed according to gq,,3,. With { Sy} denoting
the associaied joint input/channel state process, the following lemma, which is analogous to Ziv's
Inequality [14], holds.

Lemma C.1.1

Z Z Z clif!, s]log c[#i', 5] < — 10g P Xy (g),55, -1, 1Spe—s (B Y5 81,7+ 5 3c) (C4
l j’ s
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Proof:
IOgPXﬂY"(q) Spy -1+ 1Sper (T 1Y 81, -+, Bc) (C.5)

-1 -1 .
-—Zlogp Xy g s, C AR 17 A ) (C.6)

_ZZZ Z logp P;+1“|YPJ+1 ‘(q)s ( AR 1| ,8) .7

¥ s jedis)

-1
= s] logp pip1-1,_pip1-1 p,+1 I (C.8)
;;Z 2 A g s,

jedlit, ]

_ 1 1
S;_ZIZCLU,S]IO& Z TSP T s, ( 2 g s),  (C.9)
Y S

JEJ[F,s]

where the inequality follows from Jensen's inequality and the concavity of the logarithm. Then,
using that

1 J+1 -1 1
L < — C.10
2 AT s, I S €0
JeJ[,s
the lemma follows. ]

Theorem C.1.1 For all g € Q, there exists a constant Cy < oc, independent of n, such that

n+2
ZZ l]logc l] < - long"lY"(q)(‘T Iy )+ qug(TH)_ (Cl])

Furthermore, if Mg < oo, then (C.11) can be satisfied by setting C, to a common value C < oo for
allg € Q.

Proof: We begin with Lemma C.1.1, which we may rewrite as

—logpxniyn(),5p, -1, Spe—1 (T Y"1 815+ &)

>33 > clit,s]logclg, 5] (C.12)

I gt s

c[it, s el s
= Z Z 3] Z [cgfg’,]] log C[yi[g] .31 (C.13)
7 c[gl’ S]
=Sy Bl s+ s ) o
= Z Z cli]log [§] + Z Z o] Z c[i*, 5] log c[it, s]
; - c[d] cgt]
l y‘ l y‘ 38

(C.15)
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Writing 7 (s) = ﬂc%,‘fl we have that ), m5:(s) = 1. Treating 7y as a pmf over A x B, let Vju be
arandom variable distributed according to 7. Then

D> r']z:C‘y <L, -—zzc[qum 16

- ZZc[y ]log |A x B| (C.17)
rog
= —clog|A x B|. (C.18)
Hence,
3 " cli]log cli] < =108 x|y n(g),Sp; -1, 1Spes (& IY™ 51,77+ 3c) + clog A x B,
”
(C.19)
Note that the left-hand side of (C.19) is functionally independent of $;,--- , 5., and that {C.19)
holds for any state sequence 51, - - - , 8, since it was arbitrary. Since
Pxryn@) (@ W™) = D Psy o1 Spe-alyn(@) (8157 3cly™)
81, 48c
PXn|Y"(0),5p; 1, Spe1 (E" 1Y 815+, 8c) (C.20)
< MaX Pxn|yn(g),Spy -1 Spe—1 (Z"Y"5 81,0+, 8c), (C.21)
there must be some state sequence Sy, - - - , 8. for which
—10g Pxn Y™ (g),Sp, -1, 1Spes (T 1Y"5 81,7+ 1 8c) < —logpxn|yn(q)(z"[y"). (C.22)

Using (C.22), that ¢, which is only a function of the individual sequences ™ and y", can be bounded
by a term that is O, (n/logn) [14], and that the left-hand side of (C.11) is finite for all n, the
theorem follows. ]

Theorem C.1.2 For each ¢ € Q, there exists a constant C; < oo, such that for all z" € X" and

yr ey,

(n 4+ 2)loglog(n + 2)
log(n + 2)

Locrz(z"[y™)) < —logpxniyn(q)(z"|y") + Cq , (C.23)

Furthermore, if Mg < oo, then (C.23) can be satisfied by setting C, to a common value C < oc for
allg € Q.

Proof: To code the jth phrase takes
[og ey ™ ™)1 + [log |X[] (C24)

bits. Additionally, the length of each phrase must be sent so that the decoder can initially parse the
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sequence y". The entire length of the encoding can therefore be written as
lociz(z"y™) =D > i (rlog c[§ 11 + [log |X[] + 2[log 1] + 2) . (C.25)
r g

Consider for the moment just the term
Z Z c[#'] log c[7*71], (C.26)
[T

which can be rewritten

a= Z Z c[§] log 7 [_,T[y[] (C.27)
oy
= Z Z c[#']log c[§'] + Z Z c['] log c[ggl]l] (C.28)
< ~l ~1 Z ’c[y 1]
Z Z c[#']log c['] + Z Z c[§]log =—Lt——— S (C.29)

where the inequality follows from the log-sum inequality [14). Letting M, be the maximum phrase
length, and using that

M,
Z Z =) Z > i (C.30)

u =1 g1
IHIZZC[" ! (C31)
=1 y' -1
M;—1
=1y > > ] (C.32)
=1 g
M
<D i (C.33)
=1 g
we see that
a <)Y cliflogeli ]+ DY i) log Y] (C.34)
[T gt
< Z Z c[i']log c[#'] + clog|Y|. (C.35)

g
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Hence, the length can be upper bounded as

e(ociz(z"y™) < Y D cli'](log c[] + log |X| + log |4] + 2log! + 6). (C.36)
g
Note that
=1 le[ift

Z Z c[#']logl < clog M (C.37)

gt ¢
= clog IC‘- (C.38)
= Op(nloglogn/logn), (C.39)

where (C.37) follows from the concavity of the logarithm function, and (C.39) follows from the
facts that (C.38) is, for fixed n, maximized at the maximum value of c, and that ¢ is bounded by a
term that is O, (n/ logn) [14]. We can write

l(ocLz(z™|y")) < Z Z c[#']log c['] + On (M) . (C.40)
T ol

logn
]

With Theorem C.1.1, the fact that (n + 2)/ log(n + 2)=0,(n log log n/ log n), and the fact that the
left-hand side of (C.40) is finite for all n, the theorem follows. O

C.2 Universal Detection of the Synchronization Sequence

As stated in Section 4.3.2, to do universal detection of @'~ [N], we use a modified version of Ziv's
universal function [66], which is based on Lempel-Ziv parsing. Let o1 z(y™) be a standard 1978-
version Lempel-Ziv encoding of y™ (see, for example, [14] for a description). Then the universal
functions u; and ug in (4.16) are defined by

uy (y") = L(orz(y™)) (C.41)
uz(y"|z") = L(ocLz(y"|z™)) (C42)

The following two lemmas show that u; (y™) and uz(y™|z™) are not too much larger than certain
associated negative log probabilities, which helps us to prove in Theorem C.2.2 that the missed-
detection probability associated with dy ¢ is adequate.

