
Sparse Graph Codes for Compression, Sensing,

and Secrecy

by

Venkat Bala Chandar

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c©2010 Massachusetts Institute of Technology. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by. .
Gregory W. Wornell

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by. .
Devavrat Shah

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

2

Sparse Graph Codes for Compression, Sensing, and Secrecy

by

Venkat Bala Chandar

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Sparse graph codes were first introduced by Gallager over 40 years ago. Over the
last two decades, such codes have been the subject of intense research, and capacity-
approaching sparse graph codes with low complexity encoding and decoding algo-
rithms have been designed for many channels. Motivated by the success of sparse
graph codes for channel coding, we explore the use of sparse graph codes for four
other problems related to compression, sensing, and security.

First, we construct locally encodable and decodable source codes for a simple class
of sources. Local encodability refers to the property that when the original source
data changes slightly, the compression produced by the source code can be updated
easily. Local decodability refers to the property that a single source symbol can be
recovered without having to decode the entire source block.

Second, we analyze a simple message-passing algorithm for compressed sensing
recovery, and show that our algorithm provides a nontrivial ℓ1/ℓ1 guarantee. We also
show that very sparse matrices and matrices whose entries must be either 0 or 1 have
poor performance with respect to the restricted isometry property for the ℓ2 norm.

Third, we analyze the performance of a special class of sparse graph codes, LDPC
codes, for the problem of quantizing a uniformly random bit string under Hamming
distortion. We show that LDPC codes can come arbitrarily close to the rate-distortion
bound using an optimal quantizer. This is a special case of a general result showing a
duality between lossy source coding and channel coding—if we ignore computational
complexity, then good channel codes are automatically good lossy source codes. We
also prove a lower bound on the average degree of vertices in an LDPC code as a
function of the gap to the rate-distortion bound.

Finally, we construct efficient, capacity-achieving codes for the wiretap channel, a
model of communication that allows one to provide information-theoretic, rather than
computational, security guarantees. Our main results include the introduction of a
new security critertion which is an information-theoretic analog of semantic security,

3

the construction of capacity-achieving codes possessing strong security with nearly
linear time encoding and decoding algorithms for any degraded wiretap channel, and
the construction of capacity-achieving codes possessing semantic security with linear
time encoding and decoding algorithms for erasure wiretap channels.

Our analysis relies on a relatively small set of tools. One tool is density evolu-
tion, a powerful method for analyzing the behavior of message-passing algorithms
on long, random sparse graph codes. Another concept we use extensively is the no-
tion of an expander graph. Expander graphs have powerful properties that allow us
to prove adversarial, rather than probabilistic, guarantees for message-passing algo-
rithms. Expander graphs are also useful in the context of the wiretap channel because
they provide a method for constructing randomness extractors. Finally, we use sev-
eral well-known isoperimetric inequalities (Harper’s inequality, Azuma’s inequality,
and the Gaussian Isoperimetric inequality) in our analysis of the duality between
lossy source coding and channel coding.

Thesis Supervisor: Gregory W. Wornell
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Devavrat Shah
Title: Associate Professor of Electrical Engineering and Computer Science

4

Acknowledgments

First, I would like to thank my advisors, Greg and Devavrat. Greg has been a

wonderful mentor since my days as an M. Eng. student, and I have learned so much

from both Greg and Devavrat over the years. It goes without saying that they have

taught me many valuable research skills, but they also taught me that if a conference

deadline is at 7:00, don’t try to upload your paper at 6:59! On a more serious note,

they showed me the importance of taking the time to present the results of my research

clearly. Indeed, this thesis would probably be incomprehensible but for their efforts to

help me improve the clarity of the presentation. As I neared graduation, their career

advice and help with the job search have been very useful, and I am thankful that I

got to work with two advisors who, in addition to being great research mentors, take

so much interest in their students’ professional development.

I would also like to thank Piotr, not only for serving on my thesis committee, but

for teaching me about compressed sensing in his streaming algorithms class. Chapter

4 started out as my class project for his class, and he originally suggested that I

extend my results for binary matrices to general sparse matrices.

Thanks to all of the friends I have made over the last eight years. Since my days

here as an undergrad, I have looked forward to grabbing lunch with Ravi and Ajay,

and later Lohith and Srikanth, too. I will really miss our weekly trips to India Qual-

ity. I would like to thank Da, James, Qing, Yuval, Ying-zong, Maryam, Lane, Vijay,

Anthony, Ashish, Charles, Urs, and Aslan for making the Signals, Information, and

Algorithms lab such a fun and stimulating place to work. I have shared an office with

Charles, Urs, and Da during my time in the lab, and all three were excellent office

mates. I enjoyed all of our conversations, whether research related or not. I miss

the weekly squash games with Anthony and Vijay, and I’m expecting some tougher

competition the next time we play! Even though our work on asynchronous commu-

nication didn’t make it into my thesis, one of my favorite experiences in grad school

was working with Aslan. I would never have guessed that a short conversation one

afternoon would turn into a years-long, and eventually trans-atlantic, collaboration,

5

and I look forward to working with him much more in the future. Also, thanks to

Tricia for all of her help over the years, especially for being able to accomodate all of

my last-minute requests, be it for conference registration or booking a room for my

defense.

Finally, I would like to thank Mom, Dad, and Vijay. I could never have finished

this thesis without all of your love and encouragement.

6

Contents

1 Introduction 13

1.1 Channel Coding Review . 13

1.2 Informal Overview of Sparse Graph Codes 15

1.3 Thesis Outline . 22

2 Preliminaries 29

2.1 Brief Review of Information Theory and Coding Theory 29

2.2 Sparse Graph Codes—Definition and Examples 33

2.2.1 Low Density Generator Matrix (LDGM) Codes 35

2.2.2 Low Density Parity Check (LDPC) Codes 35

2.2.3 Nonsystematic Irregular Repeat-Accumulate (NSIRA) Codes . 37

2.2.4 Repeat-Accumulate-Accumulate (RAA) Codes 39

2.3 Expanders and Extractors . 40

2.3.1 The Lubotzky-Phillips-Sarnak (LPS) Construction 42

2.3.2 The Margulis Construction . 43

2.3.3 The Zigzag Product . 44

2.3.4 The Leftover Hash Lemma . 47

3 Locally Encodable and Decodable Source Codes 51

3.1 Introduction . 51

3.1.1 Prior work . 52

3.2 Problem Formulation . 55

3.3 Construction . 57

7

3.3.1 Overall Structure . 57

3.3.2 Setting Parameters . 58

3.3.3 Preliminary Illustration of Encoding/Decoding Operations . . 61

3.4 WRITE Algorithm . 64

3.5 READ Algorithm . 65

3.5.1 WHP Algorithm . 65

3.5.2 BAILOUT Algorithm . 71

3.6 Space . 74

3.7 Main Result . 75

3.8 Analysis . 76

3.8.1 Basic Properties of our Graphs 77

3.8.2 Analysis of Space Requirements 79

3.8.3 Analysis of WRITE . 81

3.8.4 Analysis of READ . 81

3.9 Conclusion . 87

4 Sparse Graph Codes for Compressed Sensing 91

4.1 Background on Compressed Sensing 92

4.2 Problem Formulation . 94

4.3 An Iterative Recovery Algorithm . 94

4.4 Main Results . 95

4.5 Analysis . 97

4.5.1 Analysis of Sparse Recovery 97

4.5.2 Analysis of ℓ1/ℓ1 Recovery . 98

4.6 Negative Results for Sparse Graph Codes 105

4.6.1 Background on the Restricted Isometry Property (RIP) 105

4.6.2 Binary Matrices are Bad With Respect to the RIP2 106

4.6.3 Very Sparse Matrices are Bad with Respect to the RIP2 . . . 109

4.7 Conclusion . 110

8

5 Lossy Source Coding 113

5.1 Rate-Distortion Problem Formulation 115

5.2 LDPC Codes are Good for BEQ . 117

5.3 LDPC Codes are Good for Hamming Distortion 120

5.4 A Lower Bound on the Degree of LDGM Codes 128

5.5 A Lower Bound on the Degree of LDPC Codes 132

5.6 Conclusion . 138

6 Code Constructions for Wiretap Channels 141

6.1 Summary of Results . 143

6.2 Formal Model and Discussion of Various Notions of Security 145

6.3 General Approach for Strong Security Using “Invertible” Extractors . 154

6.3.1 Precodes Based on the Leftover Hash Lemma 157

6.4 Semantic Security for the Noiseless/BEC case 160

6.4.1 Explicit Constructions . 169

6.5 Semantic Security for the BEC/BEC case 171

6.5.1 Explicit Constructions . 175

6.6 Conclusion . 176

7 Conclusion 179

7.1 Summary of Results . 179

7.2 Future Work . 181

A Additional Proofs for Chapter 3 185

A.1 Analysis of modified BAILOUT algorithm 185

A.2 Completing the Analysis of WHP . 188

A.2.1 Bounds on the Number of Overflowing Counters 188

A.2.2 Failure Probability for a Single Computation Tree, Part 1 . . . 189

A.2.3 Failure Probability for a Single Computation Tree, Part 2 . . . 195

A.2.4 Completing the Proof of Lemma 3.8.2 199

9

10

List of Figures

1-1 Mathematical model for communication. First, a message of k bits

(i.e., a string of k 0’s and 1’s) is encoded into a string of n symbols

from the channel input alphabet X. The resulting codeword is sent

over the channel Q, producing a string of n symbols from the channel

output alphabet Y. The decoder first estimates the codeword, and then

applies the inverse of the encoding map to obtain an estimate of the

original message of k bits. 13

2-1 Normal graph representation of a generator matrix. 33

2-2 Tanner graph representation of a parity check matrix. 34

2-3 Example of a randomly constructed Tanner graph with 6 edges. Each

variable node has degree 2, and each check node has degree 3. 37

2-4 Graphical representation of a nonsystematic irregular repeat-accumulate

code. 38

2-5 Graphical representation of a repeat-accumulate-accumulate code. . . 39

3-1 An example of the data structure. 58

3-2 (a) Add 2 to x3, (b) add 3 to x3, (c) add 12 to x2, and (d) initial config.

for decoding. 62

3-3 (a) Breadth-first search tree of depth 2 rooted at (3, 0), (b) breadth-

first search tree of depth 4 rooted at (3, 0). 63

3-4 Example of forming multiple computation trees. 69

5-1 Raptor code—this code performs well on the BEC. 118

11

5-2 Dual Raptor code—this code performs well for BEQ. 118

6-1 Wiretap channel. Communication is carried over a broadcast channel

composed of a channel Q1 connecting the transmitter to the intended

receiver, and a channel Q2 connecting the transmitter to the eaves-

dropper. 146

6-2 Proposed coding strategy. We split the code construction problem

into the design of a precode with good security properties and a good

channel code for the channel Q1 connecting the transmitter to the

intended receiver. A good precode can provide strong security, and a

(non-constructive) expurgation scheme can provide semantic security. 154

6-3 Dual NSIRA code. 164

6-4 Dual modified NSIRA code. 166

12

Chapter 1

Introduction

This thesis explores the application of sparse graph codes to several problems broadly

related to compression, sensing, and security. In Section 1.1, we briefly review the

basic mathematical model for communication over a noisy channel, as proposed by

Shannon in his classic work [107]. Next, in Section 1.2 we discuss sparse graph

codes informally, postponing a formal description of sparse graph codes to Chapter

2. Finally, in Section 1.3 we give a high-level overview of the problems considered in

this thesis and our main results.

1.1 Channel Coding Review

In [107], Shannon proposed a mathematical model for communication over a noisy

channel. Figure 1-1 shows the basic communication model. The message is a string

Estimate
Message
(k bits)

Encoder Codeword
(n symbols) Noisy Channel Q

Decoder Codeword
Estimate

Inverse Message

Figure 1-1: Mathematical model for communication. First, a message of k bits (i.e.,
a string of k 0’s and 1’s) is encoded into a string of n symbols from the channel input
alphabet X. The resulting codeword is sent over the channel Q, producing a string
of n symbols from the channel output alphabet Y. The decoder first estimates the
codeword, and then applies the inverse of the encoding map to obtain an estimate of
the original message of k bits.

13

of bits, and the first step in communication is to encode the message by mapping it

into a codeword composed of symbols from X, the channel input alphabet. Next, the

codeword is transmitted over the channel, and the receiver receives a noisy version of

the codeword. Formally, the channel is assumed to be a discrete memoryless channel

(DMC). Recall that a memoryless channel can be specified by its input alphabet X,

output alphabet Y, and transition matrix Q(y|x). Specifically, if a string xn is fed into

the channel, then the channel output is a random variable Y n distributed according

to

Q(Y n = yn|xn) =
n
∏

i=1

Q(yi|xi).

One of the basic results of information theory, the Channel Coding Theorem [28,30,

107], shows that each memoryless channel has a capacity, that is, a maximum number

of bits per channel use that can be transmitted reliably in the limit of long channel

inputs.

The receiver must recover the message from Y n. Conceptually, we split this pro-

cedure into two steps. First, the receiver estimates which codeword c ∈ Xn was sent

over the channel. Then, the receiver inverts the encoding mapping to determine the

original message corresponding to codeword c. Most of coding theory focuses on

the design of good codes, i.e., designing large sets of codewords that can be reliably

distinguished when sent over the channel. The encoding mapping and inverting the

encoding mapping are typically an afterthought. One possible justification for this

is that from a theoretical standpoint, most codes proposed to date are linear codes,

and the encoding and inverse maps can be implemented in polynomial (in the code

length) complexity for any code. Designing a code and a decoding algorithm, on the

other hand, is much harder. For example, the maximum likelihood (ML) decoding

problem for linear codes is NP-hard in general [12], so a lot of research has focused on

the design of linear codes possessing additional structure that allows ML or near-ML

decoding in linear time at rates close to capacity. As we will see in Section 1.2, sparse

graph codes have gone a long way towards solving the code design problem. Of course,

if we can construct codes that are decodable in linear time, then the complexity of

14

the encoding and inverse maps, which is always polynomial, can suddenly become

overwhelming compared to the decoding complexity. Fortunately, certain classes of

sparse graph codes support not only linear time decoding, but also possess linear time

encoding and inverse algorithms.

1.2 Informal Overview of Sparse Graph Codes

Sparse graph codes were first proposed in [45], and have emerged as an attractive

solution to the channel coding problem. In this section we informally review some of

the major results in the area. A more formal description of the sparse graph codes

used in this thesis is given in Chapter 2.

As the name implies, sparse graph codes are error-correcting codes defined in terms

of a sparse graph, i.e., a graph with very few edges. Typically, by very few edges we

mean that as the graph size grows, i.e., as the codeword length increases, the number

of edges grows linearly with the number of vertices in the graph. Sparse graph codes

form a subclass of a general class of probabilistic models known as graphical models,

which are often represented by structures known as factor graphs. Graphical models

have found use not just in the design of error-correcting codes, but also in machine

learning, statistical inference, and many other fields. Several good introductions to

factor graphs can be found in the papers [1, 69]. However, since we focus on sparse

graph codes in this thesis, we will not elaborate on the general theory of factor graphs.

Instead, we review results that apply specifically to sparse graph codes in the context

of channel coding.

There are many different types of sparse graph codes, corresponding to different

ways of interpreting a sparse graph as defining a code. For example, low density

generator matrix (LDGM) codes are one class of sparse graph codes. It is well-

known that LDGM codes are terrible channel codes (see, for example, Section 2.2.1

for a simple explanation of this fact) in the sense that the block error rate, i.e., the

probability that an optimal decoder is able to correctly estimate the codeword sent

by the transmitter, does not approach 0 in the limit of long code lengths—in fact,

15

the probability of error approaches 1. Nevertheless, LDGM codes have some nice

properties. For example, the encoding map can be computed in linear time. Also,

although the block error rate, even under optimal decoding, approaches 1, LDGM

codes can be used to reduce the noise level of a channel. For example, instead of

considering decoders that produce an estimate of the transmitted codeword, we can

consider decoders that produce an estimate for each bit sent by the transmitter. The

corresponding notion of error, known as the bit error rate, is the average fraction

of bits that such a decoder estimates incorrectly. It turns out that although LDGM

codes have a high error rate in the sense that most of the time the sent message

cannot be recovered correctly even by an optimal decoder, carefully designed LDGM

codes can achieve low bit error rates. For example, although LDGM codes do not

allow the reliable transmission of long blocks of messages, a good LDGM code might

be designed so that if a message of 1000 bits is encoded by the LDGM code, then

decoded by a practical, but potentially suboptimal, decoder, on average at least 990

of the bits are decoded correctly, i.e., the bit error rate is only .01. Intuitively, it

should come as no surprise that the ability of LDGM codes to achieve low bit error

rates is quite useful, and several papers have used LDGM codes in clever ways to

construct codes for the binary erasure channel (BEC) that can be decoded in linear

or nearly linear time, and achieve not only low bit error rates, but also low block error

rates [75,76,110,113]. 1 Because of the special structure of LDGM codes, these codes

typically allow the encoding and inverse maps to be computed in (nearly) linear time

as well.

Although with some effort LDGM codes can be used to design codes achieving low

block error rates, in practice it is difficult to achieve very low block error rates when

operating near channel capacity by just relying on clever combinations of LDGM

codes. It turns out that another class of codes, low density parity check (LDPC)

codes, can provide much better performance.

LDPC codes were first proposed by Gallager [45]. In [45], Gallager showed that

a special class of LDPC codes called regular LDPC codes can achieve the capacity

1See Section 2.1 for a formal definition of the BEC.

