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Multiscale Representation and
Estimation of Fractal Point Processes

Warren M. Lam and Gregory W. Wornell, Member, IEEE

Abstract—Fractal point processes have a potentially important
role to play in the modeling of a wide range of natural and man-
made phenomena. However, the lack of a suitable framework
for their representation has frequently made their application
in many problems difficult. We introduce natural multiscale
representations for an important class of these processes based on
mixtures of Poisson processes. In turn, this framework leads to
efficient new algorithms for both the synthesis and the analysis
of such processes. These include algorithms for optimal fractal
dimension and interarrival time estimation that are of interest
in a range of applications. Several aspects of the performance of
these algorithms are also addressed.

1. INTRODUCTION

N extraordinary range of natural and man-made phe-

nomena lack any characteristic temporal or spatial scale.
Such phenomena and their inherent statistical scale invariance
are naturally modeled using the mathematics of self-similar
and fractal geometry. One set of fractal random processes
that are useful in signal modeling applications are those
for which the associated waveforms are continuous-valued.
Important classes of these processes are 1/f processes and
fractional Brownian motions, and multiscale representations
for these processes have proven to be extremely useful both
conceptually and practically; see, e.g., [1].

Another set of fractal random processes that are useful
in modeling applications are discrete-valued. Of particular
interest are fractal point processes—collections of points or
“events” randomly distributed temporally and/or spatially
without a characteristic scale. Examples of phenomena well-
modeled in this way are abundant, including the distributions
of stars and planets in the universe, transmission errors on
communications channels, and impulsive spikes in auditory
neural signals [2], [3], [4], [5]. As we will develop in this
paper, multiscale representations turn out to be an equally
useful and efficient tool in the synthesis, analysis, and
processing of these fractal random processes.

While no universal framework for modeling fractal point
processes exists, a variety of approaches for such modeling
have been pursued and developed in the literature. For ex-
ample, Johnson er al. generate a point process with fractal
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characteristics from a doubly stochastic process—specifically,
a nonhomogeneous Poisson process whose arrival rate function
is a suitably chosen random process with scale-invariant char-
acteristics [6]. This framework has proven useful in modeling
several aspects of the spike trains observed in auditory neural
signals [7]. However, the development of efficient signal
processing algorithms using this framework has traditionally
proved difficult.

In a somewhat different approach, Mandelbrot constructs a
fractal point process from a renewal process with interarrival
times governed by a Pareto (i.e., power law) distribution
[4]. To accommodate the fact that Pareto random variables
are not asymptotically integrable, the concept of conditional
stationarity is introduced. This model, whose second-order
statistics were subsequently explored in [8], has been used to
model error clustering in the telephone network [9] among
other applications. However, this model is generally more .
useful as a conceptual characterization for some fractal point
processes than as a framework for the development of signal
processing algorithms. As a consequence, the fractal point
process definition we develop at the outset of this paper is
closely related in spirit to this model.

As the main contribution of this work, we introduce and
develop a multiscale framework for modeling fractal point pro-
cesses. In particular, we consider the decomposition of a fractal
point process into a mixture of constituent homogeneous
Poisson processes, each of which contributes the features
associated with a specific scale. As we shall see, because of the
inherent scale invariance of the process, there is an impbrtant
statistical scaling relationship among the constituents. As we
will demonstrate, this framework is especially well-suited to
the development of a variety of signal processing algorithms
for such fractal processes.

The outline of this paper is as follows. In Section II, we
define the particular class of fractal point processes of interest
in this work, and develop some of their key characteris-
tics. In Section III, we develop multiscale constructions for
these processes and some of their important features in the
context of signal synthesis. In Section IV, we demonstrate
how these multiscale representations are useful in addressing
some fundamental signal analysis and estimation problems
involving fractal point processes. Finally, Section V contains
some concluding remarks.

II. CONDITIONALLY-RENEWING FRACTAL POINT PROCESSES

We begin by developing a useful and sufficiently formal
definition of the class of fractal point processes of interest
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in this paper. For simplicity, we restrict our attention to the
1-D case, viewing the independent variable as time. Note,
however, that multidimensional analogs can be constructed
using straightforward extensions of the theory. For example,
constructions similar to the Levy flight discussed in [2] and [3]
can yield multidimensional point processes useful in a number
of applications.

"In general, a point process consists of a random collection
of points distributed over the time axis, each of which we
shall refer to as an “event,” or “arrival.” Furthermore, we shall
choose our time origin to coincide with an arrival, and consider
only ¢ > 0. This choice of origin represents only a mild
restriction that is for convenience of exposition here. While
there are a variety of ways to characterize a point process, a
particularly useful one is in terms of the interarrival intervals.
In particular, we let X [n] denote the time interval between the
(n — 1)st arrival and the nth arrival, with the zeroth arrival
corresponding to the time origin. A related characterization of
a point process is in terms of its event times; or arrival epochs,
i.e., the time Sx[n] at which the nth arrival occurs. Hence,
we have

Sx[n] = X[k].
k=1

An alternative and often useful characterization of a point
process is in terms of the associated counting process Nx (t),
whose value at any time instant ¢ is the total number of arrivals
up to and including time ¢. Frequently, one is also interested in
the generalized time-derivative of this process, which, when
the arrivals are isolated, consists of a train of unit impulses
located at the arrival epochs. Among the various relationships
between these characterizations, we have, e.g.

Nx(t) = sup{n : Sx[n] < t}.