Lemma C.2.1 For each ¢ € Q, there exists a constant Cy ; < 00, such that for all z" € X" and
yr ey,
(n+ 2)loglog(n + 2)

log(n + 2) ’ (C43)

uz(y"|z"™) < —log pyn(g)x~(y¥"|2") + Caq

Furthermore, if Mg < oo, then (C.43) can be satisfied by setting C3 4 to a common value C; < 0o
forall g € Q.
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Remark: The set Q, the constant Mg, and processes { X} and {Y;(q)} referred to above and
throughout this section are as defined in Appendix C.1.
Proof: Follows in the same way as the proof of Theorem C.1.2. O

Lemma C.2.2 For each q € Q, there exists a constant C; 4 < 00, such that for all 4™ € Y™,

(n +2)loglog(n + 2)
log(n + 2)

u1(y") < —logpyn(g)(¥™) + Ciq (C.44)
Furthermore, if Mg < oo, then (C.44) can be satisfied by setting C 4 to a common value C; < oo
for all ¢ € Q.

Proof: Proof is similar to proof of asymptotic optimality of Lempel-Ziv coding for stationary
Markov sources (Theorem 12.10.1 in [14]). The major change is that a version of Ziv's Inequality
(Lemma 12.10.3 in [14]) must be proven, but instead of the previous k samples forming the state of
the process, a given sequence of channel states must be used as in Lemma C.1.1. ]

The following lemma is stated and proven in, among other places, [14] (Theorem 5.11.1). It
states that the source encoding of a sequence cannot be much shorter than the negative log proba-
bility of the sequence very often, a fact that is used to prove Theorem C.2.1.

Lemma C.2.3 Let X" be drawn according to the given pmf ggn, and let o : X™ — {0,1}! be
some invertible mapping (e.g., the encoder for a uniquely decodable code). Then for any x> 0,

Pr{¢(c(X™)) < —loggg.(X") —p} <27~ (C.45)
Proof:
XK={z"e€X" : lo(z")) < —logqzn(z") — pu}. (C.46)
Then we can write

Pr{t(o(X")) < ~logqgn(X™) —p} = D qga(a") (C47)

zneX
< Y expo{—£(c(X™)) — u} (C.48)

zreX
< Y expp{—L(o(X™) —p}  (C49)

neXn
=27# Z exp,{—L(c(X™))} (C.50)

zneXn

< 27H, (C.51)
where the last inequality follows from Kraft's inequality (see Theorem 5.5.1 in [14]). ]

With the functions éy ; and ¢ defined as in (4.16), the following theorem states that, the false-
alarm probability decays exponentially with (¢).
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Theorem C.2.1 For all g € Q, there is a function fg(2) = 0(1) such that for all z* € X?,

Pr{du:(Y*(q),2") = 1} < expo{—C(£)(1 — fo(t))} (C.52)

Furthermore, if Mg < oo, then (C.52) can be satisfied by setting f, to a common o, (1) function for
allg € Q.

Proof: Note that

Pr{up(Y(g)l2*) < wi(Y*(q)) — ((8)} < Pr{ua(Y*(g)lz") < —logpy(q)(Y(q)) — C(t) + ()},
(C.53)

where €,(t) = Ci4(t + 2)loglog(t + 2)/log(t + 2), since, from Lemma C.2.2, u1(Y*(q)) <
—log pyt(q)(Y*(g)) + €4(t). Because wuy is the length of an invertible encoding of y*, and because
the conditional Lempel-Ziv encoding is uniguely decodable, we can immediately see from Theo-
rem C.2.3 that the right-hand side of (C.53) is less than exp;{—({(t) — €4(t))}. Since ¢4(t) =
0t(C(t)) as t — oo, the first statement of the theorem follows. If Mg < oo, then one can replace
C1,q with C, and the last statement of the theorem follows. O

The following theorem states that the missed-detection probability associated with dy ¢, aver-
aged over all length-¢ synchronization sequences, decays exponenutially in £.

Theorem C.2.2 For each g € Q, there exists Fiup(g) > 0 and a function g,4(t) = o0¢(1) such that
for all ¢,

Pr{éu,:(Y*(q), X*) = 0} < expo{—t(Fmp(q) — g4(t))}- (C.54)

Furthermore, if Mg < oo, then (C.54) can be satisfied by setting g, to a common o;(1) function for
allq € Q.

Proof: Again, assume for the moment that g, 3, = 1/(AB), where A and B are as in Ap-
pendix B.5. Then we can upper bound the probabiiity of missed detection according to

Pr{éy(Y*, X" =0}
< Z Z pxt(2))pyr(g)xe (U']?) (expo{¢(t) + ua(yt|z) — ui(y)})®

zt Y ¢S(uq(t))
+>° Y pxe(@pyyqx (Wla), (C.55)

xzt yt€S(pq(t))

¢ t 8
<Y T px@ v ta) (expz{c(t)+eq(t)+uq(t)}”("—’(*’)))

t|pt
ot 4t @S(uq(t)) Pyi(gxt ¥tz

+Z Z pxe (2" )Py g xe (¥'lz), (C.56)

zt y*€S(uq(t))

where

S(ue(®) ={¥' € ¥* : wi(y®) < —logpye(q)(y*) — pe(t)}, (C.57)
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and p14(t) is to be specified. Inequality (C.56) follows from the definition of S (pq(t)) and Lemma C.2.1,
which can be rewritten

1
expo{uz(y*|zt)} < exPz{fq(t)}p (C.58)

vi(q)xt (Wtz?)’

where €4(t) = Cy,4(t + 2) log log(t + 2)/log(t + 2), and lim;_, o, €4(t) /t = 0. The second term in
(C.56) can be written Pr{Y*(g) € S(u,(t))}, which we know from Theorem C.2.3 to be less than

expa{—pq(t)}.
From Theorem B.5.1, we know that

prigt)
Pye(g)xt(yt|zt)

