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Abstract

Fractal point processes are increasingly being viewed as important models for a host of nat-
ural and man-made phenomena. To adequately exploit such models, efficient techniques for
processing, analyzing, and synthesizing fractal point processes in the context of such appli-
cations are required. This thesis develops a broad set of practical results for an important
class of quasi-stationary fractal point processes we refer to as the fractal renewal processes.
Starting from an engineering-oriented mathematical characterization of such processes, a
novel multiscale framework, based on random mixture of Poisson constituents, is formulated
for these processes, and serves as the foundation for analysis and algorithm development.

Using this framework, efficient signal processing algorithms are developed for fractal
renewal processes, including a synthesis which requires a single Poisson process generator
for its implementation. Included are a continuous-scale version for exact synthesis, and
a discrete-scale version for arbitrarily accurate synthesis using a countable collection of
constituents. Complementary multiscale analysis algorithms are also developed, aimed pri-
marily at robust parameter and signal recovery in a noise-corrupted scenario. Specifically,
a maximum-likelihood fractal dimension estimator and a Bayes’ least-squares interarrival
estimator are derived. Performance is evaluated using simulations and theoretical bounds.

Characterizations of fractal renewal processes in familiar discrete-event systems, partic-
ularly networks and queues, are also obtained using multiscale methods. The results, which
include the interarrival density for a fractal point process subject to random erasure, and
the counting process distribution for superposition of fractal point processes, suggest invari-
ance of key fractal properties under traffic branching and merging. Steady-state customer
distributions in a memoryless queue with fractal customer arrivals, and in the complemen-
tary system with power-law service and memoryless arrivals, are also derived and verified
by simulations.

A number of problems of network design and management are also explored. Optimal
multiscale server control policies are developed for queueing systems with fractal traffic in-
put, which exploit past history of traffic to enhance performance. Comparison with policies
which ignore past history suggests that our multiscale controller is superior in terms of
average individual waiting time and service costs. Finally, optimal flow control policies are
also formulated for power-law service of memoryless traffic.
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Chapter 1

Introduction

Efficient processing, analysis, and synthesis of fractal signals are increasingly important in
many engineering applications. Generally speaking, a fractal is a mathematical construct
which is self-similar, and hence possesses uniform structure over all scales. As such, the ge-
ometry of fractals is well-matched with a truly remarkable range of natural and man-made
phenomena which lack a characteristic scale. As a few examples, landscape and meteoro-
logical features, turbulence formation, percolation transition in metals, and economic time
series have all been adequately modeled as fractals (see, e.g., [14] [33] and the references
therein). Naturally, advancement in the studies of fractals can further our understanding of
these phenomena. Moreover, recent application of fractals in engineering studies has gen-
erated numerous innovative algorithms such as realistic rendering of natural images [38],
efficient image compression [21], and signal design for communications [47).

While previous studies of fractals have focused primarily on fractal waveforms, self-
similarity in discrete-event signals and systems, and the associated mathematical models
of fractal point processes and queues, have recently sparked much research interest in the
engineering community. Most notably, it has been widely observed that packet traffic over
a variety of telecommunication networks possesses self-similar properties. This significant
deviation from the traditional Poisson traffic model has much potential impact on the
restructuring of existing network architectures and protocols, as well as on future networking
design. Hence, there is a need for effective analysis of fractal traffic in networks. In addition
to networking issues, important signal processing problems involving fractal point processes,

such as synthesis, analysis, and estimation, have not been adequately solved. Our main

15



objective in this thesis is to address a number of these important problems.

Recently, multiscale paradigms have injected much insight into the study and applica-
tion of fractal geometry. For example, Horowitz has developed filtering algorithms for a
particular type of fractal noise model—the gyroscopic noise—using an inﬁnite-dimensio_na.l
state space model {17]. The multiscale ARMA-based models of Keshner have also been of
interest, primarily in the synthesis of 1/f signals, as well as in the understanding of long-
range memory inherent in these signals [24]. In another important direction, the vipelet
transform has been formally shown to be a Karhunen-Logéve-like basis for the 1 /f family of
fractal waveforms, and has given rise to a host of efficient modeling algorithms, including
synthesis, estimation, and detection of these waveforms [47). Motivated by the success of
these multiscale paradigms, we introduce in this thesis a novel multiscale representation
for a class of fractal point processes, which constitutes as the basis for our analysis and
algorithm development. As will be apparent, there exist interesting connections between

our multiscale representation and the aforementioned frameworks.

1.1 Outline of the Thesis

The problems addressed in this thesis fall coarsely into three categories. The first of these is
composed of general signal processing problems such as synthesis and estimation of fractal
point processes. Among other applications, the resulting algorithms are directly useful for
signal classification and reconstruction. A second collection of problems focuses on the
analysis of these point processes under random erasure, superposition, and queueing. Our
results in this area offer much insight in the behavior of fractal traffic in various networking
scenarios. Finally, we consider the design of optimal control policies for fractal traffic and
fractal queues. The policies developed generally suggest the importance of past history for
enhancing controller performance.

We begin by developing in Chapter 2 a sufficiently formal definition of fractal renewal
processes, a class of fractal point processes in which we specialize throughout this thesis.
In addition to its self-similarity, a key feature of this signal model is its quasi-stationarity,
which is desirable for modeling phenomena with no preference for a space or time origin.
In the same chapter, we reinforce the significance of this signal model by demonstrating

the close agreement between its statistics and a wide range of physical phenomena observed

16



independently in remotely related areas, from communications engineering to biomedical
research.

In Chapter 3, we introduce and develop a novel multiscale representation for the fractal
renewal process. Based on the mixture of a multiscale family of Poisson processes, this
framework allows exploitation of familiar results from the theory of Poisson processes. As
an immediate application, this multiscale paradigm leads to efficient synthesis of fractal
renewal processes, which includes a continuum version for exact synthesis, and a discretized
version for synthesis with only a discrete or finite collection of constituents.

In Chapter 4, we apply our multiscale framework to a number of practical analysis
and estimation problems involving fractal renewal processes. Specifically, we develop ro-
bust parameter and signal estimators for a realistic noisy scenario. We show that for the
noise model considered, our fractal dimension estimation algorithm is more reliable than
a number of existing estimators for the same parameter. On the other hand, our signal
estimation algorithm is useful for recovery of fractal renewal processes from noise-corrupted
measurements.

In Chapter 5, our emphasis shifts from general processing of fractal point processes to
the analysis of these point processes in networking scenarios. Specifically, we concentrate
on networking transformations typically experienced by traffic streams, including merging,
branching, random erasure, and queueing. A main conclusion of our analysis is that inter-
action of multiple fractal point processes, such as merging and branching, often preserves
key features of these signals. This offers additional evidence for self-similarity of the aggre-
gate network traffic due to multiple users, which has been previously argued using mainly
empirical observations.

While the queueing analysis of Chapter 5 is mainly descriptive, in Chapter 6 we shift
emphasis to the synthesis of efficient queueing systems for manipulating fractal traffic. Our
results in this chapter are generally insightful for the design of optimal networks for pro-
cessing fractal point processes. Based on our multiscale framework, we apply dynamic
programming and Markov decision techniques to formulate optimal server control and flow
control algorithms. Although the problems we consider involve very specific objective func-
tions and queueing set-ups, our results suggest that for the type of self-similar traffic and
fractal servers considered, performance of queueing control can be enhanced by exploiting

past history of the system, which is generally ignored in the optimal control of memoryless
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queueing systems.

Finally, a number of concluding remarks are given in Chapter 7. Several directions for

future research are also suggested.
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Chapter 2

Self-Similar Point Phenomena and

the Fractal Renewal Process

Numerous discrete-event distributions lack a characteristic scale. For example, in stellar and
planetary distributions, the clustering of galaxies on coarse scales resembles the clustering
of stars and planets on finer scales [40]. Likewise, the zero-crossings of a fractal waveform
generally form a self-similar set. Recent studies of these phenomena have resulted in various
mathematical characterizations for point processes having self-similar behavior, or fractal
point processes. Models ranging from fractal doubly-stochastic processes of [22] to con-
ditionally stationarity self-similar point processes of [32] have been developed for various
phenomena ranging from auditory neural firing pattern to telephone channel error statis-
tics. However, direct manipulations of many of these models are often difficult. The main
purpose of this chapter is to develop a specific mathematical definition for a class of fractal
point processes, sufficiently formal for the engineering-oriented discussion in the rest of this
thesis, While we take an axiomatic approach in the definition, we show that this point
process family exhibits many fractal properties observed in real phenomena.

This chapter is organized as follows. We begin by briefly reviewing the fundamentals of
point process theory in Section 2.1, highlighting classical models such as the Poisson process
and the renewal process. We present these basic models both for pedagogical purposes and
because they will be central in our subsequent study of the fractal renewal process. In
Section 2.2, we present background motivation for fractal point processes, citing results

from recent case studies in various engineering and scientific areas. Our main technical
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contribution in this chapter is a mathematical characterization of a class of fractal point
processes—the fractal renewal processes—presented in Section 2.3. In the same section, we
also present its key characterization in terms of the power-law interarrival density. Finally,

additional statistical properties of fractal renewal processes are explored in Section 2.4.