A point process is said to be self-similar when the associated
counting process Nx(¢) is characterized by the following scale
invariance relation:

Nx(t) £ Nx(at) | (1)

for all @ > 0, where the notation L denotes statistical equality,
in particular in the sense of all finite-dimensional distributions.
* In essence, (1) is a statement that Nx(¢) is statistically
indistinguishable from any temporally dilated or compressed
" version of the process—i.e., the process has no characteristic
scale.

Many physical phenomena of interest exhibit no pref-
erence for a space or time origin. It is therefore natural
to seek point process models possessing some stationary
quality—processes whose behavior is, in some sense, in-
dependent of the time intervals in which they are viewed.
Since renewal processes—i.e., processes with independent,
identically-distributed interarrivals—are widely used to gen-
erate stationary point process models [10], it is tempting
to restrict our attention to those self-similar point processes
that are simultaneously renewal processes. However, as will
become apparent in our development, no nontrivial self-similar
point processes are bona fide renewal processes.
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Fortunately, a weaker but still highly meaningful form of
stationarity can be imposed by generalizing the notion of a
renewal process. To develop this notion, we first introduce the
following convenient terminology: we say that a point process
with interarrivals Y'[n] is derived from a point process with
interarrivals X [n] via conditioning on the event £ if Y [n] is the
subsequence of X[n] formed by discarding those components
X[k] such that X[k] € £. We are now ready to define our
self-similar processes of interest.

Definition 1: A self-similar point process with interarrivals
X|[n] is said to be conditionally-renewing if it satisfies the
following conditions:

1) When conditioned on the event

€1={1{<X5f}

for some 0 < £ < T < oo, the resulting point process
is a renewal process; and

2) When conditioned on each of any number of arbitrary,
mutually exclusive events Fi, Fy,- -+, F, such that

Fir=A{z; < X <7}, 0<z <Ty <00

the resulting point processes are mutually independent.
For the remainder of the paper we shall focus on self-similar
point processes that are conditionally-renewing and shall refer
to them as simply fractal renewal processes. As an immediate
consequence of Definition 1, we have the following theorem,
whose proof is contained in Appendix A.
Theorem 1: A fractal renewal process, when conditioned
on any event £ of the form

€={$L<X_<_.’I}U}

where x; and xy are arbitrary real numbers satisfying 0 <
zy, < xy < 00, yields a renewal process. Furthermore, the
probability density function for the interarrival times Y'[n] of
the resulting process is given by

2
_Joy )y zL<y<ay
Fr(y) = {0 otherwise 2

where 7 is real and 0% is a normalization factor.

Several remarks regarding Theorem 1 are appropriate. First,
we note that while Condition 1 in Definition 1 only requires
one specific conditioning event £; to yield a renewal process,
Theorem 1 establishes that a renewal process is obtained when
a fractal renewal process is conditioned on any suitable event.
As is apparent in the proof provided, this result is, in fact,
a direct consequence of the statistical scale invariance of the
process.

It is also important to emphasize that fractal renewal pro-
cesses are not true renewal processes. Indeed, if they were
renewal processes, then (2) implies that the common interar-
rival probability density for the X [n] would be a power law
for all x > 0. However, such a density is unnormalizable and,
hence, not a valid density. Nevertheless, our terminology is
convenient.

While power law probability densities on z > 0 are not
valid densities, such behavior is, in fact, frequently observed
in an extremely broad range of physical scenarios; see, €.g.,
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Fig. 1. Sample function showing the first 1000 arrivals of a fractal renewal
process with shape parameter v = 1.2.Note that the low fractal dimension

(D = 0.2) is manifested in the strong conglomeration of arrivals into sparsely
distributed clusters.

[3]. Indeed, interarrival histograms generated from physical
point processes often suggest power law behavior over many
decades. Typically, however, finite resolution effects preclude
measurement of very short interarrivals, while finite data
length effects preclude measurement of very long interar-
rivals. Thus, Theorem 1 and the associated notion of event-
conditioning provide a very natural means for interpreting
these densities,-and effectively capture what an observer can
actually measure in practice.

The exponent v in the density is a shape parameter that
determines the skewness of the distribution and, hence, the
relative frequencies of long versus short interarrivals. Not
surprisingly, this parameter is directly related to the fractal
dimension D of the point process, a useful measure of the
extent to which arrivals cover the ambient space. In particular,
we have [2]

D=n~—1. ©)

Note that as v — 2, D — 1, in agreement with the predom-
inance of very short interarrivals in this case. Meanwhile, as
v — 1, we have D — 0, consistent with the fact that longer
interarrivals are favored.

In Fig. 1, we illustrate a typical sample function of a fractal
renewal process with shape parameter v = 1.2. For viewing
convenience, we have plotted the associated counting process.
In this example, interarrivals shorter than one time unit are
discarded and the resulted first-1000 points are shown. The
strong clustering observed is typical of point processes having
fractal dimension near 0. In such cases, arrivals are packed
into sparsely located clusters and hence occupy little space.
From the perspective of interarrival distributions, the strong
clustering reflects an interarrival density that gives rise to an
abundance of very short interarrivals separated by occasional
very long interarrivals.

Although in practice we often observe values of + in the
range 1 < vy < 2, it is important to note that values of
v outside this range are not uncommon. In this case, the
corresponding processes are generalized point processes, and
the fractal dimension (3) loses its direct physical interpretation.
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As an example, we note that the case v = 0 corresponds  to
notion of uniformly distributed unbounded random variable,
a form of observation-dependent uncertainty that arises, for
example, as a prior distribution in relating nonrandom and
random parameter estimation.