16

of the binary symmetric channel (BSC). 2 Specifically, he showed that if an optimal,

i.e., maximum likelihood (ML) , decoder is used, then the performance of a regular

LDPC code drawn from a suitable random ensemble is likely to be quite good. In

fact, [45] provides a detailed analysis computing the rate at which the block error rate

decays as a function of the code length n. In contrast to LDGM codes, the block error

rate for LDPC codes under ML decoding approaches 0 exponentially quickly in n,

and [45] characterizes the error exponent associated with the block error rate. More

recently, [72] analyzes the distribution of codewords for several different ensembles of

LDPC codes, including the ensembles proposed by Gallager.

There has also been work attempting to characterize how the number of edges in

the graph representing an LDPC code (often called the Tanner graph of the code)

scales as we try to approach capacity. For example, a famous result of Gallager [45]

says that for any LDPC code, the ratio of the number of edges in the Tanner graph

to the number of vertices in the graph must grow in order to approach rates closer to

the capacity. However, the growth rate is not very fast, so that at least in principle

LDPC codes with relatively low average degree can approach rates very close to the

capacity.

Although LDPC codes achieve good performance under ML decoding, it can be

shown that in the worst-case, ML decoding of an LDPC code is NP-hard, so ML

decoding of LDPC codes is likely to be quite complex. As an attempt to address

the decoding problem, Gallager [45] proposed a low complexity message-passing al-

gorithm for decoding LDPC codes. Although analyzing the algorithm proved to be

challenging, Gallager [45] was able to rigorously show that his message-passing al-

gorithm could correct a (small) constant fraction of errors, and simulation results

suggested that Gallager’s message-passing algorithm could correct a sizable fraction

of errors.

Despite the results in [45], LDPC codes were all but forgotten for roughly thirty

years, until Berrou, Glavieux, and Thitimajshima discovered turbo codes [13]. After

the discovery of turbo codes, several groups of researchers rediscovered LDPC codes

2See Section 2.1 for a formal definition of the BSC.

17

[76,77]. Subsequent work on LDPC codes showed that although regular LDPC codes

can correct a sizable fraction of errors under message-passing decoding, the more

general class of irregular LDPC codes contains codes that can correct far more errors

under message-passing decoding. In fact, it has been verified by simulation that for

many channels, carefully optimized irregular LDPC codes can achieve low block error

rates under message-passing decoding at rates very close to capacity [23, 99, 100]. In

the special case of the BEC, it is possible to rigorously prove that LDPC codes achieve

the capacity [76,91] under message-passing decoding.

We now give a high level description of message-passing algorithms, and a rough

sketch of how one might go about analyzing the performance of message-passing de-

coding. One way to understand message-passing decoding is to consider ML decoding

of an LDPC code whose Tanner graph is cycle-free. Although ML decoding is NP-

hard in general, when the Tanner graph is cycle-free, a simple dynamic programming

algorithm can be used for ML decoding. One can interpret this dynamic program-

ming algorithm as a message-passing algorithm, i.e., an algorithm where vertices in

the Tanner graph pass messages to their neighbors. These messages are updated iter-

atively using local update rules (by local, we mean that the updated message leaving

a vertex depends only on the messages coming into that vertex at the previous itera-

tion). The reader is referred to [118] for a more detailed exposition of message-passing

algorithms and their application in the general context of graphical models.

For cycle-free graphs, by choosing the update rules properly, one can construct

message-passing algorithms that perform ML decoding. Unfortunately, it is known

that LDPC codes whose Tanner graph is cycle-free are very bad [39], so good codes

must have cycles. However, because the update rules are local, a message-passing

algorithm can in principle be applied to an arbitrary graph, i.e., even a graph with

cycles. If we choose to run a message-passing algorithm on a graph with cycles,

there is no guarantee that the algorithm performs ML decoding—in fact, we cannot

even guarantee that the messages converge! Even though the behavior of message-

passing algorithms is not well-understood for arbitrary graphs, simulations suggest

that when the Tanner graph has cycles, message-passing decoding can be very effective

18

for carefully designed codes. The key insight needed to explain this phenomenon,

which already appears in [45], but which was subsequently refined in [76,100], is that

the asymptotic behavior of message-passing algorithms can be analyzed when the

Tanner graph has no short cycles, i.e., the Tanner graph has large girth. By definition,

message-passing algorithms only depend on local data, so if the Tanner graph has no

short cycles, then for the first few iterations, the decoding algorithm does not “know”

that it is operating on a graph with cycles. Therefore, an analysis based on trees is

sufficient to capture the behavior. Since message-passing is much easier to analyze

on trees, this provides a powerful approach to analyzing the performance of message-

passing decoding of LDPC code ensembles that have large girth. This approach is

discussed in detail in [100], and is called density evolution. Density evolution plays a

key role in many of the code constructions in this thesis. For example, the analysis

in Appendix A includes a fairly detailed example of the density evolution technique.

Density evolution has been used to design LDPC codes that approach the capacity

for several channels [23,99] when message-passing decoding, rather than ML decoding,

is used. However, the BEC is the only channel for which it has been proved that LDPC

codes with message-passing decoding can achieve capacity. There are many proofs of

this result [76,91], and density evolution is the key ingredient in all of these proofs.

We now discuss the encoding problem for LDPC codes. As noted earlier, a lot of

research in coding theory has focused on constructing codes and practical decoding

algorithms, and often the complexity of the encoding and inverse maps is neglected.

In contrast to LDGM codes, there is no known linear time algorithm for encoding a

general LDPC code (LDPC codes are linear codes, so these codes must be encodable in

polynomial time). In general, the naive encoding algorithm that applies to any linear

code takes O(n2) time, so this naive algorithm is significantly more complex than the

linear time message-passing algorithm for decoding an LDPC code. One approach

to designing LDPC codes with low encoding complexity [101] uses message-passing

decoding in a clever way to encode LDPC codes. For certain classes of LDPC codes,

the encoding method proposed in [101] can reduce the encoding complexity to O(n),

and even when it does not, the encoding complexity is usually much smaller than the

19

complexity of the naive encoding algorithm for arbitrary linear codes. However, from

a theoretical standpoint, it is difficult to design LDPC codes that can provably be

encoded in linear time using the algorithm from [101] and simultaneously approach

capacity under message-passing decoding.

It turns out that one can construct sparse graph codes that share many properties

with LDPC codes, but which also have additional structure that makes encoding

trivial. Nonsystematic irregular repeat-accumulate (NSIRA) codes [97] are one such

class of codes. NSIRA codes are a variation of LDPC codes designed to have very

efficient encoding and decoding algorithms for the BEC. NSIRA codes build upon a

line of work that started with [32], which proposed the class of repeat-accumulate

codes. One motivation for repeat-accumulate codes is that this class of codes has a

graphical structure which makes the encoding and inverse maps trivial to compute

in linear time. At the same time, the graphical structure looks similar to that of

LDPC codes, so potentially density evolution and related tools developed for LDPC

codes can be used to find repeat-accumulate codes with practical decoding algorithms.

In particular, generalizing repeat-accumulate codes to irregular repeat-accumulate

codes in much the same way that regular LDPC codes were generalized to irregular

LDPC codes, it was shown in [64] that one can construct irregular repeat-accumulate

codes that achieve the capacity of the binary erasure channel under message-passing

decoding. NSIRA codes take this work one step further, producing codes for which

the encoding and inverse maps are trivial, but which also have the property that they

achieve the capacity of the BEC under message-passing decoding with uniformly

bounded complexity regardless of the gap to capacity—in particular, the average

degree of the vertices in the graphical representation of suitable NSIRA codes remains

constant as the code length gets large. 3 Contrast this with LDPC codes, where we

mentioned previously that even under ML decoding, the average degree of the vertices

in the Tanner graph, and hence the complexity of message-passing decoding, must

become unbounded as the rate approach the capacity. (Gallager [45] only proved

3By uniformly bounded complexity, we mean that the number of operations per bit required for
the encoding, decoding, and inverse operations is bounded by some fixed constant independent of
the gap to capacity.

20

a lower bound for the BSC, but a similar result holds for the BEC as well [106].)

Thus, in addition to having nice encoding and decoding properties, NSIRA codes are

defined by a graph that can in a fundamental sense be significantly sparser than the

Tanner graph of a good LDPC code. In Chapter 5 we will see another example of this

phenomenon, i.e., a case where codes defined by one class of graph structures may be

fundamentally limited so that the average degree must become unbounded to achieve

the appropriate information-theoretic limit, while other graph structures can be used

to define codes achieving the same limit with a uniformly bounded average degree.

We close our brief overview of sparse graph codes by quickly reviewing the use of

expander graphs in coding theory. The message-passing algorithms described above

take advantage of the probabilistic nature of the channel, and density evolution can

be used to produce bounds on the bit error rate under message-passing decoding.

As mentioned above, density evolution is myopic in the sense that it only relies

on the local graph structure. Roughly speaking, density evolution can be used to

analyze the behavior of a message-passing algorithm on a graph with n vertices by

examining a neighborhood of o(n) vertices around any given vertex—density evolution

typically breaks down once the neighborhood contains more than about
√

n vertices.

Therefore, a different analysis tool is required if, for example, we want to prove that

the block error rate under message-passing decoding decays exponentially with n,

because exponential decay cannot be proved without looking at the global structure

of the graph.

Although the performance of message-passing algorithms on arbitrary graphs is

difficult to analyze, it turns out that expander graphs are a class of graphs possessing

properties that make a global analysis of message-passing algorithms more tractable.

For example, in [113] it is proved that LDPC codes defined by Tanner graphs with

good expansion properties can provide adversarial error-correction guarantees. In

other words, instead of assuming that errors are introduced by a memoryless channel,

one can show even if the errors are carefully chosen by an adversary, as long as the

number of errors is sufficiently small, no matter how the adversary chooses the errors,

a message-passing algorithm can be used to recover the original codeword.

21

Although the number of (adversarial) errors that such codes can correct is quite

low, for theoretical purposes these codes are useful as they allow us to provide bounds

on the block error rate. Intuitively, the idea is that we use density evolution to analyze

the bit error rate, and if the bit error rate is small, then combining our code with a code

constructed using expander graphs provides a deterministic guarantee that the few

remaining bit errors are corrected. Thus, we can use a code derived from an expander

graph to turn bounds on the bit error rate into bounds on the block error rate. For

example, we use this approach in Chapter 6 to construct codes for the wiretap channel.

Another example where we use expander graphs is in Chapter 4. Chapter 4 focuses

on compressed sensing, which roughly speaking corresponds to constructing very high

rate codes. It turns out that at high rates, the number of adversarial errors corrected

by codes defined using expander graphs is within a constant factor of the channel

capacity. Thus, in the high-rate case, codes defined using expander graphs can be

quite useful by themselves, and in Chapter 4 we analyze a message-passing algorithm

run only on an expander graph with no additional modifications.

The above overview has barely scratched the surface of known results on sparse

graph codes. We refer the reader to the many excellent surveys on LDPC codes, for

example [102,111], and the recent book [103] for a more thorough introduction to the

major topics in LDPC codes.

1.3 Thesis Outline

In Sections 1.1 and 1.2 we summarized the emergence of sparse graph codes as a

practical alternative to random codes for the channel coding problem. The reader

familiar with information theory knows that the random coding technique appears in

many other contexts, to name a few, source coding, lossy source coding, broadcast

channels, and multiple-access channels. Given that sparse graph codes appear to have

low complexity and yet still approach the capacity for a broad class of channels, it

is natural to wonder if sparse graph codes can be adapted to replace random codes

more generally. In this thesis, we present four examples suggesting that sparse graph

22

codes do have potential as a low complexity alternative to random codes in contexts

beyond their original domain of channel coding.

First, in Chapter 3 we consider using sparse graphs for (lossless) compression.

Compression, also known as source coding, is a well-studied problem. Traditionally,

the most important performance metrics for source coding are the compression rate

and the computational complexity of encoding and decoding the source code. In

Chapter 3 we are interested in constructing source codes that possess two additional

properties—local encodability and local decodability. To define these properties, con-

sider compression of a block, or equivalently, a vector of data. Local encodability is

the property that when a single component of the vector is changed, it is easy to up-

date the compressed output. Local decodability is the property that any component

of the vector can be recovered efficiently from the compressed output. For example,

it should be possible to recover a single component much more efficiently than by

running the decompression algorithm to recover the whole vector. It is easy to think

of scenarios where source codes possessing these properties could be useful. For ex-

ample, imagine that you are writing your thesis, and you want to store the thesis in a

compressed format. As your advisor gives you feedback, you might make some edits

to the thesis—for example, maybe you revise one page. Since you will make many

small edits, you don’t want to decompress and recompress your thesis every time you

make a change. If you use a locally encodable source code, then your compressed

thesis can easily be updated as you edit, eliminating the need for decompression and

recompression! As another scenario, imagine that one wants to store a large database

in a compressed format. In order for the database to be useful, a user needs to be

able to quickly access a single record in the database—thus, a source code used to

compress the database must be locally decodable.

For a simple class of sources, we propose a solution based on sparse graph codes

that possesses nontrivial local encoding and local decoding properties. In more detail,

we construct source codes for sources specified by average and maximum constraints,

so the source consists of all vectors of nonnegative integers whose average is at most

A, and whose maximum is at most M , where A and M are parameters that can be

23

set arbitrarily. Our source codes achieve rates close to the information-theoretic limit

for these sources in the limit of large A. Our codes are also locally encodable and

decodable—the expected running time of our local encoding and decoding algorithms

is at most polylogarithmic in N , and for many choices of A, M , and N , the expected

running time is constant. We provide some motivation for this source model in

Chapter 3, but the construction of locally encodable and decodable source codes for

more general classes of sources is an interesting direction for future work.

In Chapter 4, we apply sparse graph codes to the problem of compressed sens-

ing. We define the compressed sensing problem formally in Chapter 4, but roughly

speaking, compressed sensing is the problem of recovering an N -dimensional signal x

from M linear measurements y. When M < N , there is not enough information to

determine x from y, i.e., the linear system is underdetermined. The key idea in com-

pressed sensing is that if the signal x is very sparse, i.e., most of the components of x

are 0, then even in the case that M < N , it is possible to reconstruct x exactly from

y. For example, if 99% of the components of x are 0, a typical result in compressed

sensing might allow one to conclude that x can be recovered exactly from roughly

.05N linear measurements via linear programming (LP), provided that these linear

measurements satisfy certain technical conditions.

Of course, many signals encountered in the real-world are not perfectly sparse, but

rather are approximately sparse in the sense that a few signal coefficients carry most

of the information. There are several methods for measuring approximate sparsity

and for providing recovery guarantees for approximately sparse signals. One widely

used notion is an ℓp/ℓq guarantee. Mathematically, an ℓp/ℓq guarantee is a recovery

guarantee of the form

||x− x̂||p ≤ C||x− xk||q ,

where x is the original signal, xk denotes the best k-term approximation of x, i.e., the

set of k largest magnitude components of x, and x̂ denotes the estimate of x produced

by a recovery algorithm. C denotes the factor by which the error is multiplied;

obviously, all things being equal, smaller values of C are preferable to larger values.

24

In Chapter 4, we consider ℓ1/ℓ1 and ℓ2/ℓ1 guarantees.

In the first half of Chapter 4, we show that linear measurements derived from

sparse graph codes can perform well for compressed sensing, and further, that message-

passing algorithms can be used as an efficient alternative to LP for recovering the

original signal x from the measurements y. More precisely, we show that if the linear

measurements correspond to a suitably good expander graph (see Section 2.3 for a

definition of expander graphs), then a simple message-passing algorithm can be used

to recover sparse signals, and the same algorithm also provides an ℓ1/ℓ1 guarantee.

In the second half of Chapter 4, we probe the limitations of sparse graph codes

with respect to ℓ2/ℓ1 guarantees. Specifically, we show that linear measurements

based on binary matrices do not possess good restricted isometry constants with

respect to the ℓ2 norm (see Chapter 4 for a definition of restricted isometry constants).

We also show that linear measurements based on very sparse matrices do not have

good isometry constants, even if the entries do not have to be binary. To date, the

restricted isometry property is the only method known for providing ℓ2/ℓ1 guarantees,

so our results suggest that either a new proof technique or a different class of linear

measurements is needed to develop fast (i.e., linear or near linear time) reconstruction

algorithms providing ℓ2/ℓ1 recovery guarantees.

In Chapter 5, we consider using sparse graphs codes for lossy source coding, also

known as rate-distortion coding. Roughly speaking, lossy source coding is similar

to traditional, lossless source coding, i.e., the goal is to represent a source using as

few bits as possible. However, unlike the lossless case, in lossy source coding we do

not have to reconstruct the source exactly from the compressed version. Rather, we

just need to reconstruct the source approximately, where the notion of approximate

recovery is formalized through a distortion measure quantifying the difference between

the original source and our reconstruction.

While we are unable to provide efficient algorithms for lossy source coding using

sparse graph codes, we are able to prove nontrivial guarantees on the performance of

sparse graph codes when optimal (and computationally very expensive) algorithms

are used. Specifically, we show that if one ignores computational complexity, there

25

is a strong duality between the lossy source coding problem and the channel coding

problem. Our results imply that for a broad class of rate-distortion problems, a good

channel code (i.e., a code achieving low probability of error under ML decoding) for

an appropriate dual channel automatically achieves low distortion for the original

rate-distortion problem. This duality result relies on an interesting connection be-

tween isoperimetric inequalities and the rate-distortion problem. Note that this result

applies to any code, not just sparse graph codes. Intuitively, one can think of channel

coding as a sphere-packing problem, while lossy source coding is a covering problem.

Our duality result essentially says that in high dimensions, i.e., for long code lengths,

these problems are equivalent in the sense that good sphere-packings must also be

good covers.

As a simple corollary of this general result, we show that LDPC codes are optimal

for the problem of quantizing a binary symmetric source under Hamming distortion

(BSS-HD), i.e., quantizing a uniformly random bit string so that the reconstruction is

within Hamming distance D of the original string.4 Intuitively, this result is obtained

by observing that the dual channel for the BSS-HD problem is the BSC, and as we

noted in Section 1.2, LDPC codes achieve capacity for the BSC. Therefore, they must

also be optimal for the BSS-HD problem.