< expy{—tFi(s;q) + s(C(t) + €g(t) + p2q(2))} (C.59)
< expo{—tFi(s;q) + ((t) + €4(t) + pq(t)}, (C.60)

> > pxe(z))pye (g xt (¥]zh) (eXPQ{C(t) + €(t) + pq(t)}

Yy

where Fi(s; q) is as defined in (B.65), but with its dependence on ¢ made explicit.
Therefore,

Pr{6u,(Y*(q), X*) = 0} < expy{~tFi(s;q) + g(t) + C(2) + €g(8)} + expa{—pq(t)}. (C.61)
Relaxing the constraint that qa, 5, = 1/(AB), we find that for arbitrary g, g,

Pr{ou«(Y*(q), X*) = 0} < expo{—tFi(s;q) + pq(t) + ((t) + €4(t) + log(AB)))}
+ expy{—pq(t) + log(AB)}. (C.62)

Now, let s € [0, 1] be such that F,(s;q) = liminf; ,. Fi(s;q) > 0 (see Lemma B.5.5). Then
there must be a number ¢, such that for all £ > ¢,

Fi(s;q) — (log(AB)/t + €4(t)/t + {(t)/t) > Foo(s39)/2, (C.63)
which implies that, if we set p4(t) = tF(s;q)/4, then

Fi(s;q) — (log(AB)/t + €g(t)/t + C(2) [t + pg(t)/t) > Foo(s;9)/2 — pqe(t)/t (C.64)
= Foo(s;9) /4. (C.65)

Thus, the exponent for the first term in (C.62) is greater than F,(s; g)/4, asymptotically. Since the
second term on the right-hand side of (C.62) has, asymptotically, the exponent Fo,(s; q)/4, the first
statement of the theorem follows. The second statement follows upon realizing that if Mg < oo,
then C; 4 above can be replaced by C», a constant independent of g. [}

164



Appendix D

Detailed Technical Information for
Chapter 5

D.1 Fixed-Length Source Coder for Tx-2

The fixed-length precoders used in both Tx-1 and Tx-2 as well as the fixed-length source coder used
by Tx-1 are as described in Section A.9. In this section, we develop the fixed-length source coder
used by Tx-2.

With the notation introduced in Section 5.3 holding, throughout this section, also let {X ;}2;
be i.i.d. with marginal pmf gx, and {X,;}™ ; be i.i.d. with marginal pmf gx,. Then let {¥;}}; be
such that pynxn x» (y"|27,25) = [1i21 v ix,, x, (¥ilz1,i, 2,0) for all 27, 27, and y".

With this notation, the following Corollary to Lemma A.9.1 leads directly to Tx-2's fixed-length
source coder.

Corollary D.1.1 For all 6 > 0, there exists a constant F3(4) > 0 such that
Pr{—logpxy|y= xp (X3 |Y", XT) > n(H(X2|Y, X1) + 6)} < exp{—F3(§)n}. (D.1)

The fixed-length source coder o3, then resembles o1,. With Xy = {0,--- , Mz — 1}, let
X, = On,- X2, X22X23---, and define the source coder o2, as follows: With the sequence
z} € XT representing Tx-1's inputs to the channel, with 2§} € X7 representing Tx-2's inputs to the
channel, and with y™ € Y representing the channel's output, the sequence z3 is coded according to

0'2,,"'(1:3" q) = a[g2(n)] (D_2)
a = Fg 1y~ xr (OM-23|y", 1) + Pxp|v» xp (22 ]Y", 21)/2, (D.3)

where Fg \yn. xp is the conditional cdf of X» conditioned on Y™ and X}. With this definition of

the source coder, the sequence 7 is decodable as long as pxp iy~ xp(23|y", z7) > 2~ (92(n)~2)
Corollary D.1.1 then implies that a decoding error occurs with probability that decays exponentially
inn.
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Appendix E

Performance Bounds for the
Multiple-Access Broadcast Channel

In this Appendix, we present analysis of the MABC that shows that for two and three users, the
Hluchyj-Gallager protocol is at least nearly optimal. The techniques we develop can be used to find
bounds for a wide variety of decentralized control problems.

E.1 Background on the MABC

The multiple access broadcast channel (MABC) is a useful model for a variety of packet switched
communication systems. Protocols for efficiently coordinating data transmission by multiple users
over the MABC have long been sought by researchers. Although several variations of the MABC
have been considered in the literature, e.g., [9], [27], [42], [28], [45], [51], and [58], we focus
on a finite-user slotted system with immediate ternary feedback, retransmission of collisions, no
buffering, and no communication among users; we refer to this system as the canonical system.
For such a system, we show via bounds that the optimized window protocol developed by Hluchyj
and Gallager [28] achieves the highest possible throughput in the two-user case and achieves a
throughput that is at least very close to the highest possible in the three-user case.

Previous researchers have recognized that the MABC protocol design problem can be analyzed
as a decentralized control problem [27], [42], [28], [45], [51], [58]. Invariably, these researchers
have resorted to simplifications that make the problem tractable but also removed from the canonical
problem. For example, Schoute [S51] and Varaiya [58] both consider decentralized control of the
MABC under a delayed sharing pattern and under the assumption that colliding packets incur a
fixed cost rather than requiring retransmission; Rosberg [45] also assumes a fixed collision cost and
no retransmissions, but differs by assuming no information sharing among controllers as well as
control inputs that depend only on broadcast feedback. Although these two simplified problems are
easier to analyze, their relationships to the canonical problem are unclear. On the other hand, the
simplified problems considered by Hluchyj and Gallager [28], Grizzle et al. [27], and Paradis [42]
yield solutions that can be used to find lower and upper bounds on the throughput of the canonical
system. Hluchyj and Gallager consider the canonical system and find protocols that are optimal in
the class of protocols known as the window protocols. Since window protocols are a proper subset
of the set of all protocols, the throughput of Hluchyj and Gallager's optimized window protocol
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provides a lower bound to the throughput achievable in the canonical system. Conversely, Grizzle
et al. and Paradis attack the problem of optimally controlling a MABC that is canonical except for
a one-step delay sharing (OSDS) information pattern. Because the canonical system does not allow
any communication among users, its threughput is upper bounded by the throughput achievable
under OSDS. For two users, the OSDS bound is very close to the throughput of the Hluchyj-Gallager
optimized window protocol [28], [27], [42]. Unfortunately, for more than two users, the OSDS
bound is not close to the throughput of the Hluchyj-Gallager protocol or any other known protocol.