Finally, we note that for 1 < v < 2, there is no ‘prepon-
derance of long interarrivals, and we may thus let z; — oo
in Theorem 1 without introducing any technical difficulties. In
particular, the interarrival density of the conditioned process
is well-defined and normalizable—a characteristic we will
sometimes exploit.

TII. MULTISCALE SYNTHESIS OF
FRACTAL RENEWAL PROCESSES

In this section, we develop efficient algorithms for syn-
thesizing fractal renewal processes from a multiscale family
of Poisson processes. The use of Poisson processes as con-
stituents is both natural and convenient—these memoryless
point processes are highly tractable analytically and a wide
range of algorithms exist for their processing. In particular,
Poisson processes can be synthesized extremely efficiently;
see, e.g., [11] and [12]. In the sequel, we present both an exact
multiscale synthesis based on a continuum of constituent pro-
cesses, and an approximate synthesis based on a discretization
approach. ‘

A. Exact Synthesis: The Continuous Mixture

We begin with a continuum collection of independent ho-
mogeneous Poisson processes that are statistically similar up
to a dilation or compression. More specifically, denoting the
collection of counting processes as Ny, (¢), where A4 is an
indexing parameter, we require that

Ny, () & Ny, (e 44)

where Ny, (t) is a prototype Poisson process whose mean
arrival rate we denote by A. Hence, it immediately follows
that the mean arrival rate of Ny, (t) is

Ag=e 4N

and that the associated interarrivals are statistically similar up
to a scaling, i.e.

Wa Z AW,

To synthesize a fractal renewal process Nx(t), our algo-
rithm mainly involves a random mixture of these constituent
Poisson processes. This is achieved with a sequence of in-
dependent, identically distributed random variables A[n] that
are independent of the processes Ny, (t), and are distributed
according to the generalized-exponential density

o2 e~ (v—1)a

fala) = {OA
o

where 0% is a normalization constant. More specifically, the -
random variable A[n| identifies the Poisson process from
which the nth arrival will be taken. Thus, the first arrival of

a<a<a
otherwise

“)
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Nx(t) is chosen to be the first arrival of the Poisson process
corresponding to A[1], ie.

Sx [1] = SWA[I} [1] .

Next, the second arrival of Nx () is chosen to be the first
arrival occurring after t = Sx[1] in the corresponding Poisson
process Ny, (1), ie.

Sx[2] = SWA[z] %]
where k is the smallest index such that
Sw e lk] > Sx[1].

Subsequent arrivals are selected in a similar manner. Conse-
quently, the sequence A[n] can be interpreted as a sequence of
scale indices that determine how the constituent at each scale
contributes in the synthesis.

The following theorem, a proof of which is provided in
Appendix B, describes the key statistical properties of this
construction.

Theorem 2: Let us sequentially construct a point process
Nx(t) from the A[n] and the Nw,(t) defined above as
follows. Let the arrival times be

Sx[n]—

= inf P .
k:Sw 1) [1’3>Sx[n._1] WA[n]»[ ]

where

Sx[0] =o.

Then, Nx(t) is a renewal process whose interarrival density
has the property that, as ¢ — —oo and @ — oo and for each
z >0

fx(z) ab
oz T ®)
where
'iy-1
og = ()\7—_1) ©

Several remarks are appropriate. First, we observe that
the limit (5) is independent of A, the rate of the prototype
process. However, not surprisingly, the convergence is not
uniform; specifically, (5) with (6) is a good approximation
to the interarrival density for values of z satisfying

/N Kz L e/ @)

as is apparent from the derivation in Appendix B.

Finally, we note that the result (5) can also be obtained from
two variations of this multiscale construction. In particular,
exploiting the memoryless property of the Poisson process,
we have that two alternative but statistically equivalent con-
structions for Nx (¢) in Theorem 2 are

X[n] = Wapn[n] ®)
and

X[n] = AWy n). )

Note that while the characteristic feature of fractal renewal
processes is their power law interarrival densities, (9) suggests
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a synthesis requiring only exponential random variables that,
in practice, can be derived from a single Poisson process.
As another interesting observation, the construction (9) can
be interpreted as a Poisson process in which the rate is
selected randomly and independently after each arrival (and
held constant between consecutive arrivals). As such, there
are potentially useful connections between this model and the
doubly stochastic process model of Johnson et al. [6].

B. Approximate Synthesis: The Discrete Mixture

While in Section III-A we constructed true fractal renewal
processes by mixing Poisson processes on a continuum of
scales, we now demonstrate that arbitrarily good approxima-
tions can, in fact, be realized using only a discrete set of
constituents. As we will see, this discrete mixture is often
very convenient in practice.

We denote our discrete collection of constituent Poisson
processes by Ny, (f), where M is an integer-valued scale
index. Again, we choose these processes to be statistically
similar; specifically we let

Nw,, (8) £ Nyw, (p~M1)

where without loss of generality, the scale increment p will
be assumed greater than one. Hence, the corresponding mean
arrival rates are related according to

AM = p_M)\

where A can be chosen freely.

Based on these constituents, the synthesis is carried out
in essentially the same manner as the continuous mixture of
Section III-A, except that the sequence of scale indexes M [n]
are now independent identically-distributed random variables
with a common generalized-geometric distribution of the form

A
par(m) = Pr[M = m]
2 —(y=1)m _ .
_ JOmP m=m,m+1,---,m
- {0 otherwise (10)
where 012\4 is a normalizing constant. This discrete synthesis -
is justified by the following theorem, a proof of which is
contained in Appendix C.