For the BSS-HD problem, we also prove lower bounds on the sparsity of LDGM

codes and LDPC codes. This is the analog for lossy source coding of the fact that

the LDGM and LDPC graph structures suffer inherent limitations compared to other

classes of codes. We already mentioned this in Section 1.2 in the context of chan-

nel coding, and our lower bounds show that the average degree of the vertices in

the graphs representing LDGM codes and LDPC codes must become unbounded to

approach optimal performance for the BSS-HD problem. In a little more detail, we

show that for LDGM codes and LDPC codes, the average degree of the vertices in

the associated graphs must grow as Ω(log(1
ε
)), where ε is the gap between the code

rate and the optimal code rate for a given distortion level. This dependence on ε is

4By optimal, we mean that LDPC codes can achieve performance arbitrarily close to the rate-
distortion function. See Chapter 5 for a formal definition of the rate-distortion function and the
BSS-HD problem.

26

tight to within constant factors, and just as the NSIRA codes have graphical repre-

sentations that have uniformly bounded average degree no matter how close we want

to approach the capacity of the BEC, it turns out that a concatenation of LDGM

codes and LDPC codes can have uniformly bounded average degree for the BSS-HD

problem.

In Chapter 6, we apply sparse graph codes to the wiretap channel [120]. The

wiretap channel is a probabilistic model for one of the most fundamental problems in

cryptography, namely, how two parties can communicate information secretly in the

presence of an eavesdropper. The wiretap channel is interesting because it provides

a way around the classic result of Shannon [108] stating that every information-

theoretically secure communication scheme essentially has requirements equivalent to

a one-time pad, i.e., communicating k bits secretly requires two parties to already

share a secret key of length k. As we explain in more detail in Chapter 6, the

wiretap channel model allows one to provide security guarantees almost as strong as

the guarantees required under Shannon’s definition of security [108], but the inherent

limitations the model places on the eavesdropper allow us to construct secure coding

schemes that are the analogs of public-key encryption, i.e., secure codes for the wiretap

channel do not suffer the drawback of the one-time pad in that the two parties do

not need to share a secret key.

Our main results for the wiretap channel include the following. First, we define

the information-theoretic analog of semantic security [49], a widely used notion of se-

curity in computational cryptography, and show that our analog of semantic security

is closely related to, but slightly stronger, than the notion of strong security consid-

ered in the wiretap channel literature. Next, we propose a general architecture for

constructing codes for wiretap channels. Our architecture separates the code design

process into the design of a precode to provide security, and a standard channel code

to correct errors introduced by the noisy channel between the two parties trying to

communicate. This is attractive because the precode can be designed independently

of the channel code, so we have effectively decoupled security and error-correction

in the code design process. We give a few example precodes based on randomness

27

extractors (see Section 2.3 for a definition of randomness extractors) to illustrate the

code design process, resulting in a proof that for any degraded wiretap channel, there

exist precodes possessing strong security whose encoding and decoding complexities

are O(n log n log log n). Finally, for the special case of wiretap channels where the

component channels are BECs, we design sparse graph codes possessing semantic

security whose encoding and decoding complexities are only O(n).

Chapter 7 summarizes the results in this thesis and suggests avenues for future

research.

28

Chapter 2

Preliminaries

In this chapter, we summarize some basic results used later in the thesis. In Section

2.1, we quickly review some basic notions from coding theory and information theory,

such as linear codes and the method of types. Next, in Section 2.2, we define sparse

graph codes and describe in detail four classes of sparse graph codes that are used in

this thesis. Finally, Section 2.3 defines expander graphs and randomness extractors,

and describes several constructions of these objects.

2.1 Brief Review of Information Theory and Cod-

ing Theory

We start by reviewing a little bit of information theory. First, we recall the def-

initions of three standard channel models—the binary erasure channel (BEC), the

binary symmetric channel (BSC), and the additive white Gaussian noise (AWGN)

channel. These three channel models are examples of memoryless channels, as de-

fined in Chapter 1.

• BEC(e): The binary erasure channel with erasure probability e has input al-

phabet {0, 1} and output alphabet {0, 1, ∗}. The transition matrix is

Q(y|x) =







1− e for y = x

e for y = ∗
.

29

The capacity of the BEC is 1− e.

• BSC(p): The input and output alphabet for the binary symmetric channel with

flip probability p is {0, 1}. The transition matrix is given by

Q(y|x) =







1− p for y = x

p for y = 1− x
.

The capacity of the BSC is 1 − hb(p), where hb(p) denotes the binary entropy

function, i.e., hb(p) , −p log(p)− (1− p) log(1− p).

• AWGN: The additive white Gaussian noise (AWGN) channel with power con-

straint P and noise variance σ2 has input alphabet and output alphabet R. The

channel is defined by Y = X + N , where X denotes the channel input and N

represents ambient noise distributed so that N ∼ N(0, σ2). That is, the channel

output Y is the sum of the input and noise, hence the name additive white

Gaussian noise channel. The input power constraint is that the average power

of the symbols in a codeword must be at most P , i.e., for all codewords xn in

the codebook, 1
n

∑

x2
i ≤ P . The capacity of the AWGN channel is 1

2
log(1+ P

σ2).

One of the main goals of coding theory is to design practical codes achieving the

capacity of the above channels, and sparse graph codes have gone a long way towards

achieving this goal.

The method of types is a commonly used and powerful analysis tool for discrete

memoryless channels. We introduce some basic notation for dealing with types, and

summarize a few well-known results on types that we use in Chapters 5 and 6. The

type of a sequence xn ∈ Xn is the probability distribution P̂ over X such that

P̂ (x) =
number of occurrences of x in xn

n
,∀x.

30

Similarly, given two strings xn and yn, we define the conditional distribution induced

by these sequences as

Q̂Y |X(y|x) =
number of occurrences of (y, x) in (yn, xn)

number of occurrences of y in yn
,∀x.

(Note that if a symbol y ∈ Y does not occur at least once in yn, then the above

expression is undefined.) We define Q̂X|Y in a similar fashion. We use several standard

results regarding types from the theory of large deviations. These results can be found,

for example, in [28].

1. The total number of types associated with strings xn ∈ Xn is at most (n+1)|X|.

2. Sanov’s theorem—when Xn is generated i.i.d. according to PX , the probability

that Xn has type P̂ is at least 1
(n+1)|X| e

−nD(P̂ ||PX), where D(·||·) denotes the

Kullback-Liebler divergence.

3. Given yn with type P̂Y and a conditional distribution QX|Y , the number of

strings xn such that the conditional distribution induced by xn and yn equals

QX|Y is at least

enH(X|Y)

(n + 1)|X||Y| ,

where X and Y are random variables distributed according to (X,Y) ∼ QY |XP̂Y .

4. When a string yn with type P̂Y is the input to a channel with distribution QX|Y ,

the probability that the conditional distribution Q̂X|Y induced by the channel

output and channel input satisfies the property ||Q̂X|Y P̂Y −QX|Y P̂Y ||1 ≤ 1
log(n)

is at least 1− o(1), where the o(1) is with respect to n.

Now, we review some basic terminology from coding theory. A binary code C

with blocklength n, rate R, and relative distance δ is simply a subset of {0, 1}n of

size 2Rn, such that the Hamming distance between any two elements of C is at least

δn. (Recall that the Hamming distance is the number of coordinates in which two

strings differ). We say that a sequence of codes {Cn}, indexed by the blocklength

n, is asymptotically good if limn→∞ δn > 0, where δn denotes the relative distance of

31

Cn. Construction of asymptotically good codes with positive rate is one of the main

problems in classical coding theory.

The set {0, 1} can naturally be identified with the two element field GF (2), and

{0, 1}n can naturally be viewed as an n-dimensional vector space over GF (2). We

say that C is a linear code if C is a linear subspace of {0, 1}n. In the case of binary

codes, this simply means that if c1 and c2 are two codewords in C, then c1 + c2 is also

in C. Note that addition refers to addition in the vector space {0, 1}n, i.e., the sum

of two binary strings is the bitwise exclusive-or of the two strings.

Since binary linear codes C correspond to linear subspaces of {0, 1}n, a natural

method to represent a linear code C is to specify a basis for the subspace correspond-

ing to C. Specifically, we can form a generator matrix G for C, i.e., a matrix whose

row space is equal to the set of strings in C. Note that the generator matrix repre-

sentation is far from being unique—any two generator matrices with the same row

space represent the same code.

Another way to represent the code C is via the dual subspace. In more detail,

given two vectors u, v ∈ {0, 1}n, let u · v denote the dot product of the two vectors,

i.e.,

u · v =
n
∑

i=1

uivi,

where addition and multiplication are carried out over the field GF (2). Then, the

set C⊥ = {v ∈ {0, 1}n : v · u = 0 ∀u ∈ C} is a linear subspace of {0, 1}n, which

we call the dual code to C. It can easily be verified that C⊥ uniquely specifies C,

for example, by observing that (C⊥)⊥ = C for any linear subspace C. Therefore, we

can specify C by giving a generator matrix H for the dual code C⊥. Note that an

equivalent definition of C⊥ is that C⊥ is the nullspace of a generator matrix G of C.

Thus, C is the nullspace of H, and H is called a parity check matrix for C.

32

2.2 Sparse Graph Codes—Definition and Exam-

ples

We can naturally associate a bipartite graph with a matrix with entries in {0, 1}. For

example, let G be an m-by-n generator matrix. Then, we can form a bipartite graph

with m vertices called variable nodes, and n vertices called check nodes, as shown in

Figure 2-1. We connect the ith variable node to the jth check node if Gij = 1, where

Variable Nodes

+ + +

Check Nodes

= =

Figure 2-1: Normal graph representation of a generator matrix.

Gij denotes the entry in the ith row and jth column of G. For example, the graph in

Figure 2-1 corresponds to the matrix

G =





1 1 0

0 1 1



 .

We can perform a similar procedure for parity check matrices, except that the

role of the variable and check nodes is reversed. In more detail, let H be an m-by-n

parity check matrix. Then, we form a bipartite graph with n variable nodes and m

check nodes, where the ith check node is connected to the jth variable node if Hij = 1.

Figure 2-2 shows the graph associated with the parity check matrix

H =





1 1 0

0 1 1



 .

33

Note that this is the same matrix that we used in our generator matrix example, and

the only difference between Figures 2-1 and 2-2 is that the variable nodes and the

check nodes have been interchanged. This is a special case of an important general

principle—if one is given the graph of a code, interchanging the variable nodes with

the check nodes gives the graph associated with the dual code.

Check Nodes

Variable Nodes

+ +

= = =

Figure 2-2: Tanner graph representation of a parity check matrix.

In the case of parity check matrices, the graph constructed above is often called

the Tanner graph of the code. The use of = to denote variable nodes and + to denote

check nodes is meant to be suggestive. For example, consider the Tanner graph shown

in Figure 2-2. Imagine that we assign the values 0 and 1 to the edges of the Tanner

graph. We say that a variable node is satisfied if the constraint that all values assigned

the edges incident to that variable node have the same value, hence the = notation.

Similarly, a check node is satisfied if the sum of all the values assigned to the edges

incident to the check node is 0, hence the + notation. We say that the value assigned

to a variable node is the value assigned to the half-edge leaving the variable node.

Then, it is easy to see that the whole Tanner graph is satisfied if and only if the values

assigned to the variable nodes form a string in the code C. A similar interpretation

is possible for generator matrix codes. This type of graph representation is called a

normal graph [42].

Now that we have constructed graphs associated with the generator matrix and

parity check matrix of a code, the name sparse graph code should be self-explanatory.

A sparse graph code is simply a linear code that is represented by a graph with a small

34

number of edges. To be explicit, note that a general Tanner graph with n variable

nodes and m check nodes could have as many as mn edges. In the context of coding

theory, the interesting regime is when m is proportional to n, so this means that the

number of edges could grow like n2. In this thesis, when we refer to a sparse graph

code, we usually mean a graph for which the number of edges is proportional to n,

i.e., the average degree of the variable nodes is bounded rather than growing with

n. Occasionally, however, we may refer to graphs with O(n log n) edges or even n1+ε

edges for some small ε as sparse graphs since these graphs still have far fewer than

n2 edges.

There are many variations of sparse graph codes, so we briefly discuss a few of

the sparse graph codes used in this thesis.

2.2.1 Low Density Generator Matrix (LDGM) Codes

If a code has a generator matrix with a sparse graph representation, i.e., a generator

matrix with O(n) 1’s, then we call the code a low density generator matrix (LDGM)

code. In the context of channel coding, it is easy to convince oneself that LDGM

codes are terrible channel codes. To see this, note that even for a BEC, if the channel

erases all the check nodes connected to some variable node, then the value of this

variable node cannot be determined correctly with probability better than random

guessing. By definition, the average degree of the variable nodes in an LDGM code is

bounded by a constant d independent of n, so intuitively it is clear that at least one

variable node will have all of its neighbors erased, and one can easily turn this into a

rigorous proof that the (block) probability of error approaches 1 for LDGM codes.

2.2.2 Low Density Parity Check (LDPC) Codes

If a code has a sparse Tanner graph, then the code is called a low density parity check

(LDPC) code. Generally speaking, random ensembles of LDPC codes are considered

rather than individual codes. We now describe one of the most common LDPC

ensembles, an irregular (λ, ρ)-LDPC ensemble.

35

A (λ, ρ)-LDPC ensemble is a random code whose Tanner graph is generated as

follows. Let λ and ρ be probability distributions over the positive integers, and let

λi and ρi denote the probability assigned to i by λ and ρ, respectively. We construct

a random Tanner graph such that λ corresponds to the degree distribution of the

variables nodes in the Tanner graph, i.e., for each i, the fraction of variable nodes

in the Tanner graph with degree i is λi. Similarly, ρ corresponds to the degree

distribution of the check nodes in the Tanner graph, i.e., for each i, the fraction

of check nodes in the Tanner graph with degree i is ρi. Let Eλ =
∑∞

i=1 λii and

Eρ =
∑∞

i=1 ρii be the expectations of λ and ρ, respectively. For simplicity, in the

following we assume that n is an integer such that λin and ρiEλ

Eρ
n are integers for all

i. We construct a Tanner graph with n variable nodes, m = Eλ

Eρ
n check nodes, and

E = Eλn edges using the method proposed in [76,100]. The edges are assigned using

the following procedure. We think of each variable node as having a set of sockets.

Specifically, we partition the n variable nodes into disjoint sets so that λ1n nodes have

1 socket, λ2n nodes have 2 sockets, and so on. Note that because λ is a probability

distribution,
∑n

i=1 λi = 1, so this procedure assigns every variable node to some set.

Also, note that the total number of sockets is
∑n

i=1 λiin = Eλn. We create sockets

for the check nodes similarly. That is, we partition the m check nodes into disjoint

sets so that ρ1m nodes have 1 socket, ρ2m nodes have 2 sockets, and so on. As before,

this procedure assigns every check node to some set, and the total number of sockets

is again Eλn. Thus, we have an equal number of sockets for the variable nodes and

the check nodes. Let v1, . . . , vE denote the sockets assigned to variables nodes, let

c1, . . . , cE denote the sockets assigned to check nodes, and let π denote a uniformly

random permutation of the set {1, . . . , E}. Then, the edges of the Tanner graph are

formed by adding an edge to the Tanner graph between each pair (vi, cπ(i)). Figure

2-3 illustrates this procedure for a small example.

Recall from Chapter 1 that unlike LDGM codes, LDPC codes can achieve low

block error rates. In Chapter 1 we mentioned two different classes of LDPC codes—

regular LDPC codes and irregular LDPC codes. Regular LDPC codes are codes for

which λi and ρi each place all of their probability mass on a single positive integer.

36

using a random permutation

== =

+ +

Variable Nodes

Check Nodes

2 sockets for each variable node

3 sockets for each check node

Connect sockets

Figure 2-3: Example of a randomly constructed Tanner graph with 6 edges. Each
variable node has degree 2, and each check node has degree 3.

Irregular LDPC codes are LDPC codes with general distributions λ and ρ, i.e., the

distribution is not constrained to place all the mass on a single integer.

2.2.3 Nonsystematic Irregular Repeat-Accumulate (NSIRA)

Codes

As we mentioned in Chapter 1, nonsystematic irregular repeat-accumulate (NSIRA)

codes [97] are a variation on LDPC codes designed so that the encoding and inverse

maps are trivial to compute. There exist NSIRA codes that achieve capacity for the

BEC under message-passing decoding. Furthermore, these codes achieve capacity for

the BEC with uniformly bounded complexity regardless of the gap to capacity.

Formally, NSIRA codes are encoded as follows. Let m = m1 . . . mRn ∈ {0, 1}Rn

be the message. Then, we repeat each bit mi ci times, where ci is a repetition factor

that may be different for each bit (this is the irregularity, i.e., the I in NSIRA).

Let x1 . . . xan denote the an bits obtained after this repetition, where a = 1
n

∑Rn
i=1 ci.

Then, we randomly permute the bits, and accumulate the result a bits at a time.

Formally, let π denote a uniformly distributed permutation over the set {1, . . . , n}.

37

Then, the final encoding is

yi =
ai
∑

j=1

xπ(j) ; 1 ≤ i ≤ n.

The reason these codes are called nonsystematic is that the original message bits mi

are not part of the output.

Figure 2-4 shows the graph corresponding to NSIRA codes. After looking at

an accumulator

= = = =

+ + + +
= =

Apply random
permutation

Encoded Output

...

...

(Punctured) Input Message Bits

...
Repeat each bit

This graph represents

Figure 2-4: Graphical representation of a nonsystematic irregular repeat-accumulate
code.