We introduce new upper bounds on the throughput of the canonical system via the X -step delay
state information pattern, which is similar to the previously considered K -step delay sharing pat-
tern [35], [36], [57], [62]. That is, we calculate the throughput of a MABC that is canonical except
for a K-step delay state information pattern, and this provides an upper bound on the throughput of
the crnonical system. We use the dynamic programming method developed by Aicardi et al. [3] as
a starting point for performing this calculation. However, we find this method to be unnecessarily
computationally complex for a class of systems that includes the MABC with K-step delay state
information. For this class, we present a more efficient version of the algorithm that can spell the
difference between computational feasibility and infeasibility. As a result of the more efficient al-
gorithm, we are able to find upper bounds on the throughput of the canonical system for two and
three users that are tighter than the OSDS bound. The new bounds show that the performance of
Hluchyj and Gallager's optimized window protocol is exactly optimal for two users and at least
nearly optimal for three users, where optimality is with respect to maximizing throughput. In fact,
the Hluchyj-Gallager protocol meets the upper bound exactly for three users when the packet arrival
probability is moderately large.

The bounding technique we present is quite flexible and can be adapted to handle a greater
number of users as well as other variations on the problem. Indeed, the bounding technique applies
to the general class of decentralized control problems with no information sharing. For this reason,
we first describe the bounding technique in this general setting and later focus attention on the
MABC. We begin with Section E.2, in which we describe the general decentralized control problem
with no information sharing. We devote Section E.3 to a description of notational conventions.
In Section E.4, we describe the bounding technique and a method of complexity reduction. In
Section E.5, we formulate the canonical MABC protocol design problem as a decentralized control
problem with no sharing, and give numerical results of calculating the bounds for this problem.
Finally, we give a discussion of our results as well as concluding remarks in Section E.6.

E.2 Decentralized Systems with No Sharing

In this section, we describe the class of systems for which the bounding technique to be described in
Section E.4 is applicable. This class of systems consists of decentralized systems with no sharing,
1.e., systems in which no information is communicated among controllers. We show in Section E.5
that the MABC can be regarded as such a system.

Consider a discrete-time stochiastic system that is regulated by M decentralized controllers, each
with an asscciated measurement station. The system state variable z, and the mth measurement
station's observations y;™ evolve over T time steps according to the equations

Ter1 = felze,ul, -, uM v), t=0,1,---,T—1 (E.1)
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yit =g (zg,wf?), t=0,1,---,T—-1, m=12,... M, (E.2)

where f; and g;* are given functions, u}" represents the mth controller's input at time ¢, and the

quantities g, (vo,wd, -+ ,wdl), -+, (vr—1,wh_;,--- ,wM |) are mutually independent primi-
tive random vectors whose distributions are known. At a particular time step ¢, the random vec-
tors vg, w},- -+ ,wM are allowed to be statistically dependent. The vectors ul®, vy, wi, T¢, and y™

take values in the finite sets U™, V;,, W™, X, and Y™, respectively. We assume that these sets are
mutually disjoint, e.g., X; N X2 = @, and Wl NnY}! = §.!

Each controller produces, according to a pre-designed control law, an input based only on local
observations from its own measurement station. If the mth controller is governed at time ¢ by a
control law ;" then

'u';n = 7t7n(y6n’ yinf" ay{n)' (E3)

It is this functional dependence of uj" on only the history of the mth measurement station's mea-
surements that makes the problem one of no sharing.

The set of admissible control laws, I'}?, is the set of all functions mapping Y§" x --- x ¥/ to
U;{™. The design objective is to choose the control laws

Vel m=1,--,M, t=0,---,T—1 (E.4)

to minimize the total expected cost per stage

T-1

Z E[ht(xt—i-la u%s T U{V[)], (ES)
t=0

1
T

where h; is a given cost function.

E.3 Notational Conventions

To analyze the MABC, we use a completely different framework from the rest of the thesis. There-
fore, we introduce the following new notation, which supersedes any notation introduced earlier.

To ease the notational burden, we introduce some conventions before proceeding. We adopt the
convention of using context to distinguish between values assumed by random variables and the
random variables themselves. The dependence of densities and expectations on a choice of control
laws ~,.; is indicated by p(-; vs:t) and E[-; vs.t), respectively. Domains and ranges of functions are
to be inferred from context, but sometimes may be explicitly given for emphasis or ~larity.

To consolidate lists of related symbc e define y: = (y},--- ,9M), v = (7, ,y™),
and ys.t = (ys, -+ ,yz) fort > s. If t < s, ‘021 Y and y7, are empty tuples. Moreover, we denote
the range of y; vy Y} = H,A,’f:l Y™, the range of yi, by Y7} = H;zs Y;™, and the range of ys.; by
Ysu = H;= s Yj. Analogous notation will be used for other variables and their ranges.

It is convenient to define Boolean set operations on tuples as follows. Suppose that A =

'This assumption is not essential and is present only to facilitate notation in subsequent sections. Indeed, we will
focus on the stationary case, which is at odds with this assumption, but this difficulty can be ignored.
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{A1,---,Ap} is an ordered collection of disjoint sets such that 4; < --- < Ay, ie., A is the
“smallest” element of A, while A, is the “largest.” This ordering of the collection .4 is only impor-
tant for the systematic construction of tuples from sets. Lete = (a;,--- ,a,) € IT-, A; be atuple.
Letb = (aj;, - ,a;,), and ¢ = (ax,,--- ,ax,) be tuples which may be called “sub-tuples” of a.
Then define b \ ¢ to be a tuple consisting of the elements of the set difference {aj, }7_; \ {ar, }1 1,
ordered so that an element in the tuple precedes another if it belongs to a set that is “smaller”
than the set to which the other belongs. Analogous notation holds for U ¢, and b N c. Finally, if
d = (ag,,- -+ ,as,), we denote the set product [J]_, 4y, by S(d).