Theorem 3: Let us sequentially construct Nx(¢) from the
M][n] and Ny, (t) defined above as follows. Let the arrival
times be
inf k]

S = S
X‘[n] k:SWM[n] [k]>Sx [n-1]

Watln) {

where
Sx[0] =0.

Then, Nx(t) is a renewal process with interarrival density

fx(z) = 0% Z Ap™ "™ exp (—Ap~"x) (11)
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Fig. 2. Log-log plot of the interarrival density of a point process constructed
with the discrete multiscale synthesis algorithm. In this case, the shape
parameter is y = 1.2 and the scale increment is p = 10. On the log scale,
the peak-to-peak ripple size is estimated to be log 1.26, while the period of
the ripple is log p = log 10.

for z > 0. Furthermore, this density has the property that, as
m — —oo and M — oo, for v > 0, and for each z > 0
2 2
o Ix@) oy

12
xY oy oz a2

where o7 and o7, are constants such that 0 < 02 < o7 < oo.

Several remarks regarding Theorem 3 are appropriate. First,
while this theorem provides an asymptotic result involving
a countably infinite collection of constituent scales, it is
important to realize that in practice a finite collection suffices
to approximate any finite interarrival range of interest.

Second, we note that the selection of the scale incre-
ment p involves a tradeoff. Smaller values of p give rise to
finer approximations, i.e., empirical evaluation of the tightest
bounding constants o7 and oF suggests that

ook —1 as p— 1+ .

However, smaller values of p also mean that more constituent
scales are required to approximate any given interarrival range
of interest. Fig. 2 shows the interarrival density corresponding
to the case p = 10 and v = 1.2. Ripple size—and, hence, ap-
proximation error—in fact decreases rapidly as p — 1+. When
p = 2, for example, the approximation is already exceptionally
good; numerical calculations yield log(of; /0% ) = 3.2e — 5 for
the case v = 1.2!

It is also insightful to note from the proof in Appendix C
that, when plotted on a logarithmic scale, the approximation
ripple has periodicity log p, i.e., as m — —oco0 and ™ — o0

o7 fx (x)/oky = (p2)" fx(pz) /o3y

This result is, of course, equivalent to observing that the
limiting process is, in fact, self-similar, but not with respect
- to all dilations. In particular, as m — —co and M — oo, the

limiting process satisfies (1) for all @ of the form a = p™.

where m is an integer.
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Finally, we again note that a statistically equivalent but
more computationally efficient synthesis results by exploiting
the memoryless property of Poisson processes. In particular,
it suffices to randomly stretch each interarrival of a prototype
Poisson process; i.e., analogous to (9), interarrivals of the form

X[n] = M Wo[n]

are generated, where the M|n] are the random sequence
of scale indexes and the Wy[n] are the interarrivals of the
prototype process.

IV. MULTISCALE ANALYSIS OF
FRACTAL RENEWAL PROCESSES

In this section, we demonstrate some of the ways in which
the discrete multiscale framework of Section III-B is an
equally important -tool in the analysis of fractal renewal
processes. In particular, we focus on the application of the
framework to two practical estimation problems. First, estima-
tion of the shape parameter is considered in Section IV-A, and
a maximum-likelihood estimator is developed for the purpose.
Next, an algorithm for obtaining minimum mean-square error
interarrival estimates is presented in Section IV-B. While the
estimation problems will be dealt with separately, we shall see
that they are in fact rather intimately related.

A. Parameter Estimation for Fractal Renewal Processes

Estimation of the shape parameter v is well motivated. As
discussed in Section 11, this parameter is directly related to the
fractal dimension and, hence, often carries useful information
about a point process. For example, the shape parameter
associated with an auditory neural pulse train can be used
to infer certain properties of the external stimulus - [5]. In
addition, knowledge of v is required in intermediate stages
of many other detection and estimation problems involving
such processes. While parameter estimation techniques exist
when perfect observations are available (see, e.g., [13]), we
consider the more general case in which the observations are
noise-corrupted. Such distortion is explicitly taken into account
to improve estimator robustness.

The particular estimation problem we consider is as follows.
Given a sequence of N observations R[n] modeled as

Rn] = X[n]+ Wn], n=1,2.- N

where the X[n| are the first-order interarrival times of a
fractal renewal process and the W{n] represent some form
of additive distortion, we seek an estimate of the -shape
parameter associated with the X [n]. We restrict our attention
to the case where the W{n| are both mutually independent
and independent of the interarrivals X[n], and are identically
distributed according to an exponential probability density
function :

—Qw

w >0

otherwise a3)

ae

wt) = {
with o > 0. It is well known that such a random variable has
second moment 2/c?, that can be interpreted as a measure of
noise strength. This noise component can be used for modeling
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a variety of natural effects that arise in applications, such
as a random processing delay in an interarrival measurement
transducer.

We remark that the estimator in [13] cannot be usefully
extended for our scenario of noisy observations. Essentially
the convolution of a power law density and an exponential
density, the likelihood function in this case is difficult to
manipulate. While our approach to this problem is also based
on the method of maximum-likelihood (ML), we exploit the
result of Section III-B and model the X [r] with a finite-scale
representation. For consistency, we shall follow the notational
convention of Section III-B throughout the development of our
estimator. In addition, we introduce, for convenience, a new
parameter 3 defined as

B=p""

keeping in mind that the ML estimates of the shape parameter
~ and the fractal dimension D can, in turn, be obtained from
the resulting ML estimate of 3 via

Amp =1—1InByvr/Inp
IA)ML = —lnﬁML/lnp.