Figure 2-4, one might wonder why NSIRA codes are not just a special class of LDPC

codes. NSIRA codes can be interpreted as LDPC codes where some of the variable

nodes have been punctured, i.e., the variable nodes corresponding to the original

message are not sent over the channel. It is this puncturing that allows NSIRA codes

to get around the limitations of LDPC codes and achieve capacity for the BEC with

uniformly bounded complexity.

38

Repeat each bit

+ + + +

= = = =

= =

Apply second
random permutation

Intermediate Variable
Nodes

Apply random
permutation

...

...

...
Accumulator

= = = =

Accumulator

Encoded Output

...

... ++++

Input Message Bits

Figure 2-5: Graphical representation of a repeat-accumulate-accumulate code.

2.2.4 Repeat-Accumulate-Accumulate (RAA) Codes

Repeat-accumulate-accumulate (RAA) codes [7] are defined in terms of a repetition

factor c and two independent, uniformly random permutations π1 and π2. Let m =

m1 . . . mRn ∈ {0, 1}Rn be the message. Then, to encode m, we start by repeating each

bit of m c times. Next, we permute these cRn bits according to π1. Then, pass the

permuted bits through an accumulator, i.e., if x1, . . . , xcRn denote the permuted bits,

the output of the accumulator is given by yi =
∑i

j=1 xj. To complete the encoding,

we repeat this process using π2, i.e., permute the bits according to π2 and accumulate

the result again. Figure 2-5 shows the graph associated with this encoding process.

Note that although RAA codes as originally defined in [7] only include the output

of the final accumulator in the encoding, we will find it convenient to include the

original message and the output of the intermediate encoding in the encoding as well.

39

RAA codes were not designed with low-complexity decoding algorithms in mind,

but their simple code structure makes them useful in our constructions for the wiretap

channel. The key property of these codes is that by setting c appropriately, one

can construct asymptotically good RAA codes with positive rate. As we will see

in Chapter 6, the fact that RAA codes are asymptotically good but also possess

additional structure makes them quite useful in the context of coding for secrecy.

2.3 Expanders and Extractors

There is a huge body of work on constructing expander graphs and the closely related

concept of randomness extractors. In this section, we describe just the concepts used

in this thesis. For the reader familiar with expander and extractors, this thesis relies

on the Lubotzky-Phillips-Sarnak (LPS) construction of Ramanujan graphs [74], as

well as Margulis’ construction of spectral expanders [78]. Also, we use the zigzag

construction of [19], and the Leftover Hash Lemma [59], a well-known method for

constructing randomness extractors. A good reference for the reader interested in

learning more about expander graphs and their applications is [57].

There are several definitions of expander graphs. The two notions that are relevant

to the constructions in this thesis are spectral expansion and vertex expansion. First,

we define spectral expansion. Let {Gn} be a sequence of d-regular graphs, indexed by

the number of vertices (d-regular means that every vertex is incident to d edges). Let

λ1 = d ≥ λ2 . . . ≥ λn denote the eigenvalues of the adjacency matrix of Gn, sorted

in descending order. We say that the sequence of graphs {Gn} is a family of spectral

expanders if

lim sup
n→∞

λ2 < d,

i.e., there is a constant separation between the largest eigenvalue and the second

largest eigenvalue. Intuitively, such graphs are well-connected. For example, a ran-

dom walk on such a graph converges to its stationary distribution quickly. We use

spectral expanders indirectly, in the sense that spectral expanders form the basis for

constructions of randomness extractors and vertex expanders.

40

Now, we discuss vertex expansion. Vertex expansion can be defined for general

graphs, but in this thesis we are only interested in the bipartite case. Let G =

(X,Y,E) be a bipartite graph with left vertex set X, right vertex set Y , and edge

set E ⊂ X × Y . For an arbitrary set of vertices S ⊂ X ∪ Y , let Γ(S) be the set of

neighbors of S, i.e., Γ(S) = {u ∈ X ∪ Y : ∃v ∈ S such that (u, v) ∈ E}.

Definition 2.3.1 (Vertex Expander). The bipartite graph G = (X,Y,E) is a (c, d)-

regular (K,α)-expander if every vertex in X has degree c, every vertex in Y has degree

d, and for every set S ⊂ X of size at most K, |Γ(S)| ≥ αc|S|.

Intuitively, |Γ(S)| is always at most c|S|, so if α is close to 1, then this says that small

sets of vertices on the left have nearly disjoint sets of neighbors on the right.

As alluded to in Chapter 1, expander graphs can be used to construct codes with

adversarial error-correction guarantees. For example, vertex expanders with α > .5

can be used to construct asymptotically good error correcting codes. Specifically,

in [113] it is proved that if G is a (K,α)-expander with α > .5, and if we view G as

the Tanner graph of an LDPC code, the resulting code has minimum distance at least

K. Using the probabilistic method, one can prove the existence of (K, 1−ε)-expander

graphs with N left vertices and M = O(K log(N
K

)) right vertices. Thus, in the regime

where K,N →∞ such that the ratio K
N

is kept fixed, we obtain asymptotically good

codes. In fact, when α > .75, we can say even more. As shown in [113], if G is a

(K,α)-expander with α > .75, a simple message-passing algorithm can be used to

correct any pattern of K
2

errors. Recall from Chapter 1 that we can use this kind of

result to provide bounds on the block error rate.

Closely related to the notion of expander graphs is the concept of a randomness

extractor. Roughly speaking, randomness extractors are functions designed to purify

randomness. Formally, we define the min-entropy of a random variable X distributed

over some finite alphabet, say {1, 2, . . . , N}, as

H0(X) = max
i∈{1,...,N}

− log(Pr[X = i]).

We say that a random variable X is a (k, ε)-source if there exists some distribution

41

with min-entropy k whose statistical (ℓ1) distance from X is at most ε. Finally, a

(k, ε)-randomness extractor Ext is a function mapping two arguments, a source X

and a random seed S uniformly distributed over some set {1, . . . , 2k′}, into the set

{1, . . . , 2k}, satisfying the following property. For all sources X with min-entropy at

least k, the random variable (S, Ext(X,S)) is a (k + k′, ε)-source, i.e., (S, Ext(X,S))

has statistical distance at most ε from the uniform distribution over {1, . . . , 2k+k′}.
Note that the above definition is usually referred to in the literature as the definition

of a strong randomness extractor. The reason functions satisfying the above definition

are called strong extractors is because the output of the function looks close to uniform

even when the seed is part of the output. We use randomness extractors in our code

constructions for the wiretap channel in Chapter 6.

We now describe in more detail the constructions of expanders and extractors

used in Chapters 3, 4, and 6.

2.3.1 The Lubotzky-Phillips-Sarnak (LPS) Construction

In this section, we describe the LPS construction of Ramanujan graphs. The LPS

construction takes two parameters, p and q, such that (a) p and q are both prime

numbers, (b) p and q are both congruent to 1 mod 4, and (c)
(

p
q

)

= −1, i.e., p is

not a quadratic residue mod q. The following lemma from [74] shows that the LPS

construction produces spectral expander graphs with large girth.

Lemma 2.3.1. The LPS construction produces a (bipartite) p + 1-regular graph with

q3 − q vertices, λ2 ≤ 2
√

p, and girth at least 4 logp(q)− logp 4.

For completeness, we describe the LPS construction below. The LPS construction

is simply a (p + 1)-regular Cayley graph for the projective linear group of 2 by 2

matrices over the finite field GFq, i.e., PGL(2, q). To be explicit, a famous theorem

of Jacobi (see, for example, [55] for an elementary proof) states that the number

of representations of a positive integer n as a sum of 4 squares is 8
∑

d d, where

the sum ranges over all divisors d of n not divisible by 4. Specializing this result

to the case of a prime p congruent to 1 mod 4, it follows that there are precisely

42

p + 1 solutions (over the integers) to the equation p = a2
0 + a2

1 + a2
2 + a2

3 where a0

is odd and positive. For example, when p = 5, the 6 solutions are (a0, a1, a2, a3) =

(1, 2, 0, 0), (1, 0, 2, 0), (1, 0, 0, 2), (1,−2, 0, 0), (1, 0,−2, 0), and (1, 0, 0,−2). To each of

these solutions, we associate an element of PGL(2, q). Specifically, because q ≡ 1

mod 4, there exists an element x ∈ GFq satisfying x2 = −1, i.e., −1 is a quadratic

residue mod q. So, we associate a solution (a0, a1, a2, a3) with the matrix





a0 + xa1 a2 + xa3

−a2 + xa3 a0 − xa1



 .

Finally, the graph returned by the LPS construction is simply the Cayley graph of

PGL(2, q) where the generating set S is the set of p + 1 matrices associated with the

solutions (a0, a1, a2, a3). Note that this set of matrices is closed under inversion, so

the Cayley graph is undirected.

For future reference, we note that the Cayley graph constructed above is bipartite.

Specifically, PGL(2, q) contains the subgroup PSL(2, q), the projective special linear

group. It is easy to see that PSL(2, q) and its single coset form a bipartition of

PGL(2, q)—the determinant of any matrix in S is p, which by assumption is not

a quadratic residue mod q. Thus, every edge in the Cayley graph must have one

endpoint in PSL(2, q) and one endpoint outside PSL(2, q).

2.3.2 The Margulis Construction

This section describes Margulis’ construction of expander graphs, which we use in

Chapter 6 to construct extractors. The construction produces an 8-regular graph Gn

with n2 vertices, where n can be any positive integer. We think of the vertices as

pairs (x, y) of integers modulo n, i.e., x and y are in the range 0, 1, . . . , n− 1. The 8

neighbors of the vertex (x, y) are (x + 2y, y), (x, 2x + y), (1 + x + 2y, y), (x, 1 + 2x +

y), (x − 2y, y), (x, y − 2x), (y, x − 2y − 1), and (x, y − 2x − 1), where all arithmetic

is carried out modulo n. The following lemma, from [44], shows that this graph is a

spectral expander.

43

Lemma 2.3.2. The graph Gn satisfies λ2 ≤ 5
√

2 < 8 for every positive integer n.

2.3.3 The Zigzag Product

The zigzag construction of [19] produces a graph using 3 other bipartite graphs.

Depending on the properties of the 3 input graphs, this construction can be used to

construct either vertex expanders or randomness extractors. For example, in Chapter

3, we use the zigzag construction to prove the existence of vertex expanders with an

efficient algorithm to compute the neighbors of a given vertex, and in Chapter 6

we use the zigzag construction to construct randomness extractors. Although we

do not state this explicitly in Chapter 4, the zigzag construction can also be used

to give explicit linear measurement matrices for our message-passing reconstruction

algorithm, albeit with worse parameters than the best expanders known to exist via

the probabilistic method.

The following lemma, which is just a special case of Theorem 7.1 from [19], sum-

marizes the most important properties of the zigzag construction for our purposes.

Lemma 2.3.3. Let Z1 be the graph produced by the LPS construction (or any suitable

spectral expander graph). For any T, ε > 0, there exist suitable constant sized graphs

Z2 and Z3 such that the output graph Z produced by applying the zigzag construction

to input graphs Z1, Z2, and Z3 is a graph with N left vertices, N/T right vertices, and

left degree poly(log(T), 1/ε). Furthermore, Z is a (Ω(εN/(TD)), (1 − ε)D)-bipartite

expander.

For completeness, we describe the zigzag construction below. The following is

essentially just a summary of [19], although we make some very minor changes in the

statements of the lemmas from [19] to suit our purposes. To explain the construction,

it will be useful to view bipartite graphs as functions from the left vertices to the right

vertices. Specifically, we associate a bipartite graph with its edge function E(i, j).

The edge function 1 gives the jth neighbor of vertex i on the left, i.e., for a D-

1Note that the letter E is chosen in [19] as an abbreviation for extractor, not edge. The function
E will usually be some kind of randomness extractor, but familiarity with the theory of random-

44

regular graph with N vertices on the left and M vertices on the right, E goes from

[N]× [D]→ [M], where we use [N] to denote the set {1, 2, . . . , N}.
We will be interested in edge functions with special properties, as summarized

in the following definitions. Note that these are identical to the definitions in [19],

except that we have not taken logarithms. We use the notation UN to denote the

uniform distribution over a set of size N .

Definition 2.3.2. A function E : [N] × [D] → [M] is called an (ε, A) extracting

conductor if for any 1 ≤ 2k ≤ M
A

and any source X over [N] such that H0(X) ≥ k,

the distribution of E(P,UD) is a (k + log(A), ε)-source.

Definition 2.3.3. A function E : [N] × [D] → [M] is called a (Kmax, ε) lossless

conductor if for any 1 ≤ 2k ≤ Kmax and any source X over [N] such that H0(X) ≥ k,

the distribution of E(P,UD) is a (k + log(D), ε)-source.

Definition 2.3.4. A pair of functions E : [N]× [D]→ [M] and C : [N]× [D]→ [B]

is called a (Kmax, ε, A) buffer conductor if E is an (ε, A) extracting conductor and the

pair (E,C), viewed as a function from [N]× [D]→ [M]× [D], is a (Kmax, ε) lossless

conductor.

As a special case of a buffer conductor, note that if (E,C) is a permutation, then

(E,C) is automatically an (N, 0) lossless conductor.

Definition 2.3.5. A pair of functions E : [N]× [D]→ [M] and C : [N]× [D]→ [B]

is called a (ε, A) permutation conductor if E is an (ε, A) extracting conductor and

the pair (E,C), viewed as a function from [N]× [D]→ [M]× [D], is a permutation.

Now, we define the graph, i.e., edge function, produced by the zigzag construction.

Let Z1, Z2, and Z3 be input graphs with the following properties. The graph Z1 has

N1 vertices on the left, each with degree D1, and M1B1 vertices on the right, so

the associated edge function is defined from [N1] × [D1] → [M1B1]. Because [M1B1]

can naturally be identified with [M1]× [B1], we represent the edge function for Z1 as

ness extractors is not needed to understand the zigzag construction. Rather, the connection with
randomness extractors is useful for analyzing the properties of the construction.

45

(E1, C1), where E1 goes from [N1]× [D1]→ [M1] and C1 goes from [N1]× [D1]→ [B1].

The graph Z2 has N2 vertices on the left, each with degree D2, and D1B2 vertices

on the right. We represent the edge function for Z2 as (E2, C2), where E2 goes from

[N2]× [D2]→ [D1] and C2 goes from [N2]× [D2]→ [B2]. Finally, Z3 has B1B2 vertices

on the left, each with degree D3, and M3 vertices on the right. We represent the edge

function for Z3 as E3 : ([B1] × [B2]) × [D3] → [M3], where, as before, we have used

the natural correspondence between the sets [B1B2] and [B1]× [B2].

The output graph Z produced by the zigzag construction has N1N2 left vertices,

each with degree D2D3, and M1M3 right vertices. The only thing left to specify is

the edge function E : ([N1] × [N2]) × ([D2] × [D3]) → ([M1] × [M3]). We compute

E((x1, x2), (r2, r3)) as follows.

(r1, z1) , (E2, C2)(x2, r2)

(y1, z2) , (E1, C1)(x1, r1)

y2 , E3((z1, z2), r3)

E((x1, x2), (r2, r3)) , (y1, y2).

The above construction is well-defined whenever the graphs have the appropriate

sizes and degrees. However, to produce graphs with good expansion, we must impose

additional conditions on Z1, Z2, and Z3. To prove Lemma 2.3.3, we take Z2 to be an

optimal buffer conductor of constant size, and we take Z3 to be an optimal lossless

conductor of constant size. The parameters of such conductors are described by Lem-

mas 4.2 and 4.3 of [19]. For our application, it is convenient to make Z2 and Z3 left-

and right-regular as well. It is easily verified that essentially the same performance

as in lemmas 4.2 and 4.3 of [19] can be obtained even with the regularity restriction.

46

2.3.4 The Leftover Hash Lemma

In this section, we describe the Leftover Hash Lemma [59], a simple method for

constructing extractors. Since the proof of correctness is short, we include the proof

to keep this thesis as self-contained as possible. Roughly speaking, the Leftover Hash

Lemma says that a good family of hash functions can be used to construct extractors.

Lemma 2.3.4. Let {hs} be a family of hash functions mapping X to Y. Let |Y| ≤ ε22k,

and let S denote the index set of the family {hs}. Assume that for all x ∈ X, hS(x)

is uniformly distributed over Y, and that for all x1 6= x2 ∈ X, the collision probability

Pr[hS(x1) = hS(x2)] ≤
1

|Y| ,

where S is a random variable uniformly distributed over S. Then, the function Ext :

X× S→ Y defined by Ext(X,S) = (hS(X)) is a (k, ε)-extractor.

Before proving Lemma 2.3.4, we state a preliminary lemma.

Lemma 2.3.5. Let k be such that 2k is an integer, and let X be a random variable

such that H0(X) ≤ k. Then, X can be expressed as a convex combination of random

variables Xi, where each Xi is uniformly distributed over some set of size 2k.

Proof. Let {1, 2, . . . , n} denote the support of X, and let p1, p2, . . . , pn denote the

probability distribution of X. The condition that H0(X) ≥ k can be expressed by

the linear constraints

0 ≤ pi ≤ 2−k for 1 ≤ i ≤ n,

n
∑

i=1

pi = 1.

The lemma is equivalent to the statement that any vertex of the polytope specified

by the above constraints has the property that 2k of the pi’s are 2−k, and the remaining

n− 2k pi’s are 0. This is obvious, because any vertex is defined by the intersection of

n linearly independent constraints, and it is easily verified that the intersection of n

of the constraints has the property that every pi is either 0 or 2−k.

47

Proof of Lemma 2.3.4. We must show that for any random variable X such that

H0(X) ≥ k, the distribution of (S, hS(X)) is close to the uniform distribution over S×
Y. From lemma 2.3.5, it suffices to consider random variables X uniformly distributed

over a set of size 2k, so in the following we assume that X is of this form. For such

X, we must show that

∑

s,y

∣

∣

∣

∣

Pr[S = s and hS(X) = y]− 1

|S||Y|

∣

∣

∣

∣

≤ ε.