In particular, the collection X = {U*, V;, W™, X;, X7, Y |m = 1,--- ,M, t=0,--- , T~
1} is, by assumption, a collection of disjoint sets. Let ¥ = (ug.7—1, vo:7—1, WO:T—1, L0:T> Y0:T—1)»
and let the members of A" have an ordering corresponding to the ordering of the elements in the
tuple 9. We may now consider unions, intersections, and differences of the sub-tuples of ¢ and will

do so in the following sections.

E.4 Bounding Techniques

The only known solution to the decentralized control problem with no sharing described in Section 2
involves exhaustive search, which is prohibitive in practice and impossible when the time horizon
is infinite. While we do not develop an explicit solution to this problem, we present a technique
for lower bounding the optimal cost achievable by the system in Section 2. The bounds are useful
for the evaluation of suboptimal control laws, and when the bound is tight, an optimal solution is
implicitly identified.

We lower bound the optimal cost achievable in the no-sharing system with the optimal cost
achievable by a system with K-step delay state information, which will be described shortly. Con-
trol laws for a system with K -step delay state information can be efficiently found [3], and because
more information is available to controllers than under the no sharing pattern, the optimal cost in-
curred in such a system is always lower than that incurred by the system wiih no sharing. As we will
see, however, the algorithm in [3] is more computationally complex than necessary in the special
case of common information. For this special case, we present a more computationally efficient
version of the algorithm.

E.4.1 Systems with K -Step Delay State Information

In this section, we describe systems with K-step delay state information, which are similar to the
K -step delay sharing systems considered in [35], [36], [57], and [62]. Indeed, K -step delay state
and K -step delay sharing are equivalent in the case of noiseless observations i.e., the case in which
zy can be determined from y;. For this noiseless case, Aicardi et al. [3] show how to efficiently find
optimal control laws when the input and state spaces are finite. We adapt the algorithm from [3] to
the general K -step delay state problem.

A system with K-step delay state information is the same as the system described in Section 2
except for the following modifications. With

0t = (Yo:t—1, Zo:t) (E.6)

and the range of ¢; denoted by A;, an admissible control law ™ for the K -step delay state problem
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must have the form
ug =V (Yim kots Ot—K ) (E.7)

For convenience, we denote (y}” x.,, 6~k ) by 2" and }ft’fk:t x Ay g by Z*. The set of possible
control laws for the mth controller at time ¢ is denoted I'?, and consists of all possible maps from
Z{™ to U{™. To complete the problem modifications, we change the cost criterion as follows. Since
we are interested primarily in the infinite horizon scenario, we assume for convenience that the first
K optimal control laws 7. x —; are given and that the goal is to minimize the expccted cost per stage
starting at stage K:

] 1
min

T-1
E he(Tri1,%r); Y071 (E.8)
Yx:T—1€C KT T-K [_‘; TeTEb T ]

Since the first K steps will not affect the limiting behavior, we can just as well choose an arbitrary
set of starting control laws vp.x 1.

It will be useful to introduce the notion of a “sub-law” as follows. Let 4/® € I'7 be a control
law, and let 7 be a sub-tuple of 9, and let N = S§(n). A sub-law with respect to N is a map from
S(z*\ 1) to U™, and the set of all such maps is denoted f‘ﬁ'N. Define ] to be the sub-law in Tyn
satisfying

Vi (B) =¥"(BUn), VBES(y" \n), (E.9)

where the elements in the tuple 3 U n are assumed to be in the order required by v;". Similarly, if
Yt € F:’{N is sub-law with respect to N, 7 is a sub-tuple of ¥, and N = §(7), then Vi is defined

_ . = m N . .
to be a sub-law in I’ HN X satisfying

Yip(B) =" (BUn),  VBES(ZH"\(nuUd)). (E.10)

Also define the expansion of a sub-law ¢} € l:‘H‘N to be GH’N (¥) = p € T such that

p(BUD) =9 (B), VBES("\7), VieSH), (E.11)

where 7 is any element of V. For convenience, we denote G’y by G, assuming that a sub-law
always expands into a control law for the corresponding time and controller. Also, we denote

(G- - G(V{1)) by G(yy) and (G(Ysin), -+ G(ein)) bY G(sitt)-
We can now state a theorem that characterizes the optimal control law for a system with K -step
delay state. Note that this theorem is essentially the same as a theorem presented in [3].

Theorem E.4.1 Consider the following recursive equations that characterize optimal control laws
for the K -step delay state system:

Jp(zr—g Y1-k:1-1) =0, VYr_kao-1€Cr_kr-1ar_ o VEr-k € Xr_k  (E12)
Je(Te— ke, Ve Kit—1,%t) = Elhe(Te41, ur) + T 1 (Te— K41, Yoo K 41:tly, i) Te— k5 G (r—Kc 1)),
Vibr—kt € Do kotjae_x (E.13)
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It (Te-k,Ye-k2-1) = min (T, Pr-k-1,%1),  V-ke-1 € Deokem1ja,_x
Ye€lya,_ g

(E.14)

Let 70.5-1 € L'o.x—1 be given starting optimal control laws. If control laws Yi:r—1 € Tr.7_1
satisfy

(Tt Ve—Kt—1160- g0 Voe_x) = It (Tt—K» VemK:t—116,_xc) (E.15)

forevery 6k € As_k,andeveryt = K, --- , T — 1, then yk.7_ are optimal.

Proof: The proof of this theorem follows along the same lines as the proof of Theorem E.4.2. A
proof of a similar theorem is provided in [3]. a

We can interpret the equations in Theorem 1 as the equations resulting from applying the dy-
namic programming algorithm to the following centralized stochastic control problem. Using the
notation of Bertsekas [8], the state for the centralized problem is Zi = (Tt—K, Yi-K:t-1) € X¢_K X
ft—K:t—l|A,_K, the input is uy = 94 € ftIA:_x’ and the disturbance is w, = (z¢—k+1,¥Yt-K) €
Xt-k+1 X Y;_g. The state transition function f/ is defined by

ft’(m;/ U;, w;) = .ft’((zt—Ka ¢t~K:t-—1)’ 'wtv (wt—K+la yt—K)) (E.16)
= (l't—K+1a 1/’t—K+1:tlyt—K)

Vo gi-k+1 € Xe-k+1, Y-k €Yok,  V_ki1:4 € Digyra,_ g
(E.17)

and the cost function g; is defined by

9t(Th i, uy) = 92((93t—1<+1,¢t—K+1:t|y,_K),¢t) (E.18)
= E[ht($t+1, Ut)lxt—K+1; G(¢t—K+l:tlyg_K)],
Voi-k+1 € Xe—k+1,  YYi-x €Yiek, YV_ki14 € ft-—K+1:tlA,-K- (E.19)

It may appear strange to define the disturbance as the next state, but the disturbance defined as
such satisfies the properties of a disturbance variable, namely that it is independent of previous
disturbances given the current state and the input.