In addition to v, the parameters A and « are generally unknown
a priori, and need to be estimated as well. Consequently, we
represent the collection of parameters to be jointly estimated
with the vector ® = (), a, 3)7.

Based on the multiscale model, the log-likelihood function
of the data can be computed in a straightforward manner,
yielding

¢©) = 3 I falrin; ©)

14
) n=1
where using (11) and (13) we have, for r > 0
2(r:©) = [ fx(r) furlr =) dr
0
=03 Y B frm(r|m;®) (15
with
/\)\ma [e“‘” - e‘AmT] Am # @
frpp(r |m; @) = ¢ Am — &
alre=or otherwise
(16)

where, as before, \,, = p~™A\. Without loss of generality
we may set m = 1, since A\ may be scaled accordingly.
The total number of scales required, which we denote by
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m = L, is typically determined from the spread of the data.
As will become apparent, overestimating L generally does not
affect the estimation performance, although the corresponding
algorithm is less efficient in terms of both computation and
storage.

Calculation of the ML parameter estimates by directly
maximizing (14) with (15) and (16) is difficult. However,
these estimates can be efficiently computed using an iterative
estimate-maximize (EM) algorithm [14]. As the parameter
estimates are updated every iteration, we shall use the notation

O = g, ey Bie) ™

to denote the estimates obtained at iteration k. Also, for
convsnience, we shall use the shorthand notation S\m[k] for
P AR

"Each iteration of the resulting estimation algorithm, a de-
tailed derivation of which is presented in Appendix D, consists
of two steps.

E-step: Using the current set of parameter estimates, es-
timate for every valid pair of m and n, the probability
that interarrival z[n| was derived from scale m given the
observation'r[n], ie., (17) as shown at the bottom of the
page, where o2 MIR and 0M| g are normalization terms.

M-step: Using the preceding table of probability estimates
as weights, compute new estimates of the parameters via (18),
as shown at the bottom of the following page, where

E[a:[n] ‘ rin], m; é)]

1 1 .
TN — _ _ Am 4
= [ ] [(Am - d)’l’[n] e(m—=é)rn] _ 1 #

r[n]/2

otherwise.
(19)

It can be readily verified that straightforward variants of
this algorithm apply when some of the parameters are known
a priori. In particular, estimates of any known parameters in
the algorithm are replaced with their true values in both the
E- and M-steps, and the corresponding parameter update in
the M-step is omitted. As would be expected, the convergence
rate of the algorithm generally improves when some of the
parameter values are known.

It is useful to note that interarrival time estimation is an
integral part of the parameter estimation process. For example,
minimum mean-square error estimates of z[n| based on the
current parameter estimates and r[n] are, in fact, constructed
in updating & in (18b). This becomes more apparent when
we explore the interarrival time estimation problem in Section
IV-B.

P Amf ¥ [emamrte) — g~ Amarte ] — B Bt Sy # g
pata(m | 7ol O0) =4 mik] = Gk) " 1- ﬂ[k] 17)
» 6]2\,” R)\ r[n]e_’\m[kl’"["] [£] ﬂ[k] otherwise

- By
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Properties of the Estimator: Like all EM algorithms, our
estimator leads to a sequence of parameter estimates that,
from an arbitrary set of initial estimates, ascend the likelihood
function in a nondecreasing manner. In this particular applica-
tion, empirical evidence suggests that over a nonpathological
portion of parameter space the likelihood function is uni-
modal-—i.e., there is a unique local maximum that is the global
maximum. Thus, the algorithm is certain to converge to the
ML estimates, although the rate of convergence is affected in
part by the initial estimates. As with most EM algorithms, the
convergence can often be accelerated by judiciously replacing
EM iterations with Newton—Raphson iterations when in a
neighborhood of the ML estimates.

While analytic performance bounds for the estimator are in
general difficult to obtain, in the special case of noise-free
observations the Cramér—Rao bounds can be readily deduced
using the exact power law density (2). In this case, we have,
in particular

vardy > (y — 1)2/N 20)
Although this bound is somewhat loose, empirical studies
have shown that in accordance with (20), variance in our
estimate of + generally decays for increasing sample size
N. Fig. 3 summarizes the results of a set of Monte Carlo
simulations conducted to explore the dependence of estimator
performance on the sample size N, and true shape parameter
7. The experiments basically involved application of the
estimator to simulated noise-corrupted interarrivals. To ensure
that modeling error effects were included in the simulations,
both the power-law random variables and exponential noise
terms in the test data were synthesized via transformation of
uniform random variables. Throughout this set of experiments,
we used a dyadic scale representation for the interarrivals (i.e.,
p = 2), and set the signal and noise parameters A and o
such that «/\ = le — 4. The values plotted in the graph are
the resulting RMS errors in the estimate 4y, as computed
over 32 trials. While the simulation results confirm the decay
of var 4y, for increasing N, they also suggest a bias in the
estimator that arises primarily due to the inherent difference
between the discrete multiscale representation and the exact
power law density. -

The apparent relationship between the estimator perfor-
mance and the true shape parameter v can be understood as
follows. When v ~ 1, extremely long and extremely short
interarrivals occur with comparable frequency. In this case,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 43, NO. 11, NOVEMBER 1995

0.7 ¥ T T T T T

0.6f

o4
»n
T
)

RMS Error in
o
'S
7/
7/
7/

o
w
T
7/
’

L

02t ~ N i

o1t ~. - 1
(SR -

\G~——o——-_g

' L L | 5 L | .
9.5 8 8.5 9 9.5 10 10.5 11 1.5 12
Log (base 2) of N

Fig 3. Performance of the multiscale EM parameter estimator for a
noise-corrupted fractal renewal process based on various numbers of
interarrival measurements /N.Each circle represents the RMS error in -the
shape parameter estimate 4 as computed from 32 Monte Carlo trials on
simulated data. The signal and noise parameters A and o were chosen so
that a/A = le — 4.

very few data points are. sufficient to capture the behavior
of the probability density function over a broad range. For
v = 2, however, short interarrivals predominate over longer
ones. Hence, a narrower range of the distribution is generally
observed, making it difficult to accurately estimate +.

