STATISTICAL PROPERTIES OF
ONE-DIMENSIONAL CHAOTIC SIGNALS

Steven H. Isabelle and Gregory W. Wornell

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

Signals arising out of nonlinear dynamical systems are com-
pelling models for a wide range of phenomena. We develop
several properties of signals obtained from Markov maps,
an important family of such systems, and present analyti-
cal techniques for computing their statistics. Among other
results, we demonstrate that all Markov maps produce sig-
nals with rational spectra, and can therefore be viewed as
“chaotic ARMA processes.” Finally, we demonstrate how
Markov maps can approximate to arbitrary precision any
of a broad class of chaotic maps and their statistics.

1. INTRODUCTION

Recently, there has been considerable interest in developing
useful classes of signals out of nonlinear dynamics and chaos
theory. In this paper, we consider discrete-time signals z[n]
generated by chaotic systems with a single state variable by
applying the recursion

zln] = f(z[n —1]) (1)

to some initial condition x[0], where the f(-) is a nonlinear
transformation that maps scalars to scalars. We restrict our
attention to the class of such systems governed by piecewise-
smooth dynamics, which have been proposed as models not
only for a variety of physical phenomena but also for en-
gineering systems ranging from nonlinear oscillators {1] to
switching power converters [2].

Many of these applications require knowledge of the
time-average properties—such as power spectra and higher-
order moments—of time-series generated according to (1).
In developing our results, we will exploit powerful results
from ergodic theory that allow us to equate the time-average
properties of such deterministic signals with the ensemble-
average properties of the class of stationary stochastic pro-
cesses generated according to the dynamics (1) with an ini-
tial condition z[0] chosen from an appropriate probability
distribution.

To develop the properties of the corresponding stochas-
tic process, we begin by using po(-) to denote the probabil-
ity density function of the initial condition z[0], and more
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generally p,(-) to denote the corresponding density of z[n].
When we restrict our attention to maps f(-), for example,
that consist of a finite number of piecewise differentiable
segments with no points of zero-slope, a.linear operator
Pj: Ly — L1 may be defined such that

pr() = Pr{pn-1(-)}. (2)

This operator, referred to as the Frobenius—Perron (FP)
operator {3}, thus describes the time-evolution of the density
for the particular map.

Although in general, the densities at distinct times n
will differ, there can exist certain choices of po(-) such that
the pdf of subsequent iterates does not change, i.e.,

= pal() Zp(-). (3)

The density p(-) is therefore referred to as an invariant den-
sity of the map f, and is a fixed point of the FP operator,
ie.,

po(") =p1(-) =

p() = Pe{p(")}. )
When po 1s chosen to be an invariant density, it may
be shown that the resulting stochastic process is stationary
and-—subject to certain constraints on f—ergodic. In this
case, Birkhoff’s ergodic theorem [4] can be used to establish
that time-averages are equivalent. to ensemble-averages for
almost all sample waveforms.
In this paper, we concentrate on correlation statistics of
the form

L—1
Lli_}n;o % Z ho(z[nDhi(z[n+k]) - - he(2[n+k:]),(5)
n=0

where z[n] is a time-series generated by (1), the h(-) are
well-behaved functions and the k; are nonnegative integers.
These statistics are defined generally enough to include,
e.g., the autocorrelation and all higher-order moments of
the time-series that are of interest in a broad range of
chaotic data analysis and synthesis problems.

Using () and P7{-} to denote the respective n-fold
compositions of f(-) and Ps{-} with themselves, and defin-
ing A; = k; — k., with kg = 0, the correlation statistic (5)
can be expressed in the form

L-1 »
b= Jim 7 3 T nt™ el

n=0 i=0

Rfihohy o he K1y
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/ pa) [T ni(F5 () do

= /h,(a:)PfA’{h,»_l(x)~~-
PP{hi(z) Pf {ho(w) p(z)}} -} da,  (6)

where we have used, in turn, (1), Birkhoff’s ergodic theo-
rem, and repecated application of the identity

/hdw)lﬁ{lm(x)}dr:/h](f(x))hg(x)dx

valid for integrable hi(-). The form (6), which makes ex-
plicit the dependency of correlation statistics on both the
['P operator and the associated invariant density, will be
particularly useful in computing these statistics for the class
of so-called Markov maps, as we develop next.

2. PIECEWISE LINEAR MARKOV MAPS

One rich class of one-dimensional chaotic systems are the
eventually-expanding piecewise-linear Markov maps. For
convenience, we restrict our attention to Markov maps of
the unit iqterval, which are defined as follows.

Definition 1 A map f : [0,1] = [0,1] és an eventually-
expanding, piecewise-linear, Markov map when
1. There is a set of partition points 0 =ao < a1 < -+ <
an = 1 such that restricted to each of the intervals
Vi = (ti—1,a:), the map f is affine.