This sum can be rewritten as

∑

s

Pr[S = s]
∑

y

∣

∣

∣

∣

Pr[hS(X) = y|S = s]− 1

|Y|

∣

∣

∣

∣

≤ ε.

The inner sum is the statistical distance between the output of the hash function hS

and the uniform distribution, conditioned on the event S = s, so the sum can be

viewed as the expected value of the statistical (ℓ1) distance D1(S) between hS(X)

and the uniform distribution, where the expectation is over S. Instead of directly

computing a bound on the expectation of D1(S), we bound E[D2(S)2], where D2(S)

denotes the ℓ2 distance.

We analyze E[D2(S)2] using the bound on collision probability. Specifically,

E[D2(S)2] ≤ 1

22k

(

2k +
∑

x1 6=x2

(

Pr[hS(x1) = hS(x2)]−
1

|Y|

)

)

≤ 2−k.

To complete the proof, note that the Cauchy-Schwartz inequality implies that

E[D1(S)] ≤
√

|Y|2−.5k

≤ ε,

which proves that Ext(X,S) = (hS(X)) is a (k, ε)-extractor.

The following lemma is just a special case of 2.3.4, since the function Ext(x, s) =

(x · s)⌊k+2 log ε⌋ clearly satisfies the hypotheses of Lemma 2.3.4.

48

Lemma 2.3.6. (Leftover Hash Lemma) The function Ext(x, s) = (x · s)⌊k+2 log ε⌋ is a

(k, ε)-extractor. The superscript notation indicates that the output of the extractor is

only the first ⌊k + 2 log ε⌋ bits of the product.

49

50

Chapter 3

Locally Encodable and Decodable

Source Codes

3.1 Introduction

In this chapter, we consider the problem of constructing locally encodable and de-

codable source codes. As described in Chapter 1, the problem is to construct good

(lossless) source codes satisfying two additional properties—local encodability and

local decodability. Recall that local encodability is the property that when a single

component of the source is changed, it is easy to update the compressed output. Lo-

cal decodability is the property that any component of the source can be recovered

efficiently from the compressed output. For example, it should possible to recover

a single component much more efficiently than by running the decompression algo-

rithm to recover the entire source. It is easy to think of scenarios where source codes

possessing these properties could be useful. We mentioned a couple of scenarios in

Chapter 1, e.g., updating a thesis and storing a database. As another example, in

a high-speed network router one wishes to count the number of packets per flow in

order to police the network or identify a malicious flow. Since packets arrive at very

high speed, and in a large network we may want to quickly determine the number of

packets in an important flow rather than obtain the data for every single flow, we are

naturally led to consider the problem of maintaining dynamically changing integers.

51

Similar problems appear in many other applications that arise in networks, databases,

signal processing, etc. In the remainder of this chapter, we focus exclusively on the

problem of constructing a locally encodable and decodable source code for a class of

integer sources motivated by the high-speed network router scenario, but we empha-

size that by no means is this the only interesting class of sources to consider. An

important challenge for future work is to construct locally encodable and decodable

source codes for a broader class of sources.

In the high-speed network router scenario and related applications, there are two

key requirements. First, we need to maintain the collection of integers in a dynamic

manner so that any integer can be updated (increment, decrement) and evaluated very

quickly. Second, we need the source to be represented as compactly as possible to

minimize storage, which is often highly constrained in these scenarios. Therefore, we

are interested in source codes capable of storing N integers in a compressed manner

while maintaining the ability to read and write any of these N integers in nearly

constant time.1 Since a source code capable of representing N integers can also be

viewed as a data structure for storing N integers, in the following we use the terms

source code and data structure interchangeably.

3.1.1 Prior work

Efficient storage of a sequence of integers in a compressed manner is a classical prob-

lem of source coding, with a long history, starting with the pioneering work by Shan-

non [107]. The work of Lempel and Ziv [122] provided an elegant universal com-

pression scheme. Since that time, there has continued to be important progress on

compression algorithms. However, most well-known schemes suffer from two draw-

backs. First, these schemes do not support efficient updating of the compressed data.

This is because in typical systems, a small change in one value in the input sequence

leads to a huge change in the compressed output. Second, such schemes require the

1Or, at worst , in poly-logarithmic time (in N). Moreover, we will insist that the space complexity
of the algorithms utilized for read and write/update be of smaller order than the space utilized by
the data structure.

52

whole sequence to be decoded from its compressed representation in order to recover

even a single element of the input sequence.

A long line of research has addressed the second drawback. For example, Bloom

filters [14, 20, 93] are a popular data structure for storing a set in compressed form

while allowing membership queries to be answered in constant time. The rank/select

problem [24, 50, 51, 63, 86, 87, 92, 98] and dictionary problem [43, 92, 94] in the field of

succinct data structures are also examples of problems involving both compression

and the ability to efficiently recover a single element of the input, and [95] gives a

succinct data structure for arithmetic coding that supports efficient, local decoding,

but not local encoding. In summary, this line of research successfully addresses the

second drawback but not the first drawback, e.g., changing a single value in the input

sequence can still lead to huge changes in the compressed output.

Similarly, several recent papers have examined the first drawback but not the

second. In order to be able to update an individual integer efficiently, one must con-

sider compression schemes that possess some kind of continuity property, whereby a

change in a single value in the input sequence leads to a small change in the com-

pressed representation. In recent work, Varshney et al. [117] analyzed “continuous”

source codes from an information-theoretic point of view, but the notion of continu-

ity considered is much stronger than the notion we are interested in, and [117] does

not take computational complexity into account. Also, Mossel and Montanari [84]

have constructed space efficient “continuous” source codes based on nonlinear, sparse

graph codes. However, because of the nonlinearity, it is unclear that the continuity

property of the code is sufficient to give a computationally efficient algorithm for

updating a single value in the input sequence.

In contrast, linear, sparse graph codes have a natural, computationally efficient al-

gorithm for updates. A large body of work has focussed on such codes in the context of

streaming algorithms and compressed sensing. Most of this work essentially involves

the design of sketches based on linear codes [16, 17, 25, 35, 48, 60–62, 88, 116, 121].

Among these, [25, 48, 60–62, 88, 121] consider sparse linear codes. Existing solutions

from this body of work are ill-suited for our purposes for two reasons. First, many of

53

the decoding algorithms in the literature (LP based or combinatorial) require decod-

ing all integers to read even one integer—notable exceptions include the Count-Min

and Count-Sketch algorithms [21,25], which do support local decoding. Second, most

existing algorithms are suboptimal in terms of space utilization when the input is very

sparse, e.g., the Count-Min and Count-Sketch algorithms do not achieve compression

rates near the information-theoretic limit.

Perhaps the work most closely related to the results in this chapter is that of Lu

et al. [73], which develops a space efficient linear code. They introduced a multi-

layered linear graph code (which they refer to as a Counter Braid). In terms of graph

structure, the codes considered in [73] are essentially identical to Tornado codes [76],

so Counter Braids can be viewed as one possible generalization of Tornado codes

designed to operate over the integers instead of a finite field. In [73], it is shown

that space-efficient Counter Braids exist provided that (a) the graph structure and

layers are carefully chosen depending upon the distributional information of inputs,

and (b) the decoding algorithm is based on maximum likelihood (ML) decoding,

which is in general computationally very expensive. The authors propose a message-

passing algorithm to overcome this difficulty and provide an asymptotic analysis to

quantify the performance of this algorithm in terms of space utilization. However,

the message-passing algorithm may not provide optimal performance in general.

In what follows, we describe the precise problem formulation, our data structure,

and the associated algorithms for local encoding and local decoding. Before detailing

the construction, though, we provide some perspectives. The starting point for our

construction is the set of layered, sparse graphical codes introduced in [73]. In order

to obtain the desired result, we have to overcome two non-trivial challenges. The

first challenge concerns controlling the space utilized by the auxiliary information in

order to achieve overall space efficiency. In the context of sparse graphical codes, this

includes information about the adjacency matrix of the graph. Storing the adjacency

matrix naively, say with an adjacency list representation, requires Ω(N log N) space

for an N ×Θ(N) connected, bipartite graph, which can already be much more than

N log A when A is small compared to N . Therefore, it is necessary to use graphs that

54

can be stored succinctly. The second challenge concerns the design of local encoding

and decoding algorithms. Linear sparse graph codes have a natural local encoding

algorithm, but it is not clear how to design a local decoding algorithm. As alluded

to in the earlier, most existing decoding algorithms in the literature are designed for

decoding the entire vector rather than just a single component. Therefore, we need

to develop a novel decoding algorithm.

To address the first challenge, we use random graphs based on appropriate Ra-

manujan graphs. These graphs have a succinct description (i.e., O(
√

N log N) space),

efficient ‘look up’ (i.e., there exists a constant time algorithm that can use the succinct

description to determine the neighbors of any given vertex), and a ‘locally tree-like’

property (i.e., girth at least Ω(log N)). To address the second challenge, we take

advantage of our graphs’ large girth to design a local decoding algorithm based on a

message-passing algorithm. Intuitively, our algorithm can be viewed as a procedure

for obtaining successively refined estimates of a single component of the source based

on the local graph structure.

3.2 Problem Formulation

Source Model. The source x is a vector of N integers, denoted x1, . . . , xN , con-

strained so that x lies in the set

S(A,M,N) = {x ∈ N
N : ‖x‖1 ≤ AN, ‖x‖∞ ≤M}.

Let M ≥ A without loss of generality, where the average A and maximum M can

be arbitrary functions of N such that A ≤ M ≤ NA. Although our data structure

can be designed for any given value of A, our results are most meaningful in the

regime in which both N and A (and thus M) are large. We wish to design a data

structure that can store any x ∈ S(A,M,N). Note that we do not assume that x

is drawn from a probability distribution, but rather that x can be any element from

S, so potentially the source might even be chosen by an adversary with the hope of

55

causing our algorithm to fail.

Performance Criteria. We measure the performance of a data structure by con-

sidering the following performance metrics:

Write/Update. For any i, 1 ≤ i ≤ N , xi can be updated (increment, decrement

or write) in near constant time. That is, the data structure is locally encodable.

Read. For any i, 1 ≤ i ≤ N , xi can be read in nearly constant time. That is,

the data structure is locally decodable.

Space. The amount of space utilized is the minimal possible. The space utilized

for storing auxiliary information about the data structure (e.g., pointers or

random bits) as well as the space utilized by the read and write algorithms

should be accounted for.

Properties and Drawbacks of Some Naive Solutions. We briefly discuss a few

naive solutions, each with some of these properties but not all, that will help explain

the non-triviality of this seemingly simple question. First, if each integer is allocated

log M bits, then one solution is the standard Random Access Memory: it has O(1)

read and write complexity. However, the space required is N log M , which can be

much larger than the minimal space required (as we’ll establish, the minimal space

required is essentially N log A). To overcome this poor space utilization, consider the

following prefix-free coding solution. Here, each xi is stored in a serial manner using a

prefix-free code, for example the Elias delta code [38]. Such a prefix-free code requires

roughly log xi+log log xi bits to represent xi (in the limit of large xi), so the prefix-free

coding solution is essentially optimal in that it utilizes (roughly) N(log A+log log A)

bits. However, the read and write/update operations have Ω(N) complexity, e.g.,

if the length of x1’s prefix-free representation increases, then we must shift over the

representations of x2, . . . , xN to make more room for x1.

As a third example, consider the case A = 1/N and M = 1, i.e., the input x has

at most one entry set to 1, and all other entries are 0. For this choice of parameters,

we can use the Hamming code to store x. Specifically, let H denote the parity check

56

matrix of the Hamming code, i.e., the ith column of H is the binary expansion of i.

Then, our data structure simply stores the syndrome Hx. The write complexity is

O(1).2 The read complexity is also O(1) in the worst-case, because Hx is nothing but

the binary expansion of the position of the 1 in x. Thus, the Hamming code gives a

solution that uses optimal space (when N is one less than a power of 2), and read and

write both take O(1) time, so the Hamming code gives an example where the data is

compressed, and read and write can still be accomplished with low complexity.

Note that without loss of generality, M can be chosen so that A ≤ M ≤ AN ,

because the maximum must be at least the average, and if the average of a set of

nonnegative numbers is at most A, then the maximum value of any number in the

set is at most AN . Thus, A = 1/N and M = 1 represents the maximum possible

gap between the average and maximum. At the other extreme, consider the case

where A = M . In this case, our first example (the Random Access Memory) uses the

optimal amount of space, and read and write have O(1) complexity. Thus, at either

extreme of the A/M region, it is possible to perform optimal compression and have

low complexity read and write algorithms. In this chapter, we desire solutions that

achieve similar performance for a broader range of settings of the parameters N,A,

and M .

3.3 Construction

This section describes the construction and corresponding read/write algorithms used

to prove our main result. A caricature of the data structure is portrayed in Figure

3-1.

3.3.1 Overall Structure

Let L denote the number of layers. Let V0 = {1, . . . , N}, with i ∈ V0 corresponding

to xi. Each vertex i ∈ V0 has a counter of b0 bits allocated to it. Because of this

association, in what follows, we use the terms vertex and counter interchangeably,

2We assume that operations on log N -bit integers take constant time.

57

Layer = L

1

N

2

Layer = 0

G1

Layer = 1
G2

Layer = 2

Figure 3-1: An example of the data structure.

e.g., sometimes we call the ith vertex in V0 the ith counter in V0, and vice versa.

Intuitively, the b0 bits corresponding to the ith vertex of V0 are used to store the

least significant b0 bits of xi, while layers 1 through L are used to store the more

significant bits. Since the average is constrained, we should be able to share storage

for the more significant bits of the xi, because many of these more significant bits

must be 0 to keep the average below A. To formalize this intuition, let Vℓ denote

the collection of vertices corresponding to layer ℓ, 1 ≤ ℓ ≤ L, with |Vℓ| ≤ |Vℓ−1| for

1 ≤ ℓ ≤ L. Each vertex i ∈ Vℓ is allocated a counter of bℓ bits. The vertices of layers

ℓ − 1 and ℓ, i.e., Vℓ−1 and Vℓ, are connected by a bipartite graph Gℓ = (Vℓ−1, Vℓ, Eℓ)

for 1 ≤ ℓ ≤ L. We denote the ith counter (stored at the ith vertex) in Vℓ by (i, ℓ),

and use c(i, ℓ) to denote the value stored by counter (i, ℓ). The role of Gℓ is to set

up associations between counters in layers ℓ− 1 and ℓ. Roughly speaking, Gℓ tells us

how to propagate information when a counter overflows. The precise role of Gℓ will

become clear after Section 3.3.3.

For technical reasons, we create another copy of layers 1, . . . , L with vertices V ′
ℓ

and corresponding graphs G′
ℓ for 1 ≤ ℓ ≤ L. Each vertex in V ′

ℓ has b′ℓ bits allocated to

it, G′
1 = (V0, V

′
1 , E

′
1), and G′

ℓ = (V ′
ℓ−1, V

′
ℓ , E

′
ℓ), 2 ≤ ℓ ≤ L. We denote the ith counter

in V ′
ℓ by (i, ℓ)′, and we use c(i, ℓ)′ to denote the value stored by counter (i, ℓ)′.

3.3.2 Setting Parameters

Now we define the parameters L, bℓ, b
′
ℓ, |Vℓ|, and |V ′

ℓ | for 0 ≤ ℓ ≤ L. Later, we describe

the graphs Gℓ and G′
ℓ, 1 ≤ ℓ ≤ L. Let C and K ≥ 3 be positive integers, and let

58

ε = 3/K. Parameters C and ε control the excess space used by the data structure

compared to the information-theoretic limit. Set L as

L =

(

log log

(

M

2K2A2

)

− log log (A)

)+

+ C,

where x+ = max{x, 0}. Set b0 = log(K2A), and recall that |V0| = N . Let |V1| = εN ,

and let b1 = log(12KA). For 2 ≤ ℓ ≤ L − 1, |Vℓ| = 2−(ℓ−1)εN , and bℓ = 3. Finally,

|VL| = 2−(L−1)εN , and bL = log
(

M
2K2A2

)

. For the second series of layers, we set

|V ′
1 | = εN , and b′1 = log(rA), where r = Kpoly (log (K)). For 2 ≤ ℓ ≤ L − 1,

|V ′
ℓ | = εℓN , and b′ℓ = r. For the last set, |V ′

L| = εLN , and b′L = log
(

Mr
K2A2

)

.

Description of Gℓ

Here we describe the graphs Gℓ, 1 ≤ ℓ ≤ L. Recall that we want these graphs to

have a succinct description, efficient look up, and large girth. We also want the

graphs to ‘look random’, i.e., the graphs need to be random enough to enable our

analysis. With these properties in mind, we start by describing the construction of

GL. We start with a bipartite graph H with the following properties: (a) H has
√

|VL−1| vertices on the left and .5
√

|VL−1| vertices on the right; and (b) H is (3, 6)-

regular. The construction of such an H will be described later, but first we use it

to define GL. Let G̃ be a graph consisting of
√

|VL−1| disjoint copies of H. For-

mally, G̃ has left vertices v0, v1, . . . , v|VL−1|−1 and right vertices w0, w1, . . . , w|VL|−1.

Connect v0, v1, . . . , v√|VL−1|−1
to w0, w1, . . . , w.5

√
|VL−1|−1

using H. Then, connect

v√|VL−1|
, v

1+
√

|VL−1|
, . . . , v

2
√

|VL−1|−1
to w

.5
√

|VL−1|
, w

1+.5
√

|VL−1|
, . . . , w√|VL−1|−1

using

H, and so on. GL is constructed to be isomorphic to G̃. Specifically, every left

vertex i ∈ {0, . . . , |VL−1| − 1} of GL inherits the neighborhood of left vertex Q(i) ∈
{0, . . . , |VL−1| − 1} of G̃, where Q(i) is defined as follows:

1. Let F : {0, . . . , |VL−1|−1} →
√

|VL−1|×
√

|VL−1| be such that F (i) = (r(i), c(i)),

where

r(i) = i mod
√

|VL−1| and

c(i) =

(

i +

⌊

i
√

|VL−1|

⌋)

mod
√

|VL−1|.