Not surprisingly, the noise level also plays a part in de-
termining the estimator performance. While, as stated earlier,
the power in the exponential noise term Wn] is proportional
to 1/a?, it is easy to show that assuming a finite-scale
representation, the power in the X[n] is proportional to 1/)?
when the true shape parameter v and the lower and upper
scale indices m and 777 are fixed. As such, the quantity o/
provides a measure of the signal-to-noise ratio (SNR) in this
case. We have conducted a set of simulations to explore the
estimator performance under various values of a/X and the
results are summarized in Fig. 4. Throughout the experiments,
N was fixed at 2°, and m and 77 at 1 and 30, respectively. To
allow easy specification of the true value of A, m, and 77, the
synthesis of the power-law random variables X [n] was based
on the discrete multiscale framework. As before, each point in
the graph represents the RMS error computed from 32 Monte
Carlo trials. As expected, the estimator performance i 1mproves
as a/) increases.
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Fig. 4. Performance of the multiscale EM parameter estimator for a
noise-corrupted fractal renewal process under various SNR. In this case,
the ratio between the noise and signal parameters « /A gives a measure of
SNR. Each circle represents the variance in the shape parameter estimate 4
as computed from 32 Monte Carlo trials on sunulated data. The number of
interarrival measurements used per trial was N = 2°

B. Interarrival Time Estimation

Parameter estimation and interarrival time estimation are
closely related problems. In Section IV-A, we saw that interar-
rival time estimation played an important role in the parameter
estimation process. In this section, we explore the problem of
interarrival time estimation in its own right. As will become
apparent, parameter estimation, in turn, plays a key role in
interarrival time estimation.

Our multiscale framework leads to an efficient procedure
for computing the minimum mean-square error estimate of
an interarrival interval given noisy measurements of the type
considered in Section IV-A. In particular, we obtain (21), as
shown at the bottom of the page, where fr(r[n]) is obtained
via (15) with (16), and

@m(’r‘) =
EA—-—%OZ)Q [1 — e‘(Am—Ot)r(l + (/\m _ OZ)T')] /\m 75 o
r’ /2 otherwise.
(22)

It is important to emphasize that the resulting estimator is
a highly nonlinear function of the data. This is, of course,
not surprising given the highly non-Gaussian nature of the
problem. Also, as expected, the interarrival estimator depends
directly on the signal and noise parameters. In general, if their
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actual values are unknown a priori, estimates obtained with
the algorithm in Section IV-A can be used.

As a minimum mean-square error estimator, the algorithm
specified by (21) with (22) is unbiased. Further, the variance
of the estimator error can be computed in a straightforward
manner. In particular, we have

E[(z[n] - £[n])’] = E[=

(23)

()] - Efa[n)]

where

E[(L‘[ — 2U-M Z /Bm 2m

and E [m[n]z] can be computed numerically using (21) with
(22) and (15). By comparing the initial noise variance 1/a?
with the value obtained with (23), we can compute the
theoretical achievable SNR gain, which we have plotted in
Fig. 5. Note that the horizontal axis is normalized with a
constant o chosen such that the initial SNR corresponding
to A = 1 and «« = «p is O dB. In the case considered, v = 1.5,
m = 1, and m = 30. As expected in a typical signal estimation
problem, a lower initial SNR and correspondingly smaller
value of /X generally leads to higher SNR gain. However, it
should be noted that while the performance depends on o and
A, in general this dependence cannot be summarized in terms
of a simple SNR-type quantity such as @/}, as in the case
of the parameter estimation algorithm. Nevertheless, Fig. 5
suggests that in scenarios of low initial SNR, the SNR gain
is, to a good approximation, a function of a/\.

V. CONCLUDING REMARKS

Using the multiscale framework introduced in this paper,
we have developed several efficient new algorithms for the
synthesis and analysis of fractal renewal processes that are
potentially useful in a wide range of signal processing appli-
cations. While the basic viability of this framework and the
associated algorithms was established through a series of pre-
liminary simulations, many additional issues—both theoretical
and practical—remain to be explored. First, while we have
pointed out some potentially interesting connections between
our multiscale representation and the point process models of
Mandelbrot [4] and Johnson ef al. [6], investigation of deeper
and clearer relations with existing fractal point process models
remains an important topic in the future study of our model.
In addition, there are many opportunities where additional
analysis could provide useful insights into the algorithms we
have proposed. For example, in the discrete synthesis theorem,
the derived bounding constants are not particularly tight, and,
in particular, do not establish the property 0% /0% — 1 as

r[n] m
afa] = Blola] [ 7] = [ s

2 ae—ar[n]

= M Fr(rIn])

m=m

Y pa(m)fxiaa(@ | m) frix e (rln] | 2,m)de

m=m

> ™A (rn])

1)



2614

25 T T T — T T T T T

.