2. For cach 1, f(a;) = a; for some j.

d
3. There is an integerk > 0 such that inf |— f*(z)| >
zefo1] ' dx
1 for all x.

Among other important properties, all Markov maps
have invariant densities and are ergodic under readily ver-
ifiable conditions [5]. Interestingly, and rather remarkably,
suitably quantized outputs of Markov map dynamics are
also Markov chains. However, of particular importance for
our purposes is that Markov maps have statistics that can
be determined in closed form and used to approximate,
to arbitrary accuracy, statistics of a much larger class of
chaotic systems.

From Definition 1, we may express a Markov map in the

form
A’

f(@) =) (i +b)Xi(n), (7)
=1
where |s;| > 0 and where X;(x) is the indicator function
taking the value 1 when z € V; and 0 otherwise.

3. STATISTICS OF MARKOV MAPS

In this section, we develop a compact representation of the
statistics of Markov maps by exploiting a key result: a

Markov map’s FP operator, which can be expressed in the
form (see e.g. [6])

N
Pyih(z)} =y h((z = b)/s0) Xgw )/l (8)

=1

has finite-dimension when restricted to certain subspaces.
Consider, e.g., piecewise polynomial h(-) of the form

N ok N(k+1)
h(x):ZZa,]rJX,(x)é Z hi0:(x), (9)
=1 3=0 =1

where the a;; are arbitrary scalars, and where

{011 ey gN(k-{-l)} é

X0, X, zXa, 2 X L 25X 2 X (10)

We denote by Pi the N(k+1)-dimensional space spanned
by {6:}. Thus, each piecewise polynomial in Py is uniquely
specified by the N (k+1)-tuple h = [h1,. .., hN(,H_l)]T which
we refer to as the coordinate vector of h(z).

For these piecewise polynomial functions, substituting
(9) into (8) and exploiting Definition 1 yields, after some
straightforward manipulation,

Pih(a)} =S (””S;b)J T«}T l; Xi(z).  (11)

i=1 3=0

where Z; denotes the set of indices of partition elements
in the image of Vi, ie., f(Vi) = Ujer;V;. From (11) we
therefore obtain that the image of h(-) is also piecewise-
polynomial of degree k.

Since the operator P¢{-} maps Px to itself, its restric-
tion to Pk can be represented by a square N(k+1) dimen-
sional matrix, which we denote by Pk. In particular, this
matrix describes how the coefficients of expansions in terms
of the basis (10) map under the FP operator.

Using (11) with the binomial theorem, we get that Py
takes the block upper-triangular form

Poo Pox -+ -+ Po
0 Py Py - Pk
Py = . . . . . (12)
0 0 cer oot Pk
where each nonzero N x N block is of the form
Pi; = (J_)POBJ‘—"SJ‘ i (13)
1

The N x N matrices B and S are diagonal with elements
Bi; = —b; and Si; = 1/s;, respectively, while Po = Poo is
the N x N matrix with elements

= { Y e (4)

otherwise.

The invariant densities of a Markov map can be ob-
tained by solving a matrix eigenvalue problem. In partic-
ular, the invariant densities of a Markov map f(-) are ele-
ments of Po, i.e., piecewise-constant, and can therefore be
obtained from the solution to

Pop =p, (15)
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where p = [p1,...,pn~]7T is the coordinate vector of the in-
variant density p(z). From (15) we see that this coordinate
vector 1s the eigenvector of Py corresponding to the eigen-
value 1. That such an eigenvector/eigenvalue pair always
exists has been verified by Friedman and Boyarsky [7].

More generally we now consider the computation of cor-
relation statistics (5) when h;(-) € Px for each . Exploiting
our basis expansions we can rewrite (6) in the form

Rfihohy,y by bty kr] =

[ @ o120 = g M (16)
where
M]i; = /Gg(x)ej(z)dx, 17)
and where g, = h, and’
g: =P (b1 @ ©P*?(h, P (h1 ©p))--)

are the respective coordinate vectors of the functions

gi(z) = hr(z) and

92(z) = Py {hro1(2) -+ PP?{ha(e) P {ho(2) p(2)}} -}

The compact representation (16) can be used, e.g., to
determine the power spectrum associated with a Markov
map. In particular, with hi(z) = = and hz(z) = zp(z) we
obtain the autocorrelation sequence in the form [6]

Ry.u:[k] = /sz(r)p(x) dr = thMPllklhz

which. after taking the Fourier transform, yields

Sex(e™)y=hiM | Y PMe™" |h,.  (18)

n=—0co

Urnit-magnitude eigenvalues of the FP matrix P; lead
to impulses in the Fourier transform (18), and there typi-
cally exists at least one such eigenvalue due to the nonzero
mean of the time-series. To eliminate consideration of such
spectral lines in our analysis, we use a Jordan-form decom-
position to obtain

1|10 O
T'=E [ 0 J :{ BE
where E is the matrix of generalized eigenvectors of P1, and
J is the matrix of associated eigenvalues having magnitude
strictly less than one.
We can rewrite the non-impulsive part of (18) using this
decomposition to obtain

Seele?)y = hI M(I — Te™7) ™41 = T?)(I = Te’*) ' ho.