59

2. Let the random map R :
√

|VL−1|×
√

|VL−1| →
√

|VL−1|×
√

|VL−1| be defined as

R(x, y) = (π1(x), π2(y)), where π1, π2 are two permutations of length
√

|VL−1|
chosen independently and uniformly at random.

3. Q = F−1 ◦R ◦ F .

To gain some intuition for Q, imagine that we arrange the vertices in VL−1 in a

square
√

|VL−1|-by-
√

|VL−1| grid. There are many ways of assigning vertices to cells in

the grid, and the mapping F has the nice property that the left vertices of each copy of

H are mapped so that no two vertices are in the same row or column of the grid. For

example, the vertices v0, v1, . . . , v√|VL−1|−1
are mapped to the main diagonal of the

grid. The random map R corresponds to applying independent random permutations

to the rows and columns of the grid. This interpretation of Q as a mapping applying

random permutations to the rows and columns of the grid is useful in our analysis of

the READ algorithm, specifically in the proof of Lemma A.2.8.

The construction of Gℓ, 2 ≤ ℓ ≤ L−1 follows a similar procedure, with a different

number of copies of H used to construct the associated G̃ to account for the varying

size of Vℓ (and of course, new randomness to define the corresponding Q). Finally, G1

is constructed in essentially the same way as GL, but with a different (3, K)-regular

base graph H1. The base graphs H and H1 are based on the LPS construction of

Ramanujan graphs. The details of the construction are given in Appendix 3.8.1.

In summary, the graphs Gℓ, 1 ≤ ℓ ≤ L constructed above have the following

properties.

Lemma 3.3.1. For 1 ≤ ℓ ≤ L, Gℓ has the following properties: (a) Gℓ can be stored

using O(
√

N log N) space, (b) for any vertex v (in the left or right partition), v’s

neighbors can be computed in O(1) time, and (c) Gℓ has girth Ω(log N).

Description of G′
ℓ

We require different properties from the G′
ℓ’s than from the Gℓ’s. We still want graphs

with succinct descriptions and efficient look up, but instead of large girth, we want

the G′
ℓ’s to be very good (vertex) expanders, as defined in Section 2.3. The G′

ℓ’s can

60

be chosen deterministically, because our analysis does not rely on any randomness in

the G′
ℓ’s. To construct G′

ℓ, we use the zigzag construction described in Section 2.3.3.

In Appendix 3.8.1, we describe the precise choice of graphs we use in the zigzag

construction to guarantee the following properties of the G′
ℓ’s.

Lemma 3.3.2. For sufficiently large K, there exists constants l = poly(log(K))

and r = l/ε such that G′
ℓ has the following properties: (a) G′

ℓ can be stored using

O(1) space3, (b) for any vertex v (in the left or right partition), v’s neighbors can be

computed in O(1) time, and (c) G′
ℓ is an (l, r)-regular (2/K2, 2/3)-expander.

3.3.3 Preliminary Illustration of Encoding/Decoding Opera-

tions

In this section we explain how the previously described data structure can be used to

store the source. Specifically, we work out a small example to illustrate the basic steps

required by the read and write algorithms. To this end, consider the situation when

N = 4 and L = 2. That is, V0 = {1, 2, 3, 4}. Let V1 and V2 be such that |V1| = 2 and

|V2| = 1. Let b0 = 2, b1 = 2, and b2 = 2, and initially let all counters be set to 0, i.e.,

initially the data structure stores the source vector x1 = x2 = x3 = x4 = 0. We start

by explaining the write algorithm. Say that we want to write x3 = 2, or equivalently,

we wish to increment x3 by 2. We accomplish this by adding 2 to c(3, 0). Since the

counters in layer 0 are allocated two bits each, these counters have a capacity of 4,

i.e., they can store any value in the set {0, 1, 2, 3}. Therefore, we add 2 to the current

value modulo 4. That is, the value in counter (3, 0) is updated to 0 + 2 mod 4 = 2.

The resulting ‘overflow’ or ‘carry’ is ⌊(0 + 2)/4⌋ = 0. Since the overflow is 0, no

further operations are required. This is shown in Figure 3-2(a).

Now, suppose x3 is increased further by 3. Then, c(3, 0) is changed to 2 + 3

mod 4 = 1, and a ‘carry’ of ⌊(2 + 3)/4⌋ = 1 is added to the counters in layer 1 that

are connected to (3, 0) via the graph G1, i.e., counter (1, 1). Repeating the same

3Even if we use a model of computation that requires us to store the multiplication tables for
certain finite fields explicitly, the space is o(N).

61

(a)

Add 12

0

1

0

0 0

0

1

Carry 1

Carry 3

1

1

0

0 1

2

0

0

1

0

0 1

0

0
Carry 1Add 3

(b)

(d)

2 bits 2 bits 2 bits

Add 2

0

0

0

2

0

0

0

(c)

Figure 3-2: (a) Add 2 to x3, (b) add 3 to x3, (c) add 12 to x2, and (d) initial config.
for decoding.

process, c(1, 1) is changed to 0+1 mod 4 = 1. The resulting carry is 0, so no further

changes are required. This is shown in Figure 3-2(b). Using a similar approach,

writing x2 = 12 will lead to Figure 3-2(c). Note that the same algorithm can be used

to decrement any of the xi, by treating a decrement as an increment by a negative

value.

Finally, we give a simplified example illustrating the intuition behind the decoding

algorithm. Figure 3-2(d) shows the initial configuration. The decoding algorithm uses

the values stored in the counters to compute upper and lower bounds on the value

of a given xi. To see how this can be done for the simple example above, let us

compute upper and lower bounds on x3. First, observe that the counter (1, 2) stores

0. Therefore, both counters in V1 did not overflow. Thus, each counter in V1 must

currently store the sum of the overflows of its neighbors in V0.

We know c(3, 0), so the problem of determining upper and lower bounds on x3 is

equivalent to determining upper and lower bounds on the overflow of counter (3, 0).

To determine a lower bound, consider the tree obtained by doing a breadth-first search

of depth 2 in G1 starting from (3, 0), as shown in Figure 3-3(a). A trivial lower bound

for the overflow of the bottom two counters is 0. Therefore, 1 − 0 − 0 = 1 must be

an upper bound on the overflow of (3, 0).

62

0
1

Counter 3

Counter 2Counter 1

−3

2 2

2

Counter 4Counter 1

2

Counter 2 Counter 4

Two copies of the
same counter

00 0 0

22

(b)(a)

1

Counter 3

Counter 2Counter 1

1

0

Figure 3-3: (a) Breadth-first search tree of depth 2 rooted at (3, 0), (b) breadth-first
search tree of depth 4 rooted at (3, 0).

Next, consider the graph obtained by doing a breadth-first search of depth 4 in

G1 starting from (3, 0). This graph is not a tree, but we can pretend that it is a tree

by making copies of vertices that are reached by more than one path, as shown in

Figure 3-3(b). As before, 0 is a trivial lower bound for the overflow of the counters at

the bottom of the tree. Therefore, 2− 0− 0 = 2 is an upper bound for both counters

at depth 2 in the tree. This means that 1−2−2 = −3 must be a lower bound on the

overflow of (3, 0). Of course, in this case the trivial lower bound of 0 is better than

the bound of −3 obtained by this reasoning. Since our upper bound on the overflow

is 1 and our lower bound is 0, we haven’t recovered the exact value of counter (3, 0)’s

overflow. However, in general, if this type of reasoning leads to matching upper and

lower bounds, then the value of (3, 0)’s overflow, and therefore the value of x3, is

recovered exactly. One can view our analysis later in this chapter as showing that if

we choose the graphs and counter sizes properly, then it is extremely likely that the

reasoning above does give matching upper and lower bounds very quickly, i.e., long

before the breadth-first search tree reaches a size comparable to N , and therefore we

can use this kind of reasoning to construct an efficient local decoding algorithm.

63

3.4 WRITE Algorithm

The pseudocode of Algorithm 1 gives a more formal description of the WRITE algo-

rithm illustrated by example in Section 3.3. This algorithm is essentially identical to

the algorithm presented in [73].

1: Initialization - Let y(v, ℓ) be the amount that needs to be added to c(v, ℓ), with
similar notation for the counters (v, ℓ)′. We set y(i, 0) = c. We implicitly initialize
y(v, ℓ) to 0 for all other counters.

2:

3: S0 = S ′
0 = {i}. Sℓ = S ′

ℓ = ∅ for ℓ = 2, 3, . . . , L.
4: for ℓ = 0 to L− 1 do
5: for each v ∈ Sℓ do
6: overflow(v)← ⌊ c(v,ℓ)+y(v,ℓ)

2bℓ
⌋.

7: c(v, ℓ)← c(v, ℓ) + y(v, ℓ) mod 2bℓ .
8: if overflow(v) 6= 0 and ℓ < L then
9: Sℓ+1 ← Sℓ+1 ∪ {u : ((v, ℓ), (u, ℓ + 1)) ∈ Eℓ+1}

10: for each u ∈ {u : ((v, ℓ), (u, ℓ + 1)) ∈ Eℓ+1} do
11: y(u, ℓ + 1)← y(u, ℓ + 1)+ overflow(v)
12: end for
13: end if
14: end for
15: for each v ∈ S ′

ℓ do

16: overflow(v)← ⌊ c(v,ℓ)′+y(v,ℓ)′

2
b′
ℓ

⌋.
17: c(v, ℓ)′ ← c(v, ℓ)′ + y(v, ℓ)′ mod 2b′ℓ .
18: if overflow(v) 6= 0 and ℓ < L then
19: S ′

ℓ+1 ← S ′
ℓ+1 ∪ {u : ((v, ℓ)′, (u, ℓ + 1)′) ∈ E ′

ℓ+1}
20: for each u ∈ {u : ((v, ℓ)′, (u, ℓ + 1)′) ∈ E ′

ℓ+1} do
21: y(u, ℓ + 1)′ ← y(u, ℓ + 1)′+ overflow(v)
22: end for
23: end if
24: end for
25: end for

Algorithm 1: WRITE Algorithm

Lemma 3.4.1. WRITE has worst-case running time at most

2
O

“

1+(log log(M

2K2A2)−log log(A))
+

”

= poly

(

max

(

log

(

M

2A2

)

, 1

))

,

64

and uses at most

2
O

“

1+(log log(M

2K2A2)−log log(A))
+

”

= poly

(

max

(

log

(

M

A2

)

, 1

))

space.

3.5 READ Algorithm

In what follows, we provide a detailed description of READ, the decoding algorithm

that recovers the value xi for any given i. READ has two parts, which we call WHP

and BAILOUT. WHP decodes a single input with high probability, and is based

on the message-passing algorithm proposed by [73]. However, to achieve the local

decoding property, we carefully design an incremental version of the algorithm, so

that WHP has a low expected running time. In the rare event that WHP fails to

recover xi, we run BAILOUT, which is slower but never fails.

3.5.1 WHP Algorithm

The idea behind WHP is that to recover xi, we only need to use local information,

i.e., instead of looking at all counters, we only use the values of counters that are

close (in terms of graph distance) to counter i in layer 0. As illustrated in Section 3.3,

local information can be used to compute upper and lower bounds on xi. Following

this insight, we propose an algorithm capable of computing better upper and lower

bounds as more local information (with respect to the graphical code) is utilized. This

algorithm can then be run incrementally, using more and more information until it

manages to decode (i.e., obtains matching upper and lower bounds).

A formal description of WHP is as follows. First, a subroutine is stated that can

recover the overflow of a single counter in an arbitrary layer of the data structure,

given additional information not directly stored in our structure, namely the values

in the next layer assuming the next layer has infinite sized counters. This subroutine

is used by the ‘WHP inner loop’ that utilizes more and more local information incre-

65

mentally as discussed above. The values that would have been stored if the counter

size was infinite are not directly available for any layer ℓ < L, but for the last layer

L and our choice of parameters these values are precisely the values already stored

by our data structure, i.e., the last layer never overflows as long as x ∈ S(A,M,N).

Therefore, using this subroutine, one can recursively obtain the necessary values for

layers L − 1, . . . , 0. The ‘WHP outer loop’ achieves this by selecting appropriate

parameters in the ‘WHP inner loop’.

WHP is based on the decoding algorithm introduced by Lu et. al. [73]. Our

contribution is an analysis of a modified version of their algorithm. Specifically, the

subroutine given in Section 3.5.1 can be viewed as a modified version of the algorithm

from [73] that is designed to run incrementally and locally, i.e., since we are only

interested in a single xi, our algorithm only needs to examine a small subset of the

counters stored in the data structure. Our analysis shows that this local version of

the algorithm can be much more efficient than the original algorithm, i.e., most of the

time WHP can determine the value of xi by examining far fewer than N counters.

WHP Subroutine

For any counter (u, ℓ), the goal is to recover the value that it would have stored

if bℓ = ∞. To this end, suppose the values that would have been stored in the

counters in Vℓ+1 if bℓ+1 = ∞ are already known. As explained before, this will be

satisfied recursively, starting with ℓ+1 = L. The subroutine starts by computing the

breadth-first search neighborhood of (u, ℓ) in Gℓ+1 of depth t, for an even t. Hence

the counters at depth t of this breadth-first search, or computation, tree belong to

Vℓ (the root is at depth 0). This neighborhood is indeed a tree provided that Gℓ

does not contain a cycle of length ≤ 2t. We will always select t so that this holds.

This computation tree contains all the counters that are used by the subroutine to

determine the value that (u, ℓ) would have had if bℓ =∞.

Once the computation tree has been computed, the overflow of the root (u, ℓ) can

be determined using the upper bound-lower bound method described by example in

Section 3.3. In the following more formal description, we imagine that the edges of

66

the computation tree are oriented to point towards the root, so that it makes sense to

talk about incoming and outgoing edges. Let C(v, ℓ) denote the set of all children of

counter (v, ℓ), and let P (v, ℓ) denote the parent of counter (v, ℓ), with similar notation

for counters in Vℓ+1. Also, for a counter (v, ℓ + 1) ∈ Vℓ+1, let cv denote the value that

this counter would have had if bℓ+1 =∞, which we recall was assumed to be available.

(Note: for simplicity, we leave out the ℓ + 1 in the definition of cv because cv is only

defined for counters in Vℓ+1, hence the ℓ + 1 is redundant.)

1: Initialization - for all counters (v, ℓ) at depth t, set the value of the outgoing
edge so that m(v,ℓ)→P (v,ℓ) = 0. (Lower bound)

2: Next, we compute the value for edges leaving the counters at depth t−1, i.e., the
counters just above the leaves. For counter (v, ℓ + 1) at depth t− 1, the outgoing
value is computed as m(v,ℓ+1)→P (v,ℓ+1) = cv−

∑

(w,ℓ)∈C(v,ℓ+1) m(w,ℓ)→(v,ℓ+1). (Upper

bound)
3: The value on an edge leaving a counter (v, ℓ) at depth t− 2 is given by

m(v,ℓ)→P (v,ℓ) = min
(w,ℓ+1)∈C(v,ℓ)

m(w,ℓ+1)→(v,ℓ).

(Upper bound)
4: The value on an edge leaving a counter (v, ℓ + 1) at depth t− 3 is computed the

same way as in step 1, i.e., m(v,ℓ+1)→P (v,ℓ+1) = cv −
∑

(w,ℓ)∈C(v,ℓ+1) m(w,ℓ)→(v,ℓ+1).

(Lower bound)
5: The value on an edge leaving a counter (v, ℓ) at depth t− 4 is given by

m(v,ℓ)→P (v,ℓ) = max

(

max
(w,ℓ+1)∈C(v,ℓ)

m(w,ℓ+1)→(v,ℓ), 0

)

.

(Lower bound)
6: We work our way up the tree by repeating steps 2-5, until we reach the root.
7: Termination - When the procedure finishes, we get a value cu,t for the outgoing

value from the root counter (u, ℓ) for a depth t computation tree. To complete the
subroutine, we repeat steps 1-6 with a computation tree of depth t + 2, getting a
value cu,t+2. If cu,t = cu,t+2, i.e., we have matching upper and lower bounds, then
the subroutine outputs cu,t as the value of (u, ℓ)’s overflow. If cu,t 6= cu,t+2, then
the subroutine declares a failure.

Algorithm 2: WHP Subroutine

In the pseudocode of Algorithm 2, m(v,ℓ)→(w,ℓ+1) denotes the number, or ‘message’,

associated by the subroutine with the edge pointing from counter (v, ℓ) to counter

(w, ℓ+1), with similar notation for edges pointing from a counter in Vℓ+1 to a counter

67

in Vℓ. This number is either an upper bound or a lower bound on the overflow of

whichever endpoint of the edge is in Vℓ. To aid intuition, we indicate in each step of

the pseudocode whether a lower bound or an upper bound is being computed. We

emphasize that although we assumed that the input to the subroutine included values

for all of the counters in Vℓ+1, it is clear that the subroutine above only requires values

for the counters in Vℓ+1 that also belong to the appropriate computation tree.

We conclude this section by stating two properties of the subroutine above. The

first is Lemma 2 from [73], which formalizes the intuition that the subroutine computes

lower and upper bounds.

Lemma 3.5.1. Consider running the WHP subroutine on a computation tree of depth

t, where we assume that t is even. For a counter (v, ℓ) at depth t′ ≡ t mod 4, the

value on the outgoing edge from (v, ℓ) to P (v, ℓ) is a lower bound on (v, ℓ)’s overflow.