A stationary optimal undiscounted infinite horizon control law for the K -step delay state prob-
lem will exist if this equivalent centralized control problem has such a stationary optimal infinite
horizon solution. The conditions under which such a solution exists are described by Bertsekas
in [8]. If the conditions are satisfied, then an optimal control law can be found efficiently by known
methods, including, for example, Howard's policy iteration algorithm [31].

We see immediately from this equivalent centralized stochastic control problem that the state
space will likely be enormous, a situation that makes even the dynamic programming algorithm
computationally expensive. More precisely, the size of the state space is

M
1 Xe-k X Do gemrjae sl = 1 Xeok| - [T U= Rl (E.20)

m=1
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where |Y;”,., ;| grows exponentially with K, implying that the state space grows doubly expo-
nentially with K. For a certain class of systems that includes the MABC, the complexity can be
substantially reduced, although the growth rate remains doubly exponential. We describe this class
and the method by which complexity can be reduced in the following subsection.

E.4.2 Complexity Reduction

We describe a method of reducing complexity when the controllers in the problem of Section 4.1
have common information, e.g., the ternary feedback in the MABC described in Section 5. Al-
though the case of common information can be handled using the methods described in Section 4.1,
substantial computational savings result from exploiting the common information.

A system with common information and K -step delay state retains the elements of the system
in Section 4.1 with one modification. Namely, the observation y;" can be partitioned into a local
observation and a common observation. Specifically, we can write ¥ = (A%, &), for all m =
1,---, M, where & is the common observation since every controller observes it, and A" is the
mth controller's local observation. We denote their ranges by =; and A", respectively. The shared
information d; can then be written

6t = (£0:t-1, Ao:t—1, To:t), (E.21)

and the control laws take the form
ug" = 9 (Y2 Koty Ot—K) (E.22)
= 1 (N2 kot §t— Kty Ot—K )- (E.23)

For future convenience, we denote (&;— g, &:— k1) by 6; and its range by ©;.
Exploiting the common information, we arrive at the following modified theorem characterizing
optimal control laws.

Theorem E.4.2 Consider the following recursive equations that characterize optimal control laws
for the K -step delay state system with common information:

Jr(@r-k, ér-ker,br-kT-1) =0,  V¥r_kr_1 € Tr_gr_101 (E.24)
Ji(Te—K, &Kt Yi-Kt—1,0t) = Elhy(Te1,ue) + T (Te—K+1, §t— K141 Vo K4 1A i)
|-k s Et— K83 G (Yr—K:t))s

Vit € Ti_ ke, (E.25)
Ji(@e—r, &t—K:t, Vt-K4—1) = min  J(Te— g, E— Kty Yt—K:t—1,Vt)s

¢1€Ft|et

Vi k-1 € Do kie-1j0, (E.26)

Let v0.x—1 € Lo:x—1 be given optimal control laws. If control laws yg.7— € I'k.r_1 satisfy
Je(Tt—K, Et—K:ts Ve—Kt—1100 Vi) = i (Te—k s Et— Kty Ve K:t-116,) (E27)

for all 6; = (Ao.t—k—-1,80:t, To:t—-k) € Orandt = K,--- , T — 1, then yg.7—; are optimal.
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Proof: See Appendix A. O
Again, we can interpret the above equations as the result of applying dynamic programming to
the following centralized stochastic control problem. Let the state for the centralized problem be

7} = (Tt Et-Kits Ye-Kot-1) € Xo—k X et X Do k110, (E.28)
let the input be uy = v € I'y,, and let the disturbance be

wy = (Tt k11, Et— K141 A—K) € Xem k1 X Semganie41 X As_k. (E-29)
Define the transition function f;’ by

1z, uf s w)) = f{(Te—k, Eem Kooty Yt Kt—1), Yts (Tt K1, Et— K 4150415 M—K ) (E.30)

= (Tt K+1, - K+1:t+ 1, Ve K+ 140 _x s (E.31)

and define the cost function g by

9¢ (25 1,w) = G (Tt K1, Et— Kt 16415 Vsm K410, g ) Y1) (E.32)
= Elhs(Te+1, ut) [Tt K11, §t- K+1:0415 G(r— K4 1:8re_ i )]- (E.33)

Again, in [8], Bertsekas gives the conditions under which a stationary optimal undiscounted infinite
horizon control law exists for this centralized problem.
Note that the size of the state space for this centralized stochastic control problem is now

M
[ Xe-k X Et-kt X Domger-tj0,] = [ Xe-k| - [E-icatl - [] [0 el (E.34)

m=1

and that |=;_ x| is not in the exponent of |U]™| as it would be had we used the method in Section 4.1.
However, the growth rate of the state space remains doubly exponential with K since |A]® ;.. |
grows exponentially with K. Nevertheless, even for small problems. the efficiency of the above
algorithm allows an enormous reduction in required computation when compared to the algorithm
in Section 4.1.

E.5 Multiple Access Broadcast Channel

In this section, we focus our attention on the canonical MABC. We describe the canonical MABC
and formulate the problem of designing protocols for the canonical MABC as a decentralized con-
trol problem with no information sharing. We then apply the bounding techniques described in
Section 4.2 and develop specific results for the cases of two and three users, which are most com-
putationally feasible.

We introduce notation to facilitate discussion of the MABC. Let g;"~ be the number of packets
in the mth user's buffer (either 1 or 0) prior to the arrivals for that time slot; let g/t be the number of
packets in the mth users' buffer (either 1 or 0) after the arrivals for that slot. Let b; be the feedback
after the tth slot. Let af" be the number of arrivals (either 1 or 0) to user mn during the tth slot.
The control applied by the mth user is denoted uf* and specifies whether the user will (u]* = 1)
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or will not (uf* = 0) transmit a packet in his buffer. The number of packets transmitted by user m
(although not necessarily received by the receiver) is si* (either 1 or 0).