2.1 Fundamental Point Process Theory

Roughly speaking, a point process is a collection of localized events, or “points,” distributed
randomly in space and/or time. While this thesis focuses on processes in a one-dimensional
ambient space, extension of the theory to higher-dimensional cases is often immediate.
Throughout, we refer to the ambient space as time, to emphasize the importance of these
signal models in various queueing and scheduling contexts. A common graphical representa-
tion of a one-dimensional point process is shown in Fig. 2-1(a), where each point, or arrival,
is marked with an “x” along the time axis. A useful mathematical characterization of a
point process is in terms of the interarrivals {X[i];i = 1,2,...}, where X[1] measures the
gap between the time origin ¢ = 0 and the first arrival, while X[i] corresponds to the gap
between the (i — 1)st and ith arrivals, for i > 1. The location, or epoch, of the ith arrival

is then clearly

i
Sxlil =) X['], i=12,....
i'=1
Alternatively, a point process can be characterized in terms of the associated counting
process Nx(t), formally defined as the number of arrivals in the interval (0,¢t]. As such,
Nx(t) is right-continuous. Fig. 2-1(b) depicts the counting process associated with the

point process of Fig. 2-1(a). Among other relations, these quantities are related by
Nx(t) =sup{i: Sx[)] <t}, t>0.

Because of its simplicity, the Poisson process traditionally plays a central role in point
process studies. Formal definitions of this point process are typically given in terms of a
single positive parameter ), the arrival rate or the intensity of the process (see, e.g., [41] and
(15]). A key feature of the Poisson process is its lack of memory: regardless of the activities

elsewhere, the probability that an arbitrary infinitesimal interval of size dt contains zero
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Figure 2-1: Representations of a point process in a one-dimensional ambient space: (a) Ar-
rivals are each denoted as an “x ” along the horizontal aris. The sequence {X|[1], X[2],...}
denotes the interarrival times, while the sequence {Sx[1],Sx[2),...} denotes the arrival
epochs. (b) Counting process corresponding to the point process of (a). The function Nx(t)
gives the number of points occurring in the interval (0,t] and is thus continuous from the
right.
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0 arrivals 1 arrival 2 amrivals

Figure 2-2: The pure-birth process representing a Poisson counting process with arrival rate
A. Each state represents a certain number of births since the time t = 0. The departure rate
from every state is ).

arrivals is 1 — X dt, while the probability it contains one arrival is A dt. Probability of more
arrivals is negligible. Several properties of the Poisson process are well known. First, its
interarrivals {X[i],s = 1,2,... } are statistically independent, and are identically distributed

according to the exponential probability density function
fx(z) = Aexp(-Az), z2>0. (2.1)
Second, a closed-form probability distribution has been obtained for its counting process,

which takes the form of a Poisson distribution,

(At)" exp (= At)

Pr{Nx(t) =n} = =

, n=0,1,....

In addition, the Poisson counting process has independent increments, and is therefore
Markov. A well-known continuous-time Markov representation of the Poisson counting
process is the pure-birth model of Fig. 2-2 which, among other applications, is insightful
for queueing analysis. Each state in the diagram represents a certain number of arrivals
since the time ¢ = 0, and the rate of departure from every state is . Adding to the list
of well-known results, many signal processing problems such as shot-noise analysis, and
various queueing problems have been adequately solved for the Poisson family [41] [26].
Finally, we remark that several variations of the Poisson process have also attracted much
attention, including the inhomogeneous Poisson process whereby the intensity is a time-
varying deterministic function A(t), and the doubly stochastic process, for which A(t) is
itself stochastic. We refer the reader to [41] for in-depth studies of these Poisson extensions.

Poisson processes are members of a broader class of point processes known as renewal

processes. A useful formal definition of the renewal process, sometimes more specifically
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referred to as the ordinary renewal process (8], is a point process in which the interarrivals
are independent, and identically distributed according to some common probability density

function fx(z). Alternatively, if X[1] is distributed differently, according to the density

et = gy (1= [ fxtan), (22)

the resulting process will be stationary in the strict sense, and is sometimes referred to as
an equilibrium renewal process [8]. Note that (2.2) is the waiting-time density upon random
incidence, which accounts for a randomization of the time origin. Thus, the renewal process
can be regarded as effectively stationary, or quasi-stationary.

A useful measure of the burstiness of a renewal process is its coefficient of variation Cy,

formally defined as

where px and ox denote the mean and standard deviation of the interarrival distribution,
respectively [9]. For evenly-spaced events, the coefficient of variation tends to be low, while
for bursty arrivals, this quantity tends to be high. We remark that as the mean and standard
deviation of the exponential density (2.1) are both 1/, the coefficient of variation of every
Poisson process is unity.

Except for the Poisson case, interarrivals of a renewal process are in general non-
exponential, and the associated counting process non-Markov!. However, two classes of
renewal processes are intimately related to the Poisson process, and are thus sufficiently
captured within the Markov framework. An Lth-order Erlang process has Lth-order Erlang

random variables for interarrivals, with the probability density function

meL—-le—/\::

W, x> 0.

fx(z) =

It is well known that this random variable is merely the sum of L independent, identically-
distributed exponential random variables. Thus, an Lth-order Erlang process can be derived
from a Poisson process by counting only every Lth arrival. This motivates the Markov

process of Fig. 2-3. Generalizing the idea of a pure-birth process, this Markov process

'Generally speaking, however, a renewal process is sufficiently modeled as a semi-Markov process [15).
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Figure 2-3: A generalized pure-birth process corresponding to an Lth-order Erlang renewal
process with parameter X. Dashed bozes denote conceptual grouping into superstates. The
sojourn time in each superstate is the sum of L independent ezponential random variables,
and is thus an Lth-order Erlang random variable.

consists of a collection of “superstates,” each of which represents a certain number of arrivals
since the time ¢ = 0. The arrival count is incremented only after L transitions of the
underlying Poisson process.

As summation of well-behaved independent random variables generally reduces variabil-
ity, Erlang interarrivals are expected to be more regular than Poisson interarrivals. Indeed,

the coefficient of variation of an Lth-order Erlang process is

with equality only in the first-order case, where the process degenerates to a Poisson pro-
cess. Hence, higher-order Erlang processes can be used to model more evenly-spaced event
arrivals.

In the pure-birth representation of the Erlang process (Fig. 2-3), each superstate is a cas-
cade of primitive states. Fig. 2-4 shows a parallel arrangement of the primitive states, which
gives rise to the hyperexponential process. For an Lth-order hyperexponential process, each
superstate consists of a collection of L states, with departure rates {\;;j =0,1,...,L—1}.
For meaningful discussion, A; will be assumed all distinct. Upon entering a superstate, a
constituent is selected based on the distribution {p;;j = 0,1,...,L — 1}. Thus, the sojourn

time in each superstate X[i] is obtained as the random choice,
X[i] = X;[i), with probability p;,

where X;[] is an interarrival extracted from the Poisson process with rate \;. It follows

that the probability density function of the resulting interarrival X|[i] assumes the form of
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Figure 2-4: A generalized pure-birth process corresponding to an Lth-order hyperezponential
process. Dashed bozes denote conceptual grouping into superstates. The sojourn time in
each superstate is the random choice among L independent exponential random variables,
and is thus an Lth-order hyperezponential random variable.

an Lth-order hyperexponential function

L-1

fx(z) = pijexp(-Ajz), z>0.
Jj=0

It is straightforward to show that the coefficient of variation of the hyperexponential
process is at least 1. To see this, first note that the mean and variance of the Lth-order

hyperexponential interarrival density (2.1) are respectively

L-1 1
Bpx = ijxv
7

Jj=0
and
L-1 9 L-1 1 2
% =B[X) - @) = Loy - (S
j=0 7 j=0
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Next, we note the inequality

L-1 2 L-1 L-1 1 2
ng—Q—Z gl’j)‘_j =2 ;Pjg—(g:%pmm)
2
=2 ZPJ[—_ZP’",\J >0,
m=0 m

with equality if and only if all but one of the probabilities pj are zero. So,

2

\ L-1 2 L-1 2 L1 )
k=2 mp-|2rg] 2 > riv | =#k
j=0 J j=0 J j=0 J

implying that the coefficient of variation Cx is greater than or equal to 1, with equality
only in the first-order case. Thus, higher-order hyperexponential processes are well-suited
for modeling bursty point phenomena. As will be apparent, the hyperexponential model

has interesting connections with our multiscale representation for fractal point processes.

2.2 Self-Similar Point Process Models

While the Poisson process is desirable for its high analytic tractability, it is inadequate for
capturing memory inherent in many phenomena, particularly various forms of clustering
behavior. In the distribution of human population, for example, locations of individuals are
highly correlated. In fact, a hierarchy of clustering is often present, from the gathering of
households into neighborhoods, to the conglomeration of communities to form metropolises.
Moreover, for many phenomena, the hierarchy of clustering exhibits much homogeneity. As
an example, the clustering of galaxies on coarse length scales resembles stellar and planetary
clustering on scales much finer [40].