For a counter (v, ℓ) at depth t′ ≡ t + 2 mod 4, the value on the outgoing edge from

(v, ℓ) to P (v, ℓ) is an upper bound on (v, ℓ)’s overflow.

As a corollary, we get the following lemma.

Lemma 3.5.2. Assume that the WHP subroutine does not fail. Then, the value

returned by the subroutine is the correct value of (u, ℓ)’s overflow.

WHP Inner Loop

Using repeated calls to the subroutine described above, the WHP inner loop deter-

mines the value of xi.

The WHP inner loop has a parameter for each layer, which we denote by t
(1)
ℓ . The

algorithm proceeds as follows. To recover xi, we start by building the computation

tree of depth t
(1)
1 +2 in G1, i.e., the computation tree formed by a breadth-first search

of the graph G1 rooted at (i, 0). Next, for each counter in this computation tree that

also belongs to V1, i.e., the counters at odd depth in the computation tree, we form

a new computation tree of depth t
(1)
2 + 2 in G2. This gives us a set of computation

trees in G2. For each computation tree, the counters at odd depth belong to V3, so

we repeat the process and build a computation tree of depth t
(1)
3 +2 in G3 for each of

68

 and 9

1

2

3

4

5

6

7

8

9

10

11

12

1. Build Tree Rooted at counter 3

Original Data Structure

3

6 9

41

Computation Tree of Depth 2 Rooted
 at counter 3

6

10

8

9

87

1211

Computation Trees of Depth 2 Rooted
 at counter 6 and 9

2. Build trees
 rooted at 6

Figure 3-4: Example of forming multiple computation trees.

these counters. We repeat this process until we reach the last layer. Figure 3-4 gives

an example of this process.

Now, we work backwards from the last layer (layer L). Each computation tree

in GL has depth t
(1)
L + 2. We run the subroutine described above on each of these

computation trees. When we run the subroutine on a particular computation tree,

we set the input cv for each counter (v, L) in VL that also belongs to the computation

tree to be c(v, L). Intuitively, this means that we are assuming that no counter in VL

overflows. As mentioned earlier, for any x ∈ S(A,M,N), this will be the case.

Assuming that none of the subroutine calls fail, we have computed the overflow

for all the counters that appear in computation trees for GL−1. Let (v, L − 1) be a

counter in VL−1 that also belongs to a computation tree in GL−1. We have computed

(v, L−1)’s overflow, which we denote by overflow(v, L−1). To compute the value that

(v, L− 1) would have stored if bL−1 =∞, we simply compute cv = c(v, L− 1) + 2bL−1

overflow(v, L− 1). Once we have computed these values, we can run the subroutine

on the computation trees in GL−1. Then, we compute the appropriate values for

69

counters in VL−2 using the formula cv = c(v, L − 2) + 2bL−2overflow(v, L − 2), and

so on until either the subroutine fails or we successfully run the subroutine on all

the computation trees. Assuming that the subroutine finishes successfully on all of

the computation trees, the final subroutine call gives us the overflow of (i, 0). Then,

xi = c(i, 0)+2b0overflow(i, 0). Thus, if none of the subroutine calls fail, we successfully

recover xi.

WHP Outer Loop

The WHP outer loop repeats the WHP inner loop several times. Specifically, the

WHP outer loop starts by running the WHP inner loop. If none of the subroutine

calls fail, then we recover xi and we are done. Otherwise, we run the WHP inner

loop again, but with a new set of parameters t
(2)
1 , t

(2)
2 , . . . , t

(2)
L . If some subroutine call

fails, we run the WHP inner loop again with a new set of parameters t
(3)
1 , t

(3)
2 , . . . , t

(3)
L ,

and so on up to some maximum number M of repetitions. If after M repetitions we

still fail to recover xi, we declare a failure. For our purposes, we set the parameters

as follows. To specify t
(p)
ℓ , we introduce the auxiliary numbers δ(p) and n

(p)
ℓ . For

1 ≤ p ≤ log(N)/(log(L))2, 1 ≤ ℓ ≤ L, we define δ(p), n
(p)
ℓ , and t

(p)
ℓ as follows:

δ(p) = e−Lp+1

n
(p)
ℓ = e

ℓ
“

c1+
log(c)
log(d)

log log
“

L

δ(p)

””

t
(p)
ℓ =

⌈

t∗ +
1

log d
log

(

1

a
log

(

n
(p)
ℓ L

δ(p)

))⌉

,

where a, c, c1, d, and t∗ are some fixed constants. Finally, we set M = log(N)/(log(L)2).

This completes the specification of all the parameters. The following lemma summa-

rizes the performance of WHP.

70

Lemma 3.5.3. WHP has expected running time

2
O

““

1+(log log(M

2K2A2)−log log(A))
+

”

log
“

2+(log log(M

2K2A2)−log log(A))
+

””

= quasipoly

(

max

(

log

(

M

A2

)

, 1

))

,

and uses

2
O

““

1+(log log(M

2K2A2)−log log(A))
+

”

log
“

2+(log log(M

2K2A2)−log log(A))
+

””

= quasipoly

(

max

(

log

(

M

A2

)

, 1

))

space. The probability that WHP fails is o (1/N4).

3.5.2 BAILOUT Algorithm

BAILOUT is an algorithm that recovers the source x with 0 probability of failure. It

is similar in spirit to WHP, and only uses the values of counters in V0, V
′
1 , . . . , V

′
L. Like

WHP, BAILOUT recovers the source starting with the last layer and working back

to the first layer. The main difference is that because the entire source is recovered,

BAILOUT operates on the entire graph instead of just a local neighborhood. As with

WHP, we describe BAILOUT by first describing a subroutine, and then showing how

the subroutine can be applied recursively to recover the input.

BAILOUT Subroutine

In this section, we give an algorithm that solves the following problem. We are given

the values that all of the counters in V ′
ℓ would have stored if b′ℓ = ∞. The goal is

to recover the values that all counters in V ′
ℓ−1 would have stored if b′ℓ−1 = ∞. The

algorithm we use to solve this problem is essentially the same as the upper bound-

lower bound method described in Section 3.5.1, except that we modify the algorithm

to run on the entire graph instead of just a computation tree. Algorithm 3 gives a

71

pseudocode description of the algorithm.

1: Initialization - For all edges ((u, ℓ − 1)′, (v, ℓ)′) ∈ E ′
ℓ, set m

(0)
(u,ℓ−1)′→(v,ℓ)′ = 0.

(Lower bound)
2: Next, we compute the values in the other direction. Specifically, for all edges

((u, ℓ− 1)′, (v, ℓ)′) ∈ E ′
ℓ, set

m
(0)
(v,ℓ)′→(u,ℓ−1)′ = cv −

∑

(w,ℓ−1)′∈N(v,ℓ)′−(u,ℓ−1)′

m
(0)
(w,ℓ−1)′→(v,ℓ)′ .

(Upper bound)
3: We update the values from V ′

ℓ−1 to V ′
ℓ using the formula

m
(1)
(u,ℓ−1)′→(v,ℓ)′ = min

(w,ℓ)′∈N(u,ℓ−1)′
m

(0)
(w,ℓ)′→(u,ℓ−1)′ .

(Upper bound)
4: We update the values from V ′

ℓ to V ′
ℓ−1 using the formula

m
(1)
(v,ℓ)′→(u,ℓ−1)′ = cv −

∑

(w,ℓ−1)′∈N(v,ℓ)′−(u,ℓ−1)′

m
(1)
(w,ℓ−1)′→(v,ℓ)′ .

(Lower bound)
5: We update the values from V ′

ℓ−1 to V ′
ℓ using the formula

m
(2)
(u,ℓ−1)′→(v,ℓ)′ = max

(

0, max
(w,ℓ)′∈N(u,ℓ−1)′

m
(1)
(w,ℓ)′→(u,ℓ−1)′

)

.

(Lower bound)
6: Termination - Repeat steps 2-5 until the values converge. By convergence, we

mean that all the values computed at step 5 stay the same if we repeat steps 2-5
again. When the messages have converged, the outgoing messages leaving any
counter (u, ℓ − 1)′ ∈ V ′

ℓ−1 are all the same, and the value of this message is the
value that we return as overflow(u, ℓ− 1)′.

Algorithm 3: BAILOUT Subroutine

The algorithm maintains two numbers for each edge ((u, ℓ − 1)′, (v, ℓ)′) ∈ E ′
ℓ,

corresponding to a number for each direction. Because the algorithm is iterative,

we denote these numbers by m
(t)
(u,ℓ−1)′→(v,ℓ)′ and m

(t)
(v,ℓ)′→(u,ℓ−1)′ , where t denotes the

iteration number. Also, for an edge ((u, ℓ− 1)′, (v, ℓ)′), we use N(u, ℓ− 1)′ to denote

the set of vertices adjacent to (u, ℓ− 1)′, and N(u, ℓ− 1)′− (v, ℓ)′ to denote the set of

vertices other than (v, ℓ)′ that are adjacent to (u, ℓ− 1)′. As in Section 3.5.1, to aid

intuition we indicate whether the numbers being computed represent upper or lower

72

bounds.

BAILOUT Loop

Now, we show how the BAILOUT subroutine can be used to determine the value

of xi. As with WHP, we work backwards from layer L. Specifically, we run the

BAILOUT subroutine to recover the overflows of all counters in V ′
L−1. When we run

the subroutine on V ′
L−1, we set the input cv for each counter (v, L)′ to be c(v, L)′. Once

the subroutine finishes, we have computed the overflow for all the counters in V ′
L−1.

To compute the value that (v, L − 1)′ would have stored if b′L−1 = ∞, we compute

cv = c(v, L− 1)′ + 2b′L−1 overflow(v, L− 1). Once we have computed these values, we

can run the BAILOUT subroutine on V ′
L−2, and so on until we have computed the

overflow for all counters in V0. Then, xi = c(i, 0)′ + 2b′0 overflow(i, 0).

The following lemma states that the BAILOUT algorithm works as desired.

Lemma 3.5.4. The BAILOUT algorithm recovers the overflow for all counters in V0

correctly.

For technical reasons, we cannot use a naive implementation of the BAILOUT

subroutine. Specifically, in the first layer, the numbers stored on the edges can be

at least as large as M
K2A

. Thus, a naive implementation that stores the numbers

associated with each edge using log(M
K2A

) space will use at least 3N log(M
K2A

) space

for just the first layer, while we want the workspace used by the algorithm to be

much less than N log A. In Appendix A.1, we show how to modify the BAILOUT

algorithm so that it uses a small amount of space, albeit at the cost of an increased

running time.

Lemma 3.5.5. The modified BAILOUT algorithm has running time O(N4) and uses

at most 4N + O(ε log(1/ε)N) space.

Before moving on, we note that the BAILOUT subroutine can be interpreted

as an algorithm for compressed sensing. As alluded to in Chapter 1 and described

formally in Chapter 4, one of the basic problems in compressed sensing is recovering a

73

signal with very few nonzero entries from a small set of linear measurements. Lemma

3.8.7 can be viewed as saying that the BAILOUT subroutine is capable of recovering

nonnegative signals with at most αn nonzero components when the measurement

matrix is a suitably good expander graph. Note that there is nothing special about

the choice of sparsity αn—for any k and n, we noted in Chapter 2 that suitable

expanders with O(k log(n/k)) right vertices exist, so the BAILOUT subroutine can

be used to recover nonnegative signals with at most k nonzero components from

O(k log(n/k)) measurements. In Chapter 4 we explore the connection between the

BAILOUT subroutine and compressed sensing further, and show that the BAILOUT

subroutine can provide an ℓ1/ℓ1 reconstruction guarantee.

3.6 Space

We conclude this section with the following two lemmas, which prove that for large

A, the data structure uses close to the optimal amount of space.

Lemma 3.6.1. With the choice of parameters given in Section 3.3.2, the generic data

structure uses
(

1 + 2ε +
3ε

2C

)

N log (A) + O

(

N log

(

1

ε

))

space.

Lemma 3.6.2. Any data structure that can recover the input with probability 1 must

use space at least N log A. 4 Also, there exists a data structure using space at most

⌈

N

(

log (A) +
1 + A

A ln(2)

)⌉

which is capable of recovering the input with probability 1, albeit with a computationally

very expensive recovery algorithm.

4If we allow a small probability of failure, then the lower bound is reduced, but it can be verified
that the loss is negligible.

74

3.7 Main Result

Finally, we can state the main result of this chapter, Theorem 3.7.1.

Theorem 3.7.1. With the choice of parameters given in Section 3.3.2, the generic

data structure has the following properties:

1. Write—There exists an algorithm WRITE(i, c) that increments xi by (a possi-

bly negative) c with worst-case running time

2
O

“

1+(log log(M

2K2A2)−log log(A))
+

”

= poly

(

max

(

log

(

M

A2

)

, 1

))

.

2. Read—The exists a (randomized) algorithm READ(i) that returns xi. The

expected running time of READ(i) is

2
O

““

1+(log log(M

2K2A2)−log log(A))
+

”

log
“

2+(log log(M

2K2A2)−log log(A))
+

””

= quasipoly

(

max

(

log

(

M

A2

)

, 1

))

.

3. Space—The data structure uses

(

1 + 2ε +
3ε

2C

)

N log (A) + O

(

N log

(

1

ε

))

space.

Proof. Immediate from Lemmas 3.4.1, 3.5.3, 3.5.5, and 3.6.1.

Remarks:

1. Theorem 3.7.1 shows that our data structure is optimal in terms of space uti-

lization, as Lemma 3.6.1 shows that the space required is at least N log A;

encoding/decoding can take poly(log N) time at worst, e.g., when A = O(1)

and M = Nα for some α ∈ (0, 1), but in more balanced situations, e.g. when

M = Nα and A = Nα/2, the encoding/decoding time can be O(1).

75

2. For the running time bounds in parts 1, 2, and 3 of Theorem 3.7.1, the constant

hidden inside the big-O may depend on C and ε. However, the constant hidden

inside the big-O for the space bound in part 4 of Theorem 3.7.1, does not depend

on C or ε.

3. For READ, we emphasize that the probabilities are over the random choices of

the data structure. We are not assuming any probability distribution on the

input, and the expected running time bound holds even if the input is generated

adversarially.

4. Lemma 3.6.2 shows that any data structure capable of recovering the input

must use at least N log A space. Thus, in the limit of large N and A, our

data structure uses essentially the optimum amount of space. Looking at the

expression given in part 3 of Theorem 3.7.1, we see that in the limit of large A, C

should be chosen as large as possible, and ε should be proportional to 1/ log A,

in order to minimize the space. Of course, choosing small values of ε and large

values of C increases the complexity of READ and WRITE exponentially, so in

practice one might be forced to use more space, i.e., choose a larger value of ε

and/or a smaller value of C, so that READ and WRITE have reasonably low

complexity.

5. We emphasize that when we calculate the space used by our data structure, we

are not just counting the space used by counters. The space bound in Theorem

3.7.1 includes the total space needed to implement the structure, i.e., the space

bound includes the space needed to store the graphs and the work space used

by READ and WRITE.

3.8 Analysis

To prove Theorem 3.7.1, we must analyze the space used by our data structure, and

the complexity of the READ and WRITE algorithms. First, in Section 3.8.1 we prove

Lemmas 3.3.1 and 3.3.2, showing that the graphs used in our data structure have all

76

the desired properties. Next, we analyze the space used by our data structure in

Section 3.8.2. Section 3.8.3 analyzes the complexity of WRITE by proving Lemma

3.4.1, and Section 3.8.4 analyzes the complexity of READ by proving Lemmas 3.5.3

and 3.5.4. Because the analysis of READ is the most involved part of the proof of

Theorem 3.7.1, we relegate some of the technical details to Appendices A.1 and A.2.

Note that in all proofs, when measuring complexity, we make an assumption similar

to the random access memory (RAM) model of computation. Specifically, we assume

that basic arithmetic operations on O(log A + log N)-bit integers take O(1) time.

3.8.1 Basic Properties of our Graphs

In this section, we prove Lemma 3.3.1 and Lemma 3.3.2.

Proof of Lemma 3.3.1

First, we explain how to construct the base graphs H and H1. Then, we prove Lemma

3.3.1.

To construct H, we start with the graph produced by the LPS construction with

p = 5 and some q. This gives us a 6-regular graph. As noted in Chapter 2, this graph

is actually bipartite. The only reason that we cannot use the graph produced by the

LPS construction directly as H is that the 2 partite sets have the same size. To get

a (3, 6)-regular graph from the 6-regular bipartite Cayley graph, we need to double

the size of the left partite set. To do this, we split each left vertex, i.e., each vertex

corresponding to an element in PSL(2, q), into two vertices, each with degree 3. For

example, let v be a vertex in PSL(2, q). It is connected to s1v, s2v, . . . , s6v. We split

v into v1 and v2, where v1 is connected to s1v, s2v, and s3v, while v2 is connected to

s4v, s5v, and s6v. Repeating this for all vertices in PSL(2, q) gives us a (3, 6)-regular

graph. This is the graph that use as the base graph H. It is obvious that this splitting

process does not reduce the girth, so H also has girth Ω(logp(q)).

To construct H1, we use a similar procedure, but we start with the graph produced

by the LPS construction with p = K − 1 and some q. This is a K-regular bipartite

77

graph. Instead of splitting each vertex in PSL(2, q) into two copies, we split each

vertex into K/3 copies. Each copy has degree 3 as above, i.e., we split the generating

set S into K/3 sets of size 3 and assign neighbors accordingly. This gives us a (3, K)-

regular graph with large girth, and we use this graph as H1.

Note that the above constructions of H and H1 assume that K − 1 is a prime

number congruent to 5 mod 12, and that
√

2−(L−2)εN and 6
√

N/K are both of the

form q3−q for some prime q ≡ 1 mod 4 such that either
(

5
q

)

= −1 or
(

K−1
q

)

= −1 so

that the LPS construction gives a graph with the correct number of vertices. These

assumptions can easily be removed. Also, we observe that the (3, 6)-regular graph

H constructed above is essentially the same as the graph constructed in [104]. The

(3, K)-regular graph H1 can be viewed as a natural generalization of the construction

in [104] to higher degrees.