Denoting the Boolean logic operators “and” and “or” by A and V, respectively, we describe the
operation of the channel as follows:

t.1 : The pre-arrival buffer state is g;"~.
t.2 : Arrivals a7 to each user occur independently with probability p.
t.3 : Post-arrival queue state is ¢** = a* V ¢[*".
t.4 : Number of packets transmitted is s* = ¢*+ A u".
¢.5 : Feedback is by = min{3"M_, si*,2}.
(t + 1).1 : The next pre-arrival buffer state is

_ @it —st ify =1
a1 = { e . (E.35)
q; otherwise

By assumption, each user may use the history of feedback broadcasts bg.;—1 and its history of local
post-arrival buffer states gf;" to decide its control input u{".

Let us now put the canonical MABC design problem in the decentralized control framework of
Section 2. Let the state be

ot = (g7, be—1)- (E36)

Let the primitive random variables be v; = a; and w{® = af*. Then the state transition function f;
is given by

Tty1 = ft(xtauhvt) = (d’(qt—?utaat)aﬁ(qt_aut:at))a (E37)

where the functions ¢ and 3 are defined as follows:
M
Blas yus,ar) = min{ Y (¢ Va") Auf), 2} (E.38)
m=1

ol ursar) = {(q;vat)—((q;vamut) if B(g; s usya0) =1 (E.39)

q; Va otherwise

where binary operations on tuples are performed element by element. The function g[* relating
observations to the state is defined as

y{n = (’\?7&) = an(ﬂft»azn) = (QZn_ Va;nabt—l)s (E.40)
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and the cost function h; is defined by

-1 ifh =1

o, (E.41)
0 otherwise

hi(zgq1,ut) = {

so that minimizing the expected cost will maximize the probability of successful packet reception
in a slot. As mentioned earlier, the control input ui" must be a function of by.;_; and q3},+, ie., it
must be a function of ygy, indicating that no sharing is allowed.

With these definitions, we have formulated the canonical MABC protocol design problem as a
decentralized control problem with common information but with no sharing. The corresponding
problem with K-step delay state from Section 4.2 can now be solved, and the resulting optimal
thronghput will provide an upper bound to the throughput of the canonical MABC.

E.5.1 Results for Two and Three Users

We use Theorem 2 with Howard's policy iteration algorithm [31] to find the bound described in
Section 4.2. The tightness of the bound increases as the delay K increases, so it is desirable to
compute the bound for the largest K possible. For reference, with respect to the decentralized
control formulation of the MABC given in Section 5, the OSDS problem considered by Grizzle et
al. [27] and Paradis [42] is equivalent to a K -step delayed state problem with K = 0. For two
users, we choose the delay to be K = 1, while for three users, we choose a delay of K = 2. These
choices were made because for two users, with K = 1, the bound meets the performance of the
Hluchyj-Gallager protocol, while for three users, computation prohibits choosing K > 2.

Before using the policy iteration algorithm, we eliminate all self-contradictory states. For ex-
ample, the state with sub-laws that never transmit cannot have a success or collision feedback asso-
ciated with it. The remaining states meet the sufficient conditions required for an optimal stationary
infinite-horizon solution to exist.

In the two-user case, numerical calculation of the bound with K = 1 shows that Hluchyj and
Gallager's optimized window protocol achieves the bound for K = 1 to within machine precision.
In the three-user case, numerical calculations of the bound for K = 2 show that Hluchyj and
Gallager's optimized window protocol approaches the bound for p < .3 and meets the bound for
p > .3. Note that for p > .2891, the Hluchyj-Gallager protocol is the same as time-division multiple
access (TDMA) [28]. Because much computation is required for the K = 2 bound, the bound is
only computed for the values of p in Table 1. For these values of p, the performance of the optimized
window protocol is at least 99.59% of the bound, suggesting near optimality. Numerical calculation
of the bound for three users with K = 1 show that for p > .5, the Hluchyj-Gallager (TDMA)
protocol is optimal. Thus, we conclude that for p > .3, the Hluchyj-Gallager (TDMA) protocol is
optimal. o

E.6 Discussion and Conclusions

We have presented a bounding technique for decentralized control problems with no sharing of
information and showed how complexity of the bound calculation can be reduced in the special
case of common information. The complexity reduction has allowed us to apply the bound to the
canonical MABC design problem for two and three users. We have developed results that show that
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P Probability of Success Ratio (< 1)
Hluchyj-Gallager Protocol K = 2 Bound
.05 .1486 .1486 1.000
.10 .2881 .2882 .9996
15 4099 4103 .9989
.20 .5081 5101 .9961
25 .5905 .5926 .9965
.28 6301 6327 9959
.29 .6421 .6446 .9961
.30 6570 6570 1.000
40 .7840 .7840 1.000
.50 .8750 .8750 1.000

Table E.1: Three-user case: bounds on probability of success with K = 2 compared to probability
of success of Hluchyj and Gallager's optimized window protocol.

the performance of Hluchyj and Gallager's optimized window protocol meets and almost meets the
bound in the two and three user cases, respectively.

The results open several avenues for further inquiry. That the Hluchyj-Gallager optimized win-
dow protocol is at least nearly optimal for two and three users suggests that this protocol may be
nearly optimal for more than three users; it may be fruitful to try to show this analytically. Al-
ternatively, since the optimized window protocol uses only the common information [28], i.e., the
broadcast feedback, it may be possible instead to show that no performance loss results from re-
stricting protocols to the class of protocols that use only common information. Another interesting
task is to determine p such that TDMA is the optimal protocol for M > 3 users. It is known that
TDMA is optimal as p — 1, but our results suggest that TDMA is optimal for values of p that
are substantially smaller than 1. Finally, since the main impediment to computing tighter bounds
for larger numbers of users is the large state space and large input space, the application of neu-
rodynamic programming methods and other efficient numerical optimization techniques should be
considered.