20k ~e ]

~o..
b o
~ N
~a _

=15k ~ <
% S o
< T So.
3 ~o. _ el
T o o Te
o 10+ (o} o ~

logy (a/otg)

Fig. 5. Performance of the interarrival time estimator for a noise-corrupted
fractal renewal process under various combinations of signal and noise
parameters A and o Each circle represents the achievable SNR gain computed
by comparing the initial error variance that is 1/ ,and the theoretical error
variance in the estimates, which is determined numerically. In this case, the
shape parameter is v = 1.5 and the normalization constant is ag = 2.1e-7.

p — 14 that is observed in practice. As another example, in
the estimation algorithms, useful analytic performance bounds
would be valuable for predicting the behavior in various
scenarios. In addition, many additional experiments involving
these algorithms with both simulated and real data are needed
to further explore their properties.

Finally, there are many remaining aspects of fractal renewal
processes in general that remain to be explored. Many charac-
teristics of these processes have proven difficult or awkward
to describe from traditional representations. Some examples
are the probability distribution of the counting process and the
statistics of the process under random incidence or with era-
sures. Multiscale representations may well provide important
insights into these issues as well.

APPENDIX A
PROOF OF THEOREM 1

We first establish the following lemma.
Lemma 1: When a fractal renewal process with interarrivals
X|n] is conditioned on the event
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for any a > 0, the resulting process is a renewal process with
interarrivals ¥, [n] distributed according to the density

fr.(y) = (1/a) fr. (y/a).

Proof: First, we note as an immediate consequence of
Definition 1 we have that the interarrivals Yi[n] constitute
a renewal process. Next, for some positive integer K, let
N1, N9, - - -, N denote an arbitrafy collection of interarrival in-
dexes and z1,%9, -+, Zx an arbitrary collection of constants.
Then, (25)«29) as shown at the bottom of the page follow,
where (25) is a consequence of the definition of Y,[n], (26)
is a consequence of (1), and (29) is a consequence of the
fact that the Y7 [n] constitute a renewal process. From (29) we
can immediately conclude that the the Y, [n] are independent
and identically-distributed. Finally, differentiating both sides
of (29) we get (24). : O

We are now ready for the main proof. ‘
Let My and My be integers such that

4)

aMLg <zp<zy <z

where o = 7/z.
Let Y[n] be the interarrivals generated from the X|[n] by
conditioning on the event

£ = {aMrg < X < aMUf}.
Since € can be expressed as
~ My
8 = U 8am
m=ML

and £,~ are mutually exclusive events, we have by Definition
1 and Lemma 1 that the interarrivals ¥ [n] are independent.
Furthermore, we have that the Y'[n] are identically distributed
with density

Fo) =3 frml) Pr[ean [ €] GO)

Finally, since
E=E

we have that the interarrivals Y'[n] are also independent and
identically distributed with density

fr(y) = {f{/(y)/Pr [5 l 5] zp <y <oy

: D
&, = {az < X < aF} 0 otherwise.
) Pr[Ya[nk] < zp, k= 1,2,~“,K]
=Pr[X[ng] < zp,k=1,2,-- -, K | az < X[ng] < aZ, k=1,2,--, K] (25)
=Pr(aX[ng) < 25,k =1,2,---,K | az < aX[ng] € az,k = 1,2,- .-, K] (26)
=Pr[X[ne] < zrfa, k=12, , K|z<X[m] <T,k=1,2,---, K] 27
=PrlYi[ng] < zrfa,k=1,2,-- -, K] (28)
K

= HPr[Y1 < z/al (29)

k=1
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It remains only to derive the density of ¥'[n]. We begin by
defining

& ={az< X <7}
where 1 < a < T/z, and letting Y,[n]| be the interarrivals
resulting from from conditioning the process with interarrivals
X|[n] on &,. Then

E.=>&
and

E=> &,
respectively, imply for az < y < 7
= fri(w)/ Pres | €]

fr.(y) (32)

and

fr.(y)/ Prl€s| & (33)

fr.(y) =

Equating (32) and (33), cross-multiplying, and exploiting (24)
we get, foraz < y < T

) [ fatefa)ds = faw/o) [ o) ds. G4

~ Differentiating (34) with respect to a and letting a — 1+
we get, forz <y <7

) 2 fa@ o=y i) [ @ e 9

Rearranging terms, we get for z < y < 7 such that fy, (y) # 0
v/ ()

L = 36

7 ) 9

where « is the constant obtained by integrating (35) by parts

_o@ -

’ fy, (z) dz

(37

Now, all regular, positive solutions to 36)onz < y < T
can be obtained by separation of variables and are of the form
[15]

fly) =oily” (38)
where or% is a normalization constant. In addition, it can be
readily verified by substitution of (38) into (37) that v is a
free parameter.

Finally, combining (38) with (24), and substituting the result
into (30) and, in turn, into (31), we obtain (2). O
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APPENDIX B
PROOF OF THEOREM 2

First, observe that mutual independence of X[n] follows
as an immediate consequence of the mutual independence of
the constituent processes N, (t), the independent selection
from among these processes, and the independent-increments
property of Poisson processes.

To derive the density of the interarrivals, we begin by noting
that, conditioned on A[n] = a, X[n] is the waiting time until
the next arrival in Ny, () after t = Sx[n — 1]. Because a
Poisson process is memoryless, the density for this waiting
time is
z>0
otherwise

e~ Xexp[—e™%Az]
{0 (39

Ixmyam(z | @) =

which we note is independent of n. Using (4), (39) and a
change of variables we obtain

x () =/ fa(a) fxja(z | a)da

2z
1 o2 ¢ 4
== Wfl W e du
27 X e~z

(40)

from which we see that for each £ > 0, when ¢ — —o0 and
@ — 00, we obtain (5) with (6). Furthermore, note that (40)
also establishes (7).