Formal studies of self-similar point processes have been largely phenomenological, driven
primarily by the ubiquity of such scale-invariant clustering activities. In the sequel, we
present a series of case studies which reinforce the importance of these point processes as
signal models. While these phenomena have been observed in remotely related areas, they

have all been usefully modeled as fractal point processes.
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Transmission Errors

In his seminal paper [32], Mandelbrot proposed a novel self-similar model for error occur-
rences in the telephone channel. While the observed burstiness suggests interdependence of
error arrivals, the intervels {X[i];i = 1,2,... } between errors are modeled as independent
in Mandelbrot’s model. Error correlation and self-similarity are built in via the fractional

power-law intererror density function

fx(@=4 O NFT =21 (2.3)
0 otherwise
where 1 < v < 2. To accommodate for pathological peculiarities of this probability law, such
as unbounded moments, Mandelbrot also introduced a notion of conditional stationarity to
formalize discussion.

To motivate his point process model, Mandelbrot demonstrated its close agreement with
real telephone data. Conditional and unconditioned first-order intererror histograms, as well
as unconditioned higher-order intererror histograms are as predicted by the model, provided
that correction factors are included to account for blocking effects [32]. Validity of Mandel-
brot’s model is further established by the studies in [42], conducted based on statistics of
error-free transmission in no-correction and single-error-correction scenarios. As will be ap-
parent, our fractal point process model has important connections to Mandelbrot’s model,
though we take an inherently different approach in the definition. For example, among
other properties, we will show in Section 2.3 that the power-law interarrival distribution is

an inevitable consequence of self-similarity in renewal processes.

Neural Activities

Recent studies of auditory neuron firing patterns have also uncovered self-similarity in these
neural activities. In [43], Teich presented statistical analysis of auditory neural impulse
trains based on pulse-number distributions (PND), which are in essence count histograms.
Specifically, an observation of a spike train is partitioned into nonoverlapping windows
each of duration T, to yield a sequence of counts {N[i];i = 1,2,...,n} where n is the
number of windows in the partition, and N[i] is the number of spikes in the ith window.

This sequence then naturally leads to estimates of the pulse-number distribution, its mean
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KN(T), and variance afv(T). To quantify the regularity of the distribution, a rormalized

variance estimate, frequently referred to as the Fano factor,

52
F(T) & X0 (2.4)
KEN(T)
may be used, where /i ~(T) and &?V(T) are respectively estimates of ux () and ‘712\'(’1“) based
on the partition. In the case of a Poisson process, the Fano factor tends to be independent
of the partition size, while for periodic point arrivals, the Fano factor is zero [43]. For neural
firing data, however, the Fano factor exhibits a dichotomy: while it remains constant for
small windows due to refractoriness, it increases in a power-law fashion for larger windows
[43]. Scale invariance of the Fano factor in the coarse-scale regime suggests fractal nature
of the impulse arrivals. More importantly, based on the variation in the Fano factor, the
fractal dimension of auditory neural impulse trains is estimated to range from 9.3 to 0.9,
with dependence on the presence and level of stimuli. Self-similasity of neural firing is
postulated to be optimal for sampling fractal stimuli so prominent in nature.
In [22], Johnson, et al., proposed a self-similar point process model to match the empir-
ical observations of [43]. They established that for a general doubly stochastic process, the
Fano factor has the asymptotic behavior

1
1 = — L f
Thm FT)=1+ i }1_1'15 Sa(f)

where p and S)(f) are the mean and power spectral density of the intensity function
A(). Thus, an asymptotically scale-invariant Fano factor can be achieved with a self-similar
intensity function. While this doubly stochastic model mimics the Fano factor behavior of
neural pulses, it is analytically difficult to work with, and generates limited insight for signal
processing and queueing problems involving fractal point processes. Moreover, describing
a point process in terms of its intensity function obscures the discrete nature of the arrival

process.

Network Transactions

In their study of local area network (LAN) traffic, Leland, et al., collected a remarkable set

of Ethernet traffic data over time intervals as long as 27 hours, with resolution as fine as
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10 ms [29]. This immense data set allowed study of traffic behavior over a range of time
scales never before undertaken in network traffic study. The traffic data was represented
as a time series {N[i];i = 1,2,...,n}, where n is the number of 10ms time slots in the
observation, while N[i] denotes the number of packets recorded in the ith slot. The traffic
data is said to be self-similar if its statistics are unchanged under different resolutions.

Formally, it is required that for some parameter H, and for every m = 1,2,.. .,
1 : . :
W(N[(z —m+ 1]+ N[ -D)m+2+-- + N[zm])

have the same covariance structure as N [é], for every m = 1,2,.... A simple self-similar
test known as the variance-time plot method then involves successive smoothing of N[i], to

obtain

N(’")[i]éTin(N[(i—1)m+1]+N[(i—1)m+2]+---+N[im]), m=12,..., (25)

followed by the estimation of the variauce of N (m)[4] to check that
var(N(™) ~ am™#, asm - 00,

where # = 2(1 — H).
It is straightforward to relate the variance-time plot method of [29] is the Fano factor

method of [43]. We note that from (2.4) and (2.5)

2. var(N(m))

FT)="
KN(T)

where T is m times the grid size of the finest partition. As iy o« T for well-behaved

point processes,
log (F(T)) ~ log T + log (var(N('")))

and the two tests are in essence equivalent. In addition to the variance-time plot analysis,
statistical tests based on periodogram analysis are also employed in [29] to argue the self-
similarity of LAN traffic.

To explain the fractal nature of LAN traffic, Willinger, et al., proposed an aggregated
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on/off renewal process model [45]. An on/off renewal process is basically a two-state point
process: points arrive at a fixed rate during the “on” periods, but are absent in the “off”
periods. The duration of the “on” and “off” periods is each governed by a power-law
density. While strictly speaking, the “on” and “off” periods are alternating, this property
is not enforced in preliminary analyses. It is shown that superposition of a large number
of such on/off renewal processes approaches a doubly stochastic process with a fractional
Brownian motion intensity, and hence approaches the model of Johnson, et al., in [22].
The aggregated on/off renewal process model injects much insight into the fractal nature
of network traffic as it suggests self-similarity of the overall effects of a large number of
networking activities. However, this model again describes a point process indirectly in
terms of its intensity.

Self-similarity has also been documented for wide area network (WAN) traffic. In their
paper [37], Paxson, et al., thoroughly studied a variety of TCP protocols on wide-area net-
works, with main focus on connection and packet arrivals. Based on interarrival statistics,
they concluded that while certain network activities, such as telnet and ftp connections,
can be adequately modeled as inhomogeneous Poisson processes, packet traffic within each
session is generally far too bursty for the Poisson process to capture. Packets due to a user
in a telnet session, for example, are characterized by heavy-tailed interarrival histograms,
which are decidedly different from the exponential distribution. Likewise, gaps between
data sessions in a user-initiated ftp session are power-law distributed. In addition to inter-
arrival statistics, statistical tools such as the variance-time plots were employed to argue

self-similarity of the packet traffic.

Compressed Data

In addition to traffic over networks, various forms of variable-bit-rate (VBR) video data have
been shown to possess self-similarity. In search of universal properties of variable-bit-rate
video data, Beran, et al., studied the output of a number of different video codecs on video
data of differing scenes. Using the same statistical methods as in [29], such as variance-time
plot and periodogram methods, Beran, et al., concluded that arrival of variable-bit-rate
video data is typically self-similar. This observation has far-reaching implications, as coded
video data is expected to constitute as a main component in future integrated service

networks such as B-ISDN.,
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2.3 A Mathematical Characterization of a Class of Fractal

Point Processes

In this section, we develop a useful and sufficiently formal definition of the class of fractal
point processes of central interest in this thesis. Our definition is based on a general,
reasonable, broadly-accepted notion of self-similarity of point processes. Key consequences
of this definition are also derived, particularly in terms of the resulting interarrival statistics.
As will be apparent, while our definition is developed independently, there are important
connections to the fractal point process models of [30] [32] [42] discussed earlier.

A point process is said to be self-similar when the associated counting process Ny (t) is

characterized by the following scale invariance relation
P
Nx(t) = Nx(at) (2.6)

for all a > 0, where the notation L denotes statistical equality, in particular in the sense of
all finite-dimensional distributions. In essence, (2.6) is a statement that Nx (t) is statistically
indistinguishable from any temporally dilated or compressed version of the process—i.e.,
the process has no characteristic scale.

Many physical phenomena of interest exhibit no preference for a space or time origin.
It is therefore natural to seek point process models possessing some stationary quality—
processes whose behavior is, in some sense, independent of the time intervals in which they
are viewed. Quasi-stationarity of renewal processes (see Section 2.1), therefore, advocates
these processes as desirable prototypes for our self-similar point processes. However, as will
become apparent in our development, no nontrivial self-similar point processes are bona
fide renewal processes.