E.7 Proof of Theorem E.4.2

We require 4 lemmas before we can prove the theorem.
Lemma E.7.1 Given control laws v;_ k. € I's_ ks, there exists a function 7 such that

P(Te—K 41441, M—Kit+1, §t—Kt+1|0t— k3 - Kt) = T(Te—Kot1, M—Kot 15 Et— Kot+10 Ve— K49, )
(E.42)

Remark: Note that many of the densities in subsequent proofs can be derived from the above via
integration over the appropriate variables.
Proof: To prove this lemma, we use an inductive argument in which the main tool is the chain rule
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for probability density functions. If we put j = ¢ — K, then the last link of the chain rule can be
written

(X5, &5 | 055vi:54k) = p(Aj, & | T4). (E.43)

Using the system dynamical equations (E.1) and (E.2), along with the fact that the primitive random
variables are independent at distinct times, and the fact that the control laws G(vjj+ K|6;4 &) return
a constant control input over the argument 6, x, we combine the last two links in the chain by

P(l'j+1, ’\j:j+11§j:j+1 l 6j;’7j:j+K)
=P, & 1 25) - Pz | 65,25, 03, €55 G (165, )) - PO, € | 65, %541, X4, &) (E44)
=p(A & | 75) - p(zie1 [ 25,25 G (56, ) - P(Aja1, €t | Tjgn)- (E.45)

Examining the dependence of (E.45) on §;, we conclude that a function 7, exists such that
P(Zj+1, Ajija1s §st | 055 Vijr k) = T1(@jeja1s Mjigir1s g1 V16, ., )- (E.46)
Let us now set up a proof by induction by supposing that there exists a function 7, such that
P(Zjt1:5450 Ajigrsr Eigrs | 053 Vijk) = Ts(Zjsjrss Mgt Esgito Vinjrsm116,06,y401)  (EAT)
for some s such that 1 < s < K — 1. Using the same argument used to derive (E.45), we write
P(Tjtst1, Ajst1s Eist1 | 05, Tjtrjaes Ajsjtss Ejsjtss Visj+K—1)
= P(T545+1105, Tjijts, Njsjtss Egigirss G (Vitsls, 6, 50)) -

P(Ajts+1,&i4s41107, Tjijrst1, Ajijtss Ejijits) (E.48)
= P(Tjtrs+1|Zjt5, Njijtss G(Viasls, 65, 0)) “ PAjtst1s Ejrst [ Tigss1)- (E.49)

Since (E.49) depends on d; only through ;. s| we can use the chain rule to write

6j1€]:]+a’

P(Zj+ 1545415 Agigrst s Eigrstt | 85374 K) = Ts(Zjsjrss Njijrss Eisirss Visgrslty yns) - (* )5
(E.50)

where ( * ) represents the right hand side of (E.49). Then (E.50) implies that there exists a function
s+1 such that

(T4 1sj45+1 Mjijibs+1 Ejjrst1 | 0537+ K) = Tsr1(Tjijst1s Ajijstis Ajijts+1s Viej+s|sy s )
(E.51)

By induction, it follows that there exists a function 7 = 7 such that

P(Zjt 1+ K415 Mjijr K+15 &Gt K 411055 Vija k) = TR(Tjij4 K1y Ajijt K415 EGijr K415 Vg KI6;.Er k)

(E.52)

This is what we wished to show. 0
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Lemma E.7.2 Define the immediate cost function C; by

Ci(Y0:7-1,0t) = E [h(Tt41,ut) | O ve—ktl - (E.53)
Then there exists a well-defined function C’t such that

Ce(vor-1,0¢) = Ce(Ve-K:tj6, Et— Kt T-K)- (E.54)
Proof: We can write explicitly

E[h(ze41,ut) | 06 ve-k:i)

= > k=11, Yo, (Ae—kt)) - PO— k2085 Ve K:t) (E.55)
At——K:t
= Z h(Zt+1, Y9, (Mt-k:t)) - P(Me—Kt|Te— K, Et—Kt5 Ve—K 116, ) (E.56)
At—K:t
and the lemma follows immediately. a.
Lemma E.7.3 Let
D¢(vor-1,0:) = E [n(0t—k+1,&t—K+1:¢+1) | 085 YVe—K:t] (E.57)

where 7) is some real-valued function. Then there exists a function D; such that
Di(Vi- k19,6t~ K:t, Te—K ) = Dy(vor—-1,6¢). (E.58)

Proof: Follows immediately from Lemma 1. O

Lemma E.7.4 Consider the following recursive exhaustive search equations

Jr(0r,v0r-1) =0, Vvor-1 € Lor-1, VOre€Or (E.59)

Ji(0t,v0:t-1,7t) = Elhe(ze41, ) + Jip1(Ot41, 70:t) |0t Yo:] (E.60)

J{ (0, 70:t) = min J (6, v0:0-1,7e)- (E.61)
Y€l

Let control laws yg.x—1 € f‘o; Kk —1 be given optimal control laws. If control laws vy .71 € r K-T—1
satisfy

Jt (0t Y0:t—1, %) = J7 (04, 70:4-1) (E.62)
forall§; € ©;andt = K,--- ,T — 1, then yx .1 is optimal.

Proof: The proof follows from recognizing that J;(6;,~¢.t—1) is the same as

T-1
min B[} hr(zrs1,ur)l6 Yor-1] (E.63)
T 7=t
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Then it is clear that vk is the optimal control law at time K, given yp.x_1. Knowing that yg is
optimal allows us to similarly conclude that vk, given that o, is optimal and so on. O
We are now prepared to prove Theorem 2.
Proof of Theorem 2:
We now use the lemmas to show that the equations can equivalently be written as stated in the
theorem. First, let J; and J; be functions satisfying

J: (Tt—K s Et— Kot Y0:t 116, s 1 t—y) = Tt (Ots Yo:—1) (E.64)
(Tt K §t— Kty Yot=1060 € rervm1> Velbe icrEe—scro—s) = Je(Ots Yo:—1,72)- (E.65)

Then by Equatlon (E.24), JT exists, from which it follows that JT 1 exists. It follows from Lemmas
3 and 4 that if J;* "1 exists, then so do Ji and J;. Therefore, by induction, the foregoing functions
exist for all ¢. Replacing the equations in the statement of Lemma 4 with the corresponding tilde
functions, we conclude that if a control law yg.7_; satisfies

jt (zi—k, Et— Kt YO:t—1|6¢— g €t —K:t—10 ’Yt[&t_K,g,_K:t) = jt* (Te—K 5 &t Kt '70:t——1|6t_K,§t_K;g_1)
(E.66)

then yg.7—1 is optimal. This is equivalent to the theorem statement. O
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