[t is immediately apparent that S;;(e’®) is a rational func-
rion. Furthermore, its poles correspond to the eigenvalues
of the matrix I', while the zeros depend on the vectors h;
h; and the matrix M.

' is an appropriately dimensioned matrix representation of
the FP operator, and for two coordinate vectors U; and 113, the
notation 11y ~, 1, denotes the coordinate vector for the corre-
sponding product of piecewise polynomials uy () uy(z).

4. MODELING WITH MARKOV MAPS

A much larger class of chaotic signals are obtained from
eventually-ezpanding maps, which are defined as follows.

Definition 2 A4 nonsingular map f : [0,1] — [0,1] ¢s called
eventually-expanding if
1. There is a set of partition points 0 = ap < a; <
---an = 1 such that restricted to each of the intervals
Vi = (ai-1,a;), the map f(-) is monotonic, continu-
ous and differentiable.

2. The function ﬁ has bounded variation.

3. There is a number A > 1 and an integer m such that
| F™(x)| > X wherever the derivative exists.

The class of eventually-expanding maps, includes among
others, non-piecewise-affine maps and maps with unbounded
slope. All eventually-expanding maps have invariant densi-
ties [8] and, more importantly, can be modelled arbitrarily
well by Markov maps. R

To see this, let us consider a sequence f;(-) of Markov
maps and examine conditions under which the statistics of
fi(-) converge to those of a given eventually-expanding map
f(-). This important mode of convergence, which we call
statistical convergence, is defined as follows.

Definition 3 Let f(-) be an eventually-expanding map with
a unique invariant density p(-). A sequence of maps {f,()}
statistically converges to f(-) if each fAz() has a unique in-
variant density pi(-) and

Frhosns h,[kl""vk‘f‘]'—)RI-hn »»»»» ]ll[le"'7kT]
for any continuous hi(-) and all finite k; and finite r.

A sequence of Markov maps that statistically converges
to a given eventually-expanding map f(-) can be constructed
in a computationally straightforward manner. To begin,
we denote by Q the set of partition points of f(-) and
define the sequence of increasingly fine partitions Q; =
Qi1 U f71(Qi=1). Each fi(-) is defined by specifying its
value at the partition points Q;.

1. For each partition point ¢ € Q; such that f(-) is

increasing at qT. define fi(¢") by

filg™) = max{v € Qilv < f(¢")}.

2. For each partition point ¢ € Q; such that f(-) is
decreasing at ¢, define f:(¢*) by

filg") = min{v € Qv > f(¢™)}.

3. For each partition point ¢ € Q; such that f(-) is
increasing at ¢~, define fi(¢”) by

filg™) = min{v € Qilv > f(g7)}.

4. For each partition point q € Q; such that f(-) is
decreasing at ¢~ , define fi(q7) by

f}(q_) =max{v € Qilv < f(¢q7)}.
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The map f,'(~) is defined at all other points by linear inter-
polation. It is straightforward to verify that each fl‘( -)is an
eventually-expanding, piecewise-linear Markov map [9].

It can be shown [6] that the sequence of Markov approx-
imations to f described above statistically converges to f.
Hence, for sufficiently large 1, the statistics of fi(-) are close
o those of f(-). This has the practical consequence that
corrclation statistics of an eventually-expanding map f{-)
can be approximated by first determining a Markov map
f;\-(<) that is a good approximation to f, then finding the
statistics of Markov map using the techniques described in
the previous section.

This approach can be used, in particular, to approx-
imate the power spectrum associated with an eventually-
cxpanding map. Consider, for example, the map shown in
[igure 1 (a). As illustrated in Figure 1 (b), a time-series
generated by this map alternates irregularly between peri-
ods of exponential growth in amplitude and periods of rapid
decay, which results in a pronounced peak in its power spec-
trum. Figure | (c) shows an empirically computed power
spectrum along with two approximate spectra. The dashed
line and solid line correspond to approximate spectra com-
puted analytically using the Markov maps fi(-) and fg(-),
while the dash-dotted line corresponds to an estimate of
the power spectrum associated with f(-) that was deter-
mined by applying periodogram averaging to a time-series
generated by f(-).

A more extensive development of the results of this pa-
per is contained in [6].
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(a) An Example of a Non-Affine
Eventually-Expanding Map
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(b) A Segment of a Typical Time-Series
Generated by f(x)
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(c) Comparison of Approximate and Empiri-
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Figure 1: Example Map