Fortunately, a weaker but still highly meaningful form of stationarity can be imposed
by generalizing the notion of a renewal process. To develop this notion, we first introduce
the following convenient terminology: we say that a point process with interarrivals Y[i] is
derived from a point process with interarrivals X[i] via conditioning on the event £ if Y[i]
is the subsequence of X [i] formed by discarding those components X [k] such that X[k] & £.

We are now ready to define our self-similar processes of interest.

Definition 1 A self-similar point process with interarrivals X[i] is said to be conditionally-
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renewing if it satisfies the following conditions:

1. When conditioned on the event

for some 0 < z < T < 00, the resulting point process is a renewal process; and

2. When conditioned on each of any number of arbitrary, mutually ezclusive events

Fr,Fay... ,FL such that
F={z<X<m}, 0<g<T<oo,

the resulting point processes are mutually independent.

For the remainder of the thesis we shall focus on self-similar point processes which are
conditionally-renewing and shall refer to them as simply fractal renewal processes. As
an immediate consequence of Definition 1, we have the following theorem, whose proof is

contained in Appendix A.l.

Theorem 1 A fractal renewal process, when conditioned on any event £ of the form
5={$L<XS.’Bu},

where z1, and zy are arbitrary real numbers satisfying 0 < z, < zy < 00, yields a renewal
process. Furthermore, the probability density function for the interarrival times Y[i] of the
resuliing process is given by

o} [y zL<y<ay

fr(y) = (2.7)

0 otherwise,

where v is real and o} is a normalization factor. The power-law density of (2.7) is some-

times also referred to as the Pareto density.

Several remarks regarding Theorem 1 are appropriate. First, we note that while Con-
dition 1 in Definition 1 only requires one specific conditioning event £ to yield a renewal

process, Theorem 1 establishes that a renewal process is obtained when a fractal renewal
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process is conditioned on any suitable event. As is apparent in the proof provided, this
result is, in fact, a direct consequence of the statistical scale invariance of the process.

It is also important to emphasize that fractal renewal processes are not true renewal
processes. Indeed, if they were renewal processes, then (2.7) implies that the common inter-
arrival probability density for the X[i] would be a power law for all £ > 0. However, such
a density is unnormalizable and, hence, not a valid density. Nevertheless, our terminology
is convenient.

While power law probability densities on £ > 0 are not valid densities, such behavior
is, in fact, frequently observed 1n an extremely broad range of physical scenarios; see,
e.g., [40). Indeed, interarrival histograms generated from physical point processes often
suggest power law behavior over many decades. Typically, however, finite resolution effects
preclude measurement of very short interarrivals, while finite data length effects preclude
measurement of very long interarrivals. Thus, Theorem 1 and the associated notion of event-
conditioning provide a very natural means for interpreting these densities, and effectively
captures what an observer can actually measure in practice.

The exponent < in the density is a shape parameter that determines the skewness of
the distribution and, hence, the relative frequencies of long versus short interarrivals. Not
surprisingly, this parameter is directly related to the fractal dimension D of the point
process, a useful measure of the extent to which arrivals cover the ambient space. In

particular, we have [33]
D=v-1 (2.8)

Note that as v — 2, D — 1, in agreement with the predominance of very short interarrivals
in this case. Meanwhile, as v — 1, we have D — 0, consistent with the fact that longer
interarrivals are favored. .

In Fig. 2-5, we illustrate a typical sample function of a fractal renewal process with
shape parameter v = 1.5, viewed under successive magnification. For viewing convenience,
the associated counting process is shown. In this example, interarrivals shorter than 1
time unit are discarded and the resulted first 50000 points are shown. Note the hallmark
scale-independent clustering behavior.

Although in practice we often observe values of y in the range 1 < v < 2, it is important
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Figure 2-5: Successive magnification of the counting process associated with a fractal re-
newal process; (a) the original process; (b) zoomed version of (a); (c) zoomed version of (b).
Interarrivals were synthesize according to the power-law density function (2.7), with shape
parameter v = 1.5

34



to note that values of v outside this range are not uncommon. In this case, the correspond-
ing processes are generalized point processes, and the fractal dimension (2.8) loses its direct
physical interpretation. As an example, we note that the case v = 0 corresponds to notion
of uniformly distributed unbounded random variable, a form of observation dependent un-
certainty that arises, for example, as a prior distribution in relating nonrandom and random
parameter estimation.

Finally, we note that for 1 < v < 2, there is no preponderance of long interarrivals,
and we may thus let zy — oo in Theorem 1 without introducing any technical difficul-
ties. In particular, the interarrival density of the conditioned process is well-defined and
normalizable—a characteristic we will sometimes exploit. Note also that this results in an

interarrival density with unbounded support, as in Mandelbrot’s model (see (2.3)).

2.4 Further Properties of the Fractal Renewal Process

As mentioned in Section 2.2, previous studies of fractal point processes have been largely
phenomenological, driven primarily by empirical findings in various fields. In contrast, our
fractal renewal process model has been axiomatically defined, rather than being motivated
by any specific modeling application. We close this chapter with further analysis of the frac-
tal renewal process, bridging our definition to the empirical results described in Section 2.2.
In Section 2.3, we have already derived the signature power-law interarrival distribution
of the fractal renewal process, which is well-matched with the transmission error statistics
presented in [32] [42]. In this section, we address Fano factor and spectral properties of the
fractal renewal process, and show that our model fulfils the criteria in [43] and [29].

Other than relating our model to previous work, we also review some existing results
involving the fractal renewal process, as a preview for the work to come in this thesis.
In particular, we briefly describe the counting process analysis pioneered by Sussman in
[42], mainly for comparison with our work in Chapter 5. Finally, we end the chapter
by highlighting, more broadly, peculiar properties of the power-law distribution, which

motivates its modeling applications even beyond the context of point process theory.
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2.4.1 Fano Factor Behavior

Due to the limited counting process results for the fractal renewal process, computation of
the Fano factor is not straightforward. We proceed to study this statistic via simulations,
using the 50 000-point sample function of Fig. 2-5. Specifically, we study the progression of

the Fano factor over dyadically spaced partitions, with grid sizes
T=T2", m=0,1,...,9

where Ty is the size of the finest partition. Based on each partition, we obtain the sample

mean and sample variance of the corresponding counting histogram:
1 n
ANT) = - ; N[,

and

. R W
6Rrery = — Z;(N[z] — ANy
1=

where n is the number of windows in the partition, and N [¢] is the number of points in the
ith window. The Fano factor is then computed via (2.4). The results are plotted in Fig. 2-
6, alongside the dashed power-law plot included for reference. For comparison, the Fano
factor of a Poisson sample function was obtained with identical methods, and the results
are plotted in Fig. 2-7. From the plots, we see that the power-law growth of the Fano
factor is in stark contrast to the flat graph in the Poisson case. The power-law behavior
precisely matches the empirical results reported in [43), [29], [37], suggesting the viability

of the fractal renewal process for modeling the corresponding phenomena.

2.4.2 Spectral Properties

Lowen, et al., contribute a set of frequency-domain results for renewal processes with trun-
cated power-law interarrival density [30], which corresponds well with our fractal renewal
process model under finite-resolution, finite-duration observations. Following the convention
of (2.7), we use the symbols z; and zy to denote the low- and high-end truncation points,

respectively. The key conclusion of the analysis of Lowen, et al., is the self-similarity of the
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Figure 2-6: Log-log plot of the Fano factor obtained over 10 dyadically-spaced grid sizes,
for the fractal renewal process depicted in Fig. 2.5. The dashed plot represents a pure
power-law function, included for comparison. The power-law behavior of the Fano factor in
coarse-scale regime s in agreement with the empirical results obtained in [43] [29] [37]
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Figure 2-7: Log-log plot of the Fano factor obtained over 10 dyadically-spaced grid sizes,

for a Poisson process. The constant behavior over all grid sizes is in contrast to the fractal
renewal process Fano factor depicted in Fig. 2.6.
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resulting spectrum, which suggests that the fractal renewal process has the periodogram
property required in [29)].

In general, the power spectral density of a stationary point process is defined as [10]
m .
Sn(w) =/ Gn(T)e™ T dt
—00

where G (1) is the coincidence rate of a stationary point process

Pr{ at least 1 arrival in (t,£ + A) & at least 1 arrival in (t + 7,t + 7+ A)}
A? '

Gn(T) = Aiglo

For a renewal process, it has been shown that [30]

=) o245

where ¢(w) is the characteristic function of the interarrival density. For the case of a
truncated power-law interarrival density, ¢(w) is of the form of a power-law function [30].
Moreover, for frequencies in the range :z:,'}l Kw <K zzl, 1 — ¢(w) also approximates a power
law, Thus, overall, the power spectral density assumes the form of a power-law function.
Finally, as another key observation, Lowen, et al., point out that this frequency-domain
property is largely invariant under superposition of independent fractal renewal processes.