APPENDIX C
PROOF OF THEOREM 3

Using arguments exactly analogous to those applied in the
continuous case, we obtain that the interarrivals are indepen-
dent and identically-distributed with common density

fx(z) =" pu(m) fxpu(z | m)
MY T f () (41)
where
fw,. () = Ap™ ™" exp(=Ap~"x) 42)

for z > 0. Substituting (42) into (41) immediately yields (11).

Now, every z > 0 can be uniquely expressed in the form
z = p"wg (43)

where myg is an integer, and 1 < zg < p. Using (43) in (42),
it is then straightforward to show that

I (2) = P77 f Wi g (T0)- (44)

Taking limits and substituting (44) into (41) with (42), we get
that

fx@ & tim fx(n)/ok

m—o0

p=I™ fy ()

o

= 2.

m=--00

45)
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(o)

=g S ety ()
m—mg

m=—oo
= p "7 fx (zo).

Multiplying both sides of (46) by =7 and again exploiting
(43), we get

(46)

ﬂfX(@") = fﬁgfx(l"o)
and, in turn
- o T -
pl Lé&ip fx(z )} < fx(@) < - Lzl;gp fX(x)]- 7
Thus, it remains only to bound the two terms in brackets in
' (4%6 begin with the lower bound. Since p(1="™ fi; (x) > 0
for every m, we have from (45) that, for 1 <z < p
Fx (@) > o470 f, ()
> de™PA,
Hence

1mf fX(m) > de™? > 0.
<z<p

To derive the upper bound, we begin by noting that

Fx@)=&+&
where
&= ™ fy () 48)
m=0
= p "y (). 49)
m=1

Thus, to show

sup fX(:c) < 00
1<e<p

it suffices to show that (48) and (49) are convergent for z > 1.
We have immediately that £; < oo since, for z > 0 and
v >0

(&S] o =) . Y
z;op(l ¥) me(l‘)S)\Zpy =

To see that & < co we first note that, for z > 1

= A Z M exp(—Ap™z)
m=1

85

p"™ exp(—Ap™).
=1

< A (50

Finally, applying the ratio test for series [16] to (50), we see
that £&; < oo because
pY (D exp(=Ap™H)
pY™ exp(—Ap™)
= lim pTexp(=A(p—1)p™) =0.

lim
mM—00
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APPENDIX D ‘
DERIVATION OF THE EM PARAMETER ESTIMATION ALGORITHM

Each iteration of the EM algorithm involves the computation
and maximization of the function

©(0,0) 2 B[l fas(r,5;0) ;0] (D

where r denotes the incomplete data, and (r,s) the complete
data. Choosing

r={r[n], n=1,2,---N}

5= {x[n],m[n], n = 1’2’ o N}
leads to
N
In fr g(r,s; ®) = Z{ln(l —B)+(mn]—1)Ing
n=1
+1In ()\p—m[ﬂ exp(——/\p_m[”]z[n]))

+In (o exp(—a(r[n] - 33[“])))}
= N(In(l -p) -

_)\Zp mln]
Nn_
2l

where for convenience, we have made the reasonable assump-
tion that the number of scales L is large so that 1 — gL ~ 1.
Substituting (52) into (51) we obtain, in turn

Inf+InA+lna)

n}+ (Ing —1np)

N

_az

(52)

I’Tl

¥(®,0) = N(In(1 - ) ~Inf+InA+1na)
- /\iE[p_mM [n] ‘ r; @]
+(ng- lnp)ZE[ ‘r@]
—aiE[r[n]— n] ‘ r;@}.

The E-step of iteration & of the EM algorithm, then, simply
involves the computation of this quantity with © set to @)[k]
the current parameter estimates.

In the M-step, we seek the parameter estimates for the next
iteration é[k+1] by solving

é[k+1] = a,rgénax (O, @[k])

To perform this maximization, we set the partial derivatives
OV /oA, Y /Do and 8T /8P to zero. Conveniently, the result-
ing equations may be solved independently (and uniquely) for
the individual parameter estimates, from which we obtain

N

M1y = (53a)
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Gy1) = ol (53b)
> E[rin] - aln] | rinl; O
n=1
XN: (E [m[n] ‘ r[n]; @[k]]) - N

Breryy = =2 . (530)

i:: [m[n ‘r[n};@[k]]

Evaluating the expectations in (53) iteratively by first condi-
tioning on m[n], we then obtain (18).

For the computation of E [x[n] r[n], m; @] , it is straight-
forward to show that this quantity can be expressed in the
form

r[n] A R
/ z frixm(r[n] | ,m; ©) fxjm(z | m; ©) dz
== (54)

rln]

frix,m(r[n] | 2,m; ) fx (e | m; ©) da

r[n], m; @]

where

fw(r—z)
fw.. (%)

Using (54) with (55), we then obtain (19).

Having now obtained )\[k+1], Qfr+1)> and ,B[k+1 in terms of
puir(m | rin]; ®[k ) and previous estimates, it remains only
to determine the update equation for pysr(m | r[n]; O).
This is readily obtained from Bayes Rule, i.e.

(55a)
(55b)

fR|X,M(7’ | z,m) =
Fxim(z | m) =

PM|R(m | 7[n]; @) =

fR|M(7"[n] | m; ©)par(m; ©)
Z Frip(r[n] | m; ©)par(m; ©)
m=1

USing (56) together with

(56)

fape(r | m) = /0 fo () (v — 7) dr
we obtain (17). |
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