As will be apparent, this has interesting connections with our results of Section 5.3.

2.4.3 Asymptotic Counting Process Analysis

In [42], Sussman presents an asymptotic characterization of the counting process associated
with the Mandelbrot’s fractal point process model of [32]. His approach mainly involves
direct manipulation of the unbounded interarrival density given in (2.3). Convolving fx(z)
with itself, the author first obtains a closed-form expression for the second-order interarrival

density fs, (2] (z). More importantly, the author characterizes its tail behavior as

fsxg)(z) = 2ax™", for large z.
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Iterating the same computations, asymptotic behavior of higher-order interarrival densities

is shown to be of the form
fsxik)(z) = kaz™7, for large z.

Using this set of results, the author also studies asymptotic behavior of the counting
process distribution associated with the fractal renewal process. The first few terms are
computed, for both the random incidence case, whereby the time origin ¢t = 0 is selected
randomly, independent of the point process, and the arrival-observed case, where the time
t =0 is an arrival. Moreover, it is demonstrated that evolution of these terms over time are
asymptotically power-law functions. Specificaily, for the arrival-observed case, the zeroth-

order term in the distribution approaches
Pr{Nx(t) =0} ~ ¢t 7! for large ¢,
while the first-order term approaches
Pr{Nx(t) =1} ~ Pr{Nx(t) =0}, for large t.

It is speculated that all higher-order terms have the same progression in the long run.

On the other hand, for the random incidence case, high-end truncation is first applied
to the interarrival density, for otherwise, 0 arrivals will be encountered over any finite time
interval with probability 1. While the computations are cumbersome, the author shows that

the decay rate of zeroth-order term is much slower than higher-order terms. Specifically,
Pr{Nx(t) =0} =277, for large ¢,

while
Pr{Nx(t) =1} ~t'"?", for large t,

and
Pr{Nx(t) =2} ~t'"?", for large t.
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This suggests the dominance of the Oth-order term.

While Sussman’s direct approach yields mainly asymptotic results, it is only applicable
in computation of lower-order interarrival densities, as well as lower-order terms in the
counting process distribution. As we shall see in Chapter 5, the multiscale framework we
develop in this thesis gives a systematic approach that allows derivation of results stronger

than the asymptotics obtained in [42].

2.4.4 Peculiarities of the Power Law Distribution

As a heavy-tailed function, the power-law density exhibits a number of peculiar properties
that are particularly useful for modeling certain human endeavors. As an example, this
density elegantly captures a growing wait phenomenon: the longer one has waited for an
event, the longer is the additional wait. This is not at all unfamiliar in many human
activities, such as the completion of certain tasks: jobs either get done right away, or they
will take forever.

To make this notion precise, let us consider the power-law random variable X, with

complementary distribution
Pr{X >z} =277, >1,

for modeling interevent intervals. Given that no arrival has occurred for a duration of x,
since the last arrival, the distribution of the total waiting time will be of the form
Pr{X > ,,X > zo}
> > = —
Pr{X 2 z;|X > zo} Pr{X > 0]

_Pr{X >z}
- Pr{X Z :‘L‘o}

_xl—'y+1 _(n —7+1
— o

To

for T) 2 Xg. Thus,

PI‘{X Z .'L'1|X Z 1:0} = Pl’{X 2 k:cl|X 2 kxo}
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for every k > 0. In particular, for k > 1,

Pr{ Remaining waiting time > k(z, — zo)| Having waited z,}
< Pr{ Remaining waiting time > z; — x| Having waited Zo}

= Pr{ Remaining waiting time > x(z; — z)| Having waited kzo}.

Hence the remaining waiting time grows as one waits.

Finally, we remark that the heavy-tailed distribution has been desirable for modeling
human usage of many resources, such as the telephone channel. Indeed, while there is a
preponderence of telephone calls with very short duration, occasional extremely long phone
calls are not unfamiliar. Thus, outside the context of point processes, the power-law function
has long been argued as natural for server modeling in a number of queueing problems. We
shall address such server behavior in our study of fractal queueing problems in Chapters 5
and 6.

To sum up, we have introduced and formally defined a class of fractal point processes
in this chapter. In the next chapter, we will see that a natural multiscale representation
exists for this class of fractal point processes, and will constitute as a powerful framework

for the analysis and processing algorithms to come later in this thesis.
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Chapter 3

Multiscale Representation and
Synthesis of the Fractal Renewal

Process

Given the ubiquity of self-similar point phenomena, there is a natural demand for efficient
analysis and processing of fractal point processes. While practical problems involving these
point processes are broad, from general signal processing such as synthesis and estimation,
to specialized studies of fractal traffic over communications networks, much of the previous
endeavor in these areas has been problem-specific, and the proposed techniques have often
been difficult to generalize. Even in the case of the fractal renewal process, for which
an explicit interarrival characterization is available, limited insight has been generated.
In particular, direct manipulation of the power-law function has not appeared fruitful.
The computations in [42], for example, only apply to lower-order terms in the counting
process distribution, and lower-order interarrival densities. Even in these restrictive cases,
the results are generally asymptotics with limited applicability. Likewise, the cumbersome
spectral analysis of [30] appears unlikely to extend to other problems.

The core of this chapter is a novel framework for general studies of the fractal renewal
process, which forms the basis for analysis and processing problems explored in subsequent
chapters. The central idea of this framework is depicted in Fig. 3-1, and involves mainly
a decomposition of the power-law function into a multiscale family of simple constituents.

In this sense, our approach is reminiscent to the discrete wavelet transform analysis of 1/ f
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Figure 3-1: Multiscale representation of the fractal renewal process: The power-law inter-
arrival density is modeled as a weighted sum of a discrete family of exponential interarrival
densities.

waveforms treated in, for example, [47], as well as the infinite state space decomposition of
fractal gyroscopic noise discussed in [17). The constituents in our point process scenario are
exponential density functions, which lead to a useful interpretation of the resulting process
as a mixture of Poisson processes.

There are two aspects of this multiscale framework: multiscale synthesis and the com-
plementary multiscale analysis. We begin with synthesis in this chapter, and defer the
analysis to Chapter 4. A central component of our synthesis algorithms will be a Poisson
process generator, for which efficient realizations are well known. Among various methods,
one approach exploits the conditional independence and homogeneity of arrival times given
the number of arrivals in an interval. Mathematically, for a Poisson process with arbitrary
arrival rate A, the unordered arrival times in an interval with prescribed number of arrivals

are uniformly distributed

. 1
Ssxigxtel, SxlnlNe)=n(31:82 -2 8n) = 7 n=0,1,...,

where Sx[i] is the ith unordered arrival [15). Refined techniques for generating the Poisson
random variable, such as those described in (2][3], make this an extremely efficient way to
synthesize Poisson processes.

In the sequel, we present both an exact multiscale synthesis based on a continuum
of constituent Poisson processes, and an approximate synthesis based on a discretization

approach. Depending on applications, each may be more attractive.
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3.1 Multiscale Synthesis of the Fractal Renewal Process

3.1.1 Approximate Synthesis: the Discrete Mixture

Using a Poisson process generator, we first construct a discrete collection of independent
homogeneous Poisson processes via dilation and compression. Specifically, denoting the
collection of counting processes by Nw,,(t), where M is an indexing parameter, we require

that

Nwy (t) 2 Nwo (07 M1), (3.1)

where N, (t) is a prototype Poisson process with mean arrival rate A, and, without loss of
generality, the scale increment p is assumed greater than 1. It follows from (3.1) that the

mean arrival rate of Ny, (t) is

and that the associated interarrivals are statistically similar up to a scaling, i.e.,
P
WM = pMWo.

To synthesize a fractal renewal process Nx(t), our algorithm involves a random mix-
ture of these constituent Poisson processes. This is achieved via a sequence of indepen-
dent, identically-distributed random variables M[n] which are independent of the processes

Nw,,(t), and are distributed according to the generalized-geometric distribution

o2 p~ UM o =mm+1,...,m
pm(m) Spr M =m]= MP T (3.2)
0 otherwise,

where m and 7 denote the finest and coarsest scale indices, respectively, and

1- p"(""”

2
oM = p~(r-)m (1 - p-('r—l)(ﬁ-mﬂ))

for normalization. More specifically, the random variable M{n] identifies the Poisson process

from which the nth arrival will be taken. Thus, the first arrival of Ny (t) is chosen to be
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the first arrival of the Poisson process corresponding to M (1], i.e.,
Sx(1] = SWM[!][]']'

Next, the second arrival of Ny (t) is chosen to be the first arrival occurring after ¢t = Sx/[1]

in the corresponding Poisson process Nlezl(t), ie.,

Sx[2] = SWM[!][k]?

where k is the smallest index such that
SWM[?][k] > Sx[1).

Subsequent arrivals are selected in a similar manner. An example of this synthesis is depicted
in Fig. 3-2, where four constituents, Ny, (t) through Ny, (t), are used, and the sample

sequence for M[n] is:
2,1,1,1,2,3,4,2,1,1,3,1,1,2, 1,3, ... .

Consequently, M[n] can be interpreted as a sequence of scale indices which determine
how the constituent at each scale contributes in the synthesis. A simple architecture imple-
menting this mixing procedure is shown in Fig. 3-3 for the case where the scale index M
ranges from 0 to L — 1. Note that the choice process is synchronized with the arrivals, and
renews at every arrival.

This discrete synthesis is justified by the following theorem, a proof of which is contained

in Appendix B.1.

Theorem 2 Let us sequentially construct Nx(t) from the M [n] and Nw,,(t) defined above

as follows. Let the arrival times be generated iteratively as

Sx[n] = k=SwM(n]flxc]]f>Sx["—|] SWM[..][k]»

where

Sx[0] = 0.
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2,1,1,1,2,3,4,2,1,1,3,1,1,2,1,3

Figure 3-2: Example of the discrete multiscale synthesis algorithm involving four con-
stituents. Ny, (t) through Ny, (t) are independent dilations of Poisson process, while N x(t)
denotes the output of the synthesis. The sample sequence of choice random variable M[n]
is2,1,1,1,2,3 4,2,1,1,3,1,1,2,1,3...

. -—a—-eae— —a—-00—
Poisson |
Generator €«>
) —--—o-0—o B ——
Poisson P
Generator <> N
Ve >
[ J [ ]
[ ] [ ]
[ ] [ ]
\ so—o-0—o ————
Poisson pb 1
Generator <>

Figure 3-3: Architecture implementing the discrete multiscale synthesis. The scale incre-
ment is p. The output of the Poisson generators, which are of the same rate, is dilated by the
amount p%,p!,...,p""! by the modules in the second stage. The resulting point processes
are combined by a random choice operation synchronized with the arrivals.
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Then Nx(t) is a renewal process with interarrival density

fx(@) =al Y Ap™™™ exp (-Ap~ ™) (3.3)

for £ > 0. Furthermore, this density has the property that, as m — —oco and 7 — oo, for
v > 0, and for each = > 0,

fx(z) o

<
2 =
oM

% s
Y lqw

< , (3.4)

where o} and o}, are constants such that 0 < o2 < o2 < oo.

A consequence of the proof of Theorem 2 is the following corollary, which gives a useful

closed-form characterization of the bounding factors o and o3.

Corollary 1 Let a point process be synthesized as described in Theorem 2. Then, the

interarrival density satisfies (3.4) with

2

% _ 3y
P < p. (3.5)

In particular,

asp—1+.

Several remarks regarding Theorem 2 are appropriate. First, while this theorem provides
an asymptotic result involving a countably infinite collection of constituent scales, it is
important to realize that in many practical cases we consider, a finite collection generally
suffices to approximate any finite interarrival range of interest.

Second, we note that the selection of the scale increment p involves a tradeoff. On one
hand, smaller values of p give rise to finer approximations, as suggested by Corollary 1. On
the other hand, smaller values of p also mean that more constituent scales are required to
approximate any given interarrival range of interest. Fig. 3-4 shows the interarrival density
corresponding to the case p = 10 and v = 1.5. As p — 1+, ripple size—and, hence,

approximation error—in fact decreases much more rapidly than suggested by (3.5). When
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Figure 3-4: Interarrival density of a point process constructed with the discrete multiscale
synthesis algorithm. In this case, the shape parameter is v = 1.5, and the scale increment
is p = 10. On the log scale, the peak-to-peak ripple size is estimated to be log1.55, while
the period of the ripple is log p = log 10.
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Figure 3-5:  An alternative implementation of the discrete-scale synthesis algorithm which
employs a single Poisson generator. Each interarrival is independently dilated by the corre-
sponding dilation factor pMI"l, where M([n] is a collection of generalized-geometric random
variables.

p = 2, for example, the approximation is already exceptionally good; numerical calculations
yield log(c? /o2) = 3.2e-5 for the case y = 1.5!

It is also insightful to note from the proof in Appendix B.1 that, when plotted on a
logarithmic scale, the approximation ripple has periodicity log p, i.e., as m — —oo and

m — 00,

27 fx(z) _ (pz)"fx(px)
o 12\4 Thy

This result is, of course, equivalent to observing that the limiting process is, in fact, self-
similar, but not with respect to all dilations. In particular, as m = —oo0 and 7@ — oo, the
limiting process satisfies (2.6) for all a of the form a = p™ where m is an integer.

Finally, we note that the result (3.4) has other interpretations. For example, exploiting
the memoryless property of the Poisson process, we have that two alternative but statisti-

cally equivalent constructions for Nx(t) in Theorem 2 are
X[n] = Watn)[n]
and
X[n) = oM Wo[n). (3.6)

The algorithm based on (3.6) is depicted in Fig. 3-5, where independent random scaling is
applied to each interarrival of a single Poisson process. As another interesting observation,
this construction can be interpreted as a Poisson process in which the rate is selected
randomly and independently after each arrival (and held constant between consecutive
arrivals). As such, there are potentially useful connections between this model and the

doubly stochastic process model of Johnson, et al. [22], discussed in Section 2.2.
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3.1.2 Exact Synthesis: the Continuous Mixture

As we have seen in the previous section, the base of the discrete mixture is arbitrary.
Moreover, we observe that as the scale increment p is varied, the approximation error can
be made arbitrarily small. In this section, we show that formulation of an exact synthesis
is in fact possible, and is achieved with a continuum collection of constituents.

We denote our continuum collection of constituent Poisson processes by Ny, (t) where
A is an real-valued scale index. Again, we choose these processes to be independent and

statistically similar; specifically we let
N, (t) Z Ny, (e 21).
Hence, the corresponding mean arrival rates are related according to
A=e 1),

where A can be chosen freely.

Based on these constituents, the synthesis is carried out in essentially the same manner
as the discrete mixture of Section 3.1.1, except that the sequence of scale indices A[n]
are now independent, identically-distributed random variables with a common generalized-

exponential density

oke s g<a<a
fala) = o (3.7)

otherwise,
where a and @ denote the finest and coarsest scale indices, respectively, and

v-1
e—(r-1a _ o—(7-1)a

o =

for normalization.
The following theorem, a proof of which is provided in Appendix B.2, describes the key

statistical properties of this construction.

Theorem 3 Let us sequentially construct a point process Nx(t) from the A[n] and the
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Nw,(t) defined above as follows. Let the arrival times be generated iteratively as

Sx [n] = SWA[,,] [k]’

inf
k:SwA["] [k]>Sx[n-1]
where

Sx[0] =o0.

Then Nx(t) is a renewal process whose interarrival density has the property that, as a —

—o00 and @ — oo and for each = > 0,

fx(z) o}
——0‘24 — ;1-’ (38)
where
I(y-1)

Several remarks are appropriate. First, we observe that the limit (3.8) is independent
of A, the rate of the prototype process. However, not surprisingly, the convergence is not
uniform,; specifically, (3.8) with (3.9) is a good approximation to the interarrival density for

values of z satisfying

el

X (3.10)

ea_
7<<:B<<

as is apparent from the derivation in Appendix B.2. Fig. 3-6 illustrates the interarrival
density arising from a continuous multiscale synthesis for the case v = 1.5. The scales
employed range from a = 0.1 to @ = 10, while the rate of the prototype process is A = 1.
As suggested by the figure, exact power-law behavior can be achieved over a finite range of
length scales for finite a and a.

Finally, we again note that a statistically equivalent but more computationally efficient
synthesis results by exploiting the memoryless property of Poisson processes. In particular,

it suffices to randomly stretch each interarrival of a prototype Poisson process; i.e., analogous
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Figure 3-6: Interarrival density of a point process constructed with the continuous-scale
synthesis algorithm. In this case, the shape parameter is v = 1.5, and the scales employed
range from a = 0.1 to @ = 10. Exact power-law behavior is observed over a range of near 3
decades, from le-1 to le—4.
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to (3.6), interarrivals of the form
X[n] = eAlrlwy ) (3.11)

are generated, where the A[n] are the random Sequence of scale indices and the Wo[n] are
the interarrivals of the prototype process. Note that while the characteristic feature of
fractal renewal processes is their power law interarrival densities, (3.6) suggests a synthesis
requiring only exponentia] random variables which, in Practice, can be derived from a single

Poisson process.
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Chapter 4

Multiscale Analysis and Estimation

In this chapter, we investigate the multiscale analysis relation complementary to the synthe-
sis of Chapter 3. While the proposed synthesis is clearly not reversible, as will be apparent,
meaningful analysis relations exist, particularly in the form of recovery of key aspects of
the synthesis. In fact, we show in this chapter that this is often tractable even under ad-
verse conditions. Of particular importance are the mixing probabilities, which essentially
govern the synthesis process. Naturally, knowledge of these probabilities is equivalent to
knowing the shape parameter of the interarrival density 7, and the fractal dimension of the
point process D. In fact, we shall formulate this problem in terms of an estimation of 7.
Contrary to existing methods for this purpose, our multiscale parameter estimator is robust
under certain noise distortion. Our multiscale framework also leads to natural algorithms
for interarrival estimation, which have importance in signal reconstruction and robust data
acquisition in general. While the parameter and interarrival estimation will be dealt with

separately, we shall see that these problems are actually closely coupled.

4.1 Robust Parameter Estimation for the Fractal Renewal

Process

The need for robust methods for estimating the fractal dimension of fractal point processes

arises in a host of applications. As discussed in Chapter 2, this parameter provides an

55

of the Fractal Renewal Process



intrinsic measure of key properties of a self-similar point process, such as the space-filling
efficiency. In many contexts, additional information can also be drawn from this parameter.
For example, the fractal dimension of an auditory neural pulse train is useful for charac-
terizing external stimuli [43]. Furthermore, knowledge of the fractal dimension facilitates
many other detection and estimation problems involving self-similar point processes; one
such problem will be the theme of Section 4.2.

In Chapter 2, we saw how the fractal dimension is manifested in key statistics of a self-
similar point process, such as the Fano factor and periodogram. Various fractal dimension
estimators have been developed based on these statistics and applied to network traffic
data, variable-bit-rate video codec outputs, and neural activities [43] [29] [37] [5]. As these
techniques are all formulated in terms of the intensity A(t), they are particularly well-suited
to the doubly stochastic process framework of, say, [22].

For our fractal renewal process model, however, it is most natural to address this pa-
rameter estimation in terms of interarrival observations. More formally, we represent our
data as a collection of N interarrival measurements {R[n];n = 1,2,..., N} taken from a

fractal point process,

R[n) = X[n]+ W[n], n=12,...,N, (4.1)

where {X[n];n = 1,2,..., N} are the interarrival times and {W[n;n=1,2,..., N} repre-
sent some form of additive distortion explicitly included for robustness of the estimation.
In Chapter 2, we showed that the interarrival density fx(z) assumes the form of a
power-law function, with shape parameter « directly related to the fractal dimension of the
point process (see (2.8)). Thus, the fractal dimension estimation problem can be recast into
a parameter estimation problem involving a power-law probability law. This is a familiar
problem that has seen some prior attention in statistics, largely due to the prominence
of the power-law distribution in engineering, the natural and social sciences. In general,
this estimation problem is rather challenging due to the pathological nature of the power-
law distribution, and many well-known, conventional estimation techniques have appeared
inadequate for its solution. For example, while the method-of-moments and probability-
weighted-moments estimators described by Hosking, et al., in [18] are useful in situations

where v > 2, they are valueless for our purposes since they require bounded moments,
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unavailable in our case. To worsen the problem, substantial likelihood of outliers can be
expected to decelerate convergence of the resulting estimators.

While a number of algorithms have been proposed for this problem, existing methods
invariably assume noise-free data. One of these is the straightforward maximum-likelihood
(ML) estimator due to Malik [31]. A two-parameter truncated power-law distribution is

assumed, which is of the form

. ) L
fx(x)={ o DareTr sz : (4.2)
0 otherwise

where a is the low-end cutoff, and v is as usual the shape parameter. Malik models the
two parameters as unknown, and develops estimation techniques for both. We denote the
resulting estimators as dpanik and Ypmalik, respectively.

Using (4.2), the independence of interarrivals, and the absence of distortion, the likeli-

hood function based on the observations R[n] is

N N
L(a,y) = [] fr(rlnlia,7) = [[ (v = Da™ " (rln)) ™, (4.3)
n=1 n=1

which is defined for every v > 1 and a < r[1],7[2],...,7[N]. A powerful result of [31] is the
decoupled computation of @paiik and Ymalik- First, regardless of the true value of v, the ML

estimate of a is simply
dmaiik = min{r[1],7[2],...,r[N]}. (4.4)

This follows from the fact that the a»"D¥ term in (4.3) is monotonically increasing in a.
Next, the ML estimate for v can be obtained via differentiation of (4.3). It is straight-

forward to check that the resulting estimate is

L 277!
'?Malik=[ﬁgln#] + 1. (4.5)

Malik’s procedure for estimating -y therefore consists of the recovery of a using (4.4), followed
by the estimation of v based on (4.5).

In fact, as shown by Kern (23], a unique minimum variance unbiased (MVU) estimator
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exists for this problem, and is closely related to Malik’s maximume-likelihood estimator. The
same truncated power-law distribution (4.2) is assumed for the random variables X [n], and
the data is again assumed noise-free. In this case, however, the parameter a is assumed
known. In principle, this can be estimated according to (4.4). Although Kern'’s derivation of

the MVU estimator is fundamentally different, distinction between the estimates is minimal:
N-1[1 & ]
- (i
y =——]=)» In— 1
YKern N [ N ; n a } +

1 1

'S’Malik + . (4-6)

_N_
- N N

Thus, the MVU technique also yields a convenient closed-form parameter estimate. Note
also that Eq. (4.6), together with the fact that the MVU estimator is unbiased, implies
that Ymaiix is asymptotically unbiased.

Hosking, et al., describe a maximum-likelihood estimation algorithm for the shape pa-

rameter based on the alternative generalized Pareto probability density function [18]

fX(.’L‘)=l(1+#))_7, T > 0. (47)

o -1

The shape parameter v is assumed greater than 1. In contrast to the probability law (4.2),
the generalized Pareto distribution does not suffer from an abrupt low-end cutoff, although

it still adequately captures the persistent power-law decay. In particular,
1
f/\'(m)_)al asm—)0+,
while

—1)7
[x(z) = (701_{’) 77, forz > a(y-1).

However, the likelihood function in this case cannot be maximized in closed form, Indeed,
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the log-likelihood function assumes the form [18]
N
€(a,v) = In L(a,7) = In [] fa(rin}; 0, )
n=1

N
=—Nlna—'yzln (1+$71]1))- (4.8)

n=1

Hosking, et al., propose a Newton-Raphson iteration technique for the numerical maximiza-
tion of (4.8).

In contrast to the aforementioned approaches, we address the more general problem
in which the observations are noise-corrupted. Thus, we adhere to the model (4.1) with
the W[n] nontrivial. We restrict our attention to the case where the Wn| are both mutu-
ally independent and independent of the interarrivals X [n], and are identically distributed

according to an expcnential probability density function

ae™ " w>0
fw(w) = (4.9)

0 otherwise
with a > 0. It is well known that such a random variable has second moment 2/a?, which
can be interpreted as a measure of noise strength. This noise component can be used
for modeling a variety of natural effects which arise in applications, such as a random
processing delay in an interarrival measurement transducer, as well as physical width of
non-ideal spikes.

We remark that the maximum-likelihood estimators of Malik [31] and Hosking [18] can-
not be usefully extended for our scenario of noisy observations. Essentially the convolution
of a power law density and an exponential density, the likelihood function in these cases
would be hard to manipulate. While our approach to this problem is also based on the
method of maximum-likelihood, we exploit the result of Section 3.1.1 and model the X[n]
with a finite-scale representation. For consistency, we shall follow the notational convention
of Section 3.1.1 throughout the development of our estimator. In addition, we introduce,

for convenience, a new parameter q defined as

g=p'"",

59



keeping in mind that the ML estimates of the shape parameter 7 and the fractal dimension

D can, in turn, be obtained from the resulting ML estimate of ¢ via

™ML = 1- lnﬁML/lnp

Dyvr = —IngmL/Inp.

In addition to v, the parameters A and « are generally unknown a priori, and need to be
estimated as well. Consequently, we represent the collection of parameters to be jointly
estimated with the vector ® = (), a, q)T.

Based on the multiscale model, the log-likelihood function of the data can be computed

in a straightforward manner, yielding

N
&(©) = > _ In fa(r[n]; ©), (4.10)
n=1
where using (3.3) and (4.9) we have, for r > 0,

fr(r;®) = / " fx(7) fw(r — 1) dr

m
=}y Z / fxim(r|m) fw(r — 7)dr
m=m
m
=ay D " fru(r | m;@), (4.11)
m=m
with
Ama
/\mm_ ~ [e—ar _ e—Amr] )\m # a
fRm(r | m;©) = (4.12)
a’re—or otherwise,

where, as before, A, = p™™\. Without loss of generality we may set m = 0, since A
may be scaled accordingly. The total number of scales required, which we denote by L, is
typically determined from the spread of the data. As will become apparent, overestimating
L generally does not affect the estimation performance, though the corresponding algorithm

is less efficient in terms of both computation and storage.
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Calculation of the ML parameter estimates by directly maximizing (4.10) with (4.11) and
(4.12) is difficult. However, these estimates can be efficiently computed using an iterative
Estimate-Maximize (EM) algorithm [27]. As the parameter estimates are updated every
iteration, we shall use the notation

Oy = (Apps &prgy dpr) ™
to denote the estimates obtained at iteration k. Also, for convenience, we shall use the
shorthand notation :\m[k] for p‘"‘;\[k].
Each iteration of the resulting estimation algorithm, a detailed derivation of which is

presented in Appendix C.1.1, consists of two steps.

E-Step Using the current set of parameter estimates, estimate for every valid pair of m
and n, the probability that interarrival z[n] was derived from scale m given the observation

r[n), i.e.,

pmir(m | 7[n]; Oy) =

%,[ R.Ma[k_] [e—ﬁ[k]flﬂ] _ e_j‘m[k]r["]] 1- q[k] am—1

¢

4 " —7 4 Amik] 7 Gk
Amlk] = k] 1- q[[ic] (k] ik (k]
< (4.13)
. 1-4g
5%4]}:&[2;@]7‘[71]6"“"‘"["] i—_—;{:,;::-é['f]-l otherwise,

2 ) P
where o MIR and & M|R are normalization terms.
Also, for every valid pair of m and n, compute the conditional expected interarrival size

X|[n), given the observation r[n] and the scale of the interarrival m, i.e.,

>

1 1

7[n] |t(:\"' — &)r[n] - e(Am—d)rin] _ 1
E [X[n] Ir[n],m; (:3] = ¢ (4.14)

| 7[n]/2 otherwise.

M-Step Using the preceding tables of probability and interarrival estimates as weights,
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compute new estimates of the parameters via

1 1 N L
Ser] = N;E pmir(m | 7[n]; ) p™ E [X[n] lr[n] m; G[k]] (4.15a)
1 1 &
e = NﬂZ::l (r[n] ZPMIR(mI’I‘['n] Ow)E [X [n] I r[n], m; G[k]])(4.15b)
1 LA .
TGy N >_ ) pun(m | rln); &) m. (4.15c¢)

S
I
-
3
il
-

It can be readily verified that straightforward variants of this algorithm apply when some
of the parameters are known a priori. In particular, estimates of any known parameters
in the algorithm are replaced with their true values in both the E- and M-steps, and the
corresponding parameter update in the M-step is omitted. As would be expected, the
convergence rate of the algorithm generally improves when some of the parameter values
are known. The important special case of noise-free estimation will be the subject of
Section 4.1.1.

It is useful to note that interarrival time estimation is an integral part of the parameter
estimation process. For example, minimum mean-square error estimates of X [n] based on
the current parameter estimates and r[n] are, in fact, constructed in updating & in (4.15b).
This becomes more apparent when we explore the interarrival time estimation problem in

Section 4.2,

4.1.1 Noise-Free case: W[n|=0

In the case where the distortion terms W [n] are a priori known to be zero, our EM estimation
algorithm simplifies substantially. In particular, as we have one fewer parameter to estimate,
the M-steps will only consist of update equations for A and q. In addition, since we are now
observing X|[n] directly, a number of terms, such as E [X [n] l r[n], m; é)] simplify, or even
become trivial. While the formal derivation of the simplified algorithm is developed in

Appendix C.1.2, the key steps in the algorithm are

E-Step Using the current set of parameter estimates, estimate for every valid pair of

m and n, the probability that interarrival z[n] was derived from scale m given the clean
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observation of z[n], i.e.,

= 4K .
[]qm 1

pmir(m | r[n); @) = o3 pAmie” "'""r[nll [k}
e

where 012WI g i a normalization term. Note that the terms E [X [n] | r[n],m; é] now become
trivial.

M-Step Using the preceding table of probability estimates as weights, compute new esti-

mates of the parameters via

N L
1
A = _ZZPMIR(ml"["],@[k]) ™ r(n] (4.16a)
Alk+1] N&=—
N L
1 ~
T—Gery Ngmz_: par(m | r[n); Opg) m. (4.16b)

Properties of the Estimator

Like all EM algorithms, our estimator leads to a sequence of parameter estimates that,
from an arbitrary set of initial estimates, ascend the likelihood function (4.10) in a nonde-
creasing manner [27). In this particular application, empirical evidence suggests that over a
non-pathological portion of parameter space the likelihood function is unimodal—i.e., there
is a unique local maximum that is the global maximum. Thus, the algorithm is certain
to converge to the ML estimates, although the rate of convergence is affected in part by
the initial estimates. As with most EM algorithms, the convergence can often be accel-
erated by judiciously replacing EM iterations with Newton-Raphson iterations when in a
neighborhood of the ML estimates.

Analytic performance bounds for our multiscale parameter estimator are in general
difficult to obtain. Related to this problem is the computation of performance bounds for
multiscale estimators for 1/ f processes, based on the wavelet transform [46]. The techniques
developed by Ninness in [36] can likely be adapted for our interarrival estimator. This
remains an open problem for future investigation. On the other hand, in the special case

of noise-free observations the Cramér-Rao bounds can be readily deduced using the exact
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power-law density (2.7). In this case, we have, in particular,
vary > (v —1)%/N. (4.17)

Although this bound is somewhat loose, empirical studies have shown that in accordance
with (4.17), variance in our estimate of y generally decays for increasing sample size N.

To further investigate the performance of our parameter estimator, we have conducted
a series of Monte Carlo tests on simulated data. To model interarrivals invariant under
all dilations, we adhere to the interarrival distribution of the form (2.7), with zy = oo.
This coincides exactly with the probability law assumed in Malik’s and Kern’s problems.
Thus, we expect the corresponding estimators to be optimal, at least in the noise-free case.
However, as will be apparent, our multiscale EM estimator exhibits the most robustness
under noise.,

To ensure that modeling error effects were included in the simulations, both data and
noise terms were synthesized via transformation of uniform random variables. Specifically,

the power-law random variable X with probability law (2.7) was synthesized according to
X =z, U0,

where U is a uniform random variable distributed between 0 and 1, and z, is a low-end
cutoff. Using similar techniques, the exponential noise term W with probability law (4.9)

was synthesized according to the prescription

W=—lan.
a

Fig. 41 summarizes the performance of the noise-free ~ estimator of Section 4.1.1 for
various sample size NV and true shape parameter v. Specifically, the plots show the bias in
the dyadic (p = 2) multiscale estimator for the cases v = 1.8,1.5,1.2, computed over 512
Monte Carlo trials. The errorbars denote the 1-standard-deviation confidence level in the
simulation results. In general, the number of scales L can be set according to the spread in
the data, and for our experiment,

max{r(1],7[2],...,7[N]}
win{r(1), r(2), ey} L

L= lOg2
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Figure 4-1: Performance of the multiscale EM parameter estimator for noise-free fractal
renewal process based on various numbers of interarrival measurements N. Each data point
was computed from 512 Monte Carlo trials on simulated data. The plots correspond to
the bias in the estimator for the cases y = 1.8,1.5,1.2, with errorbars denoting 1-standard-
deviation spread in the estimation results.
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Table 4.1: Limiting bias in the noise-free EM estimator and Hosking’s estimator for 07

Limiting Bias
True Value EM estimator | Hosking’s estimator
1.8 +0.1790 +0.6018
1.5 +0.0612 +0.1878
1.2 +0.0074 +0.0244

To explore robustness and generality, the implementation is initialized with the estimates

Ay = 10/ min{r[1),7[2],...,r[N]}

throughout. The termination condition for the iteration is given in terms of the change in

the v estimate:
l".y[kl _'?[k-lll <e=1x10"4,

From Fig. 4-1, it is apparent that there exists bias in the estimates. This comes as
a manifestation of the discrepancy between the exact power-law data and discrete-scale
algorithm. The limiting bias of 4y, computed from the estimate corresponding to N =
2'2, are tabulated in Table 4.1, alongside the true parameter values. It is seen from the
table that the estimate bias increases with +. This is in agreement with degradation of our
multiscale model in the high « regime, as suggested by (B.8). We note also that the decay
in the errorbars suggests promising convergence properties of the estimator, as the standard
deviation is reduced monotonically with increasing sample size. Thus, for large sample size,
estimation error will be primarily due to bias.

For comparison, Monte Carlo studies of the estimators of Malik [31], Kern [23], and
Hosking (18] have also been performed, and the results are plotted in Figs. 4-2, 4-3, and 4-4
respectively. As the first two estimators are formulated based on the exact model, it is not
surprising that little bias is observed in these cases. At the same time, the estimator perfor-
mance improves as more data is used, as suggested by the standard deviation progression
in both cases.

Our implementation of the estimator described by Hosking, et al., uses a simplex search
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Figure 4-2:  Performance of Malik’s parameter estimator for noise-free fractal renewal
process based on various numbers of interarrival measurements N. Each data point was
computed from 512 Monte Carlo trials on simulated data. The plots correspond to the bias
in the estimator for the cases v = 1.8,1.5,1.2, with errorbars denoting 1-standard-deviation
spread in the estimation results.
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Figure 4-3: Performance of Kern’s parameter estimator for noise-free fractal renewal pro-
cess based on various numbers of interarrival measurements N. Each data point was com-
puted from 512 Monte Carlo trials on simulated data. The plots correspond to the bias in
the estimator for the cases v = 1.8,1.5,1.2, with errorbars denoting 1-standard-deviation
spread in the estimation results.