Proof of Lemma 3.3.1. The base graph H can be stored explicitly in adjacency list

form using o(N) space. The two permutations πR and πC and their inverses can be

stored using o(N) space. With this information, it is obvious that we can compute

the neighbors of any vertex using O(1) memory lookups and computations involving

O(log N)-bit numbers.

Regarding the girth, it is clear that the girth of Gℓ is at least the girth of H. From

Lemma 2.3.1, we know that the girth of H is Ω(log N).

The reader may have noticed that we do not actually have to store H explicitly.

The description of the LPS construction given in Section 2.3.1 shows that the neigh-

bors of a vertex in H are given by an explicit formula, and hence we don’t need to

store the neighbors in an adjacency list. However, this savings does not affect the

asymptotic space since the majority of the space used by our data structure is in the

counters.

Proof of Lemma 3.3.2

We use the zigzag product, as described in Section 2.3.3, to construct the expander

graphs needed in our analysis of the BAILOUT subroutine. As per Theorem 7.1

78

of [19], we take Z1 to be the rotation map of the Ramanujan graph produced by the

LPS construction. This is a permutation conductor, and from the description of the

LPS construction given in Section 2.3.1, it is clear that the edge function for this

permutation conductor can be computed in O(1) time. We take Z2 to be an optimal

buffer conductor of constant size, and we take Z3 to be an optimal lossless conductor

of constant size. The parameters of such conductors are described by Lemmas 4.2

and 4.3 of [19]. We choose Z2 and Z3 to be both left- and right-regular—as noted in

Section 2.3.3, this does not significantly affect the achievable performance.

Proof of Lemma 3.3.2. We store the small graphs Z2 and Z3 explicitly in adjacency

list form, which requires O(1) space. As noted above, we can compute the neighbors

of a vertex in the graph produced by the LPS construction without storing the graph.

Therefore, it follows directly from the definition of the zigzag product (as given in

Section 2.3.3) that we can compute the neighbors in the zigzag product in O(1) time.

In a little more detail, from the definition of the edge function, it is clear that given

any vertex on the left, the neighbors on the right can be computed in constant time,

because the edge functions for Z1, Z2 and Z3 can all be computed in constant time.

Also, given a vertex on the right of Z, we can compute its neighbors on the left by

inverting the edge function for Z. Clearly the edge functions for Z2 and Z3 can be

inverted in constant time, and from the description of the LPS construction given in

Section 2.3.1, it is clear that the edge function for Z1 can also be inverted in constant

time. Therefore, we can invert the edge function for Z in constant time as well.

Finally, it is clear that Z1 is left and right regular, and it is easily verified that if

the input graphs are left and right regular, then the output graph Z produced by

the zigzag product is also left and right regular. The expansion property is a direct

consequence of Lemma 2.3.3.

3.8.2 Analysis of Space Requirements

Proof of Lemma 3.6.1. Since the workspace used by the READ and WRITE algo-

rithms is bounded by Lemmas 3.4.1, 3.5.3, and 3.5.5, we can complete the proof of

79

Lemma 3.6.1 by adding up the space used by the counters and the graphs. Lemmas

3.3.1 and 3.3.2 show that the space used by the graphs is o(N). Thus, we just have

to count the space used by counters. In the following analysis, for simplicity we ig-

nore ceilings. Because there are only O(N) counters in the entire date structure, this

means that we only have to add O(N) to the bound obtained by ignoring ceilings.

In V0, each counter uses log(K2A) bits each. The counters in V1 use log(12AK)

bits each. Thus, the space used by the first layer is N log(K2A) + εN log(12AK). V2

through VL−1 use 3 bits per counter, and since the number of counters decreases

geometrically, this give us a total space of O(N). VL uses log(1 + M
2K2A2) bits

per counter, and there are 2−(L−1)εN counters in this layer. Thus, VL uses at

most 2−(C−1)εN log(A) + O(N) space. Similarly, V ′
1 contributes εN log(Ar) space,

V ′
2 , . . . , V

′
L−1 contribute a total of O(εN log(r)) space, and V ′

L contributes at most

ε2−CN log(A)+O(N) space. Adding together all these contributions, we see that the

total space used by counters is
(

1 + 2ε + 3ε2−C
)

N log (A) + O (N log(K)).

Proof of Lemma 3.6.2. To prove the first part of the lemma, observe that the number

of possible inputs satisfying the constraints is at least AN . To see this, note that if

each xi is chosen from the set {0, 1, . . . , A − 1}, then the input does satisfy all the

constraints because
∑

xi is clearly less than AN , and the maximum is less than M .

Thus, there are at least AN inputs satisfying the constraints, which means that a

lower bound on the space used by any data structure is N log A.

For the second part of the lemma, note that an optimal data structure only requires

space at most ⌈log(number of inputs)⌉, because with this much space every possible

input can be encoded to a different state of the data structure, and hence the mapping

from inputs to states is invertible. To get an upper bound on the number of inputs

satisfying the constraints, we neglect the constraint maxxi < M . Then, the number

of possible inputs is given by the binomial coefficient
(

(A+1)N−1
N

)

. It is well-known

80

(cf. [28]) that

log

((

(A + 1)N − 1

N

))

< N ((A + 1) log (A + 1))

−NA log (A) ,

and applying the inequality ln(1 + x) < x, we see that

log

((

(A + 1)N − 1

N

))

< N

(

(A + 1)

(

log (A) +
1

A

))

−NA log (A)

= N

(

log (A) +
1 + A

A ln (2)

)

.

3.8.3 Analysis of WRITE

In this section, we analyze the WRITE algorithm.

Proof of Lemma 3.4.1. We can analyze the complexity of WRITE by counting the

number of counters that the algorithm looks at in the course of processing a query.

Each counter we examine requires us to perform a constant number of basic arithmetic

operations, and by assumption these operations take constant time. So, within a

constant factor, the complexity is upper bounded by the number of counters that the

algorithm examines. To upper bound the number of examined counters, note that

in the worst case, every counter we modify (except in VL and V ′
L) overflows. If this

happens, then we must update 3ℓ−1K counters in Vℓ and lℓ counters in V ′
ℓ . Summing

up the number of counters examined in all the layers, we see that the complexity

of WRITE is O(lL). Since L = (log log(M
2K2A2) − log log(A))+ + C, the proof is

complete.

3.8.4 Analysis of READ

In this section we prove Lemmas 3.5.3 and 3.5.4.

81

WHP Analysis

To prove Lemma 3.5.3, we must prove that the algorithm actually works, i.e., that

xi is recovered with high probability, and that the algorithm has a low expected

running time. We begin with proofs of some preliminary results needed to establish

Lemma 3.5.3. First, we summarize the discussion in Sections 3.5.1 and 3.5.1 with the

following lemma.

Lemma 3.8.1. Assume that WHP does not fail. Then, the value returned by WHP

is the correct value of xi.

Proof. Lemma A.2.1 (proved in Section A.2.1) shows that the counters in VL never

overflow. Thus, when the WHP subroutine is first called in the last layer, the cv

values are correct. From Lemma 3.5.2, it follows that this property is maintained

as an invariant, i.e., provided that the subroutine calls are successful, the cv values

are always correct as we move back towards the first layer. This implies that xi is

recovered correctly.

Lemma 3.8.1 says that WHP never makes an undetected error. Thus, we can just

focus on the probability of failure.

Lemma 3.8.2. Consider the pth repetition of the WHP inner loop, and assume that

the WHP subroutine has run successfully on all computation trees in Gℓ+2, . . . , GL.

Then, the probability that the WHP subroutine fails for any computation tree in Gℓ+1

is at most δ(p)/L.

The proof of Lemma 3.8.2 is more technical than the other proofs in this chapter,

so we relegate it to Appendix A.2. Lemma 3.8.2 allows us to bound the probability

that WHP fails.

Lemma 3.8.3. WHP fails with probability at most δ(M).

Proof. Let Ap
ℓ be the event that any subroutine call fails in layer ℓ during the pth

repetition. Lemma 3.8.2 states that P (Ap
ℓ) ≤ δ(p)/L. Now, the probability that

the pth repetition fails can be upper bounded using the union bound. Specifically,

82

P (pth repetition fails) = P (∪ℓA
p
ℓ) ≤

∑

ℓ P (Ap
ℓ) ≤ Lδ(p)/L = δ(p). The probability

that WHP fails is the probability that the last repetition fails, which we have shown

is at most δ(M).

Now, we bound the expected running time of WHP. First, we state another pre-

liminary lemma.

Lemma 3.8.4. The running time of the pth repetition is O(n
(p)
L).

Proof. The proof of Lemma 3.8.4 is essentially the same as the proof of Lemma 3.4.1.

Specifically, WHP performs a constant number of basic arithmetic operations for each

counter examined. Thus, we can bound the complexity of the pth repetition by the

number of counters that WHP examines during the pth repetition. Let n∗
ℓ denote the

number of counters in Vℓ that are examined during the pth repetition. The following

formula gives a recursion for n∗
ℓ :

n∗
ℓ ≤ n∗

ℓ−1c
t
(p)
ℓ−1 ,

where c is some constant related to the graph Gℓ. Specifically, the size of the compu-

tation tree in each layer grows exponentially in the depth of the tree, and c represents

how quickly the tree grows. For example, for a (3, 6)-regular graph, one valid choice

of c is c = 40.

It is easily verified that the definition of n
(p)
ℓ given in Section 3.4 satisfies the above

recursion, and therefore the number of counters in Vℓ that are examined during the

pth repetition is at most n
(p)
ℓ . Also, it clear from the definition that n

(p)
ℓ grows rapidly

as a function of ℓ. In particular, n
(p)
ℓ ≥ 2n

(p)
ℓ−1. Thus, the total number of counters

examined is at most
∑

ℓ n
(p)
ℓ = O(n

(p)
L).

Lemma 3.8.4 lets us bound the expected running time of WHP.

Lemma 3.8.5.

E[running time of WHP] = 2O(L log(L)).

83

Proof. Let Tp be the running time of the pth repetition, and let pp be the probability

that the first p repetitions fail. Then, the expected running time is given by

E[running time] = T1 + T2p1 + T3p2 + . . . + TMpM−1.

Now, Lemma 3.8.4 says that Tp = O(n
(p)
L). Also, from the proof of lemma 3.8.3, it is

clear that pp ≤ δ(p). Thus, the expected running time is upper bounded by

E[running time] = O
(

n
(1)
L + n

(2)
L δ(1) + . . . + n

(M)
L δ(M−1)

)

.

Substituting the definitions of δ(p) and n
(p)
ℓ given in Section 3.5.1 into the above

formula, we see that the expected running time is at most

eO(L log(L)) +
M
∑

i=2

e−Li

eO((i+1)L log(L)).

Clearly all terms inside the sum are less than 1, so the running time is dominated by

the eO(L log(L)) term.

Proof of Lemma 3.5.3. This lemma is a corollary of Lemmas 3.8.3 and 3.8.5. The

running time bound is obtained by substituting the value of L into the expression

given in Lemma 3.8.5. It is easily verified that δ(M) = o(1/N4).

BAILOUT Analysis

Now, we prove Lemma 3.5.4. Lemma 3.5.4 follows easily from four preliminary lem-

mas. First, the following lemma is the analog of Lemma 3.5.1 for the BAILOUT

subroutine. The proof follows from the same arguments used to prove Lemma 3.5.1,

so we omit the proof.

Lemma 3.8.6. Let (u, ℓ−1)′ be a counter in V ′
ℓ−1. When the BAILOUT subroutine is

run on G′
ℓ, the numbers m

(2t)
(u,ℓ−1)′→(v,ℓ)′ are monotonically nondecreasing lower bounds

84

on the overflow of counter (u, ℓ−1)′, and the numbers m
(2t+1)
(u,ℓ−1)′→(v,ℓ)′ are monotonically

nonincreasing upper bounds on the overflow of counter (u, ℓ− 1)′.

The next lemma shows that the BAILOUT subroutine recovers overflows properly

in a single layer, provided that most of the overflows are 0.

Lemma 3.8.7. Let G be a (c, d)-regular bipartite (2αn, 1/2 + ε)-expander, for some

ε > 0, with n vertices on the left and m vertices on the right. When the BAILOUT

subroutine is run on G, the overflow is computed correctly for all vertices provided

that the number of left vertices with nonzero overflow is at most αn.

Proof. Define the set W2t to be the set of vertices whose lower bounds are wrong after

2t iterations of the BAILOUT subroutine. Initially, |W0| ≤ αn. To start our analysis,

note that Lemma 3.8.6 implies that the BAILOUT subroutine must terminate, since

the lower bounds are monotonically nondecreasing integers upper bounded by M .

Also, if t > s, then W2t ⊆ W2s. Thus, to prove the lemma, it suffices to show that if

0 < |W2t| ≤ αn, then |W2t+2| < |W2t|, because this implies that for sufficiently large

t, W2t must be empty.

Now we prove that if 0 < |W2t| ≤ αn, then |W2t+2| < |W2t|. To prove this, we

just have to show that some vertex in W2t is not in W2t+2. This is where we use the

expansion of G. Let S be the set of vertices adjacent to some vertex in W2t. Then,

|S| ≤ c|W2t|. Now, consider the set T of vertices such that all of their neighbors are

in S—T includes W2t by definition. We know that |T | < 2|W2t|, because |W2t| ≤ αn

and G is a good expander. We claim that T contains all vertices whose upper bounds

at time 2t + 1 are wrong. To see this, note that an upper bound leaving a vertex u

on the left at time 2t + 1 is correct as long as one of its neighbors v is not in S. This

is because if v is not in S, then all the incoming lower bounds to v are correct, so the

upper bound computed by v for u’s overflow must also be correct.

To complete the proof, note that |T | < 2αn, so the expansion property guarantees

that there is a vertex w ∈ T with a unique neighbor, i.e., there exists a w ∈ T and

an x ∈ S such that w is connected to x, and x is connected to no other vertex in

T—for a more detailed derivation of this fact, see Section 4.5.1. By construction, this

85

w must belong to W2t. Also, because x is a unique neighbor, x’s neighbors other than

w all lie outside of T , and thus have correct upper bounds. Therefore, w computes

the correct lower at the next iteration. This proves that w ∈ W2t but w 6∈ W2t+2,

which proves the lemma.

The next lemma proves that the initial cv values in V ′
L are correct.

Lemma 3.8.8. No counter in V ′
L can overflow.

Proof. We prove that the largest possible value that needs to be stored in a counter

in V ′
L is at most Mr

K2A2 . Because 2b′L > Mr
K2A2 , none of these counters overflow.

To verify the upper bound, consider the first layer. By assumption, the inputs

have maximum value M . Therefore, the overflow is at most
⌊

M
K2A

⌋

. Now, each counter

in V ′
1 computes the sum of the overflows associated with its r neighbors in V0. Let s

denote this sum. Then, the overflow is given by
⌊

s
Ar

⌋

. Thus, the overflow is bounded

by
r(M

K2A
)

Ar
≤ M

K2A2 .

Now, each counter in V ′
2 takes the sum of the overflows of its r neighbors in V ′

1 ,

and each of these overflows is at most M
K2A2 . Thus, the overflow for counters in V ′

2 is

bounded by
r M

K4A2

r
<

M

K2A2
.

Continuing down to the last layer, we see that in the last layer the counters in V ′
L−1

have an overflow of at most M
K2A2 . Since each counter in V ′

L is connected to r counters

in V ′
L−1, the largest possible value that a counter in V ′

L needs to store is at most

Mr
K2A2 .

The next lemma bounds the number of overflowing counters in V ′
0 , . . . , V

′
L−1.

Lemma 3.8.9. The fraction of counters that overflow in V ′
ℓ is at most 1/K2.

Proof. Recall that the input must satisfy
∑

xi < AN . Thus, at most a 1/K2 fraction

of the inputs have values that are greater than or equal to K2A, which proves the

claim for V0. Because G′
1 is (l, r)-regular, the average value associated with counters

on the right is at most r/K2, and therefore at most 1/K2 of the counters in V ′
1 are

86

greater than or equal to r, let alone Ar. Repeating this analysis for the future layers,

we see that at every layer at most 1/K2 of the counters overflow.

Proof of Lemma 3.5.4. The proof is straightforward given Lemmas 3.8.7, 3.8.8, and

3.8.9. As usual, we work backwards from the last layer. From Lemma 3.8.8, we

know that the cv values assigned to counters in V ′
L are correct. From Lemma 3.8.9,

we know that at most a 1/K2 of the counters overflow in VL−1. Also, G′
L is an

(l, r)-regular (2/K2, 2/3)-expander, so Lemma 3.8.7 implies that the overflows are

recovered properly. Therefore, the BAILOUT algorithm maintains as an invariant

the property that the cv values are correct at each layer. Thus, when the algorithm

terminates, all inputs have been recovered correctly.

3.9 Conclusion

Our main contribution is a locally encodable and decodable data structure for storing

N nonnegative integers satisfying average and maximum constraints. We view this

as a step towards developing general locally encodable and decodable source codes.

There are many directions for future work. One direction is to explore whether a

variant of our data structure can be made practical. Our main result, Theorem 3.7.1,

only provides asymptotic performance guarantees. For moderate values of N , e.g.,

N < 1, 000, 000, significant optimization issues remain to develop a practical data

structure using space near the information-theoretic limit. For example, our choices

for the number of layers, the number of counters in each layer, and the number of bits

allocated to the counters in each layer are sufficient to prove asymptotic statements,

but all of these parameters will have to be finely tuned to achieve good performance

for moderate N . Also, it is quite likely that irregular graphs can achieve better per-

formance than the regular graphs considered in this chapter. An important question

to answer in this context is how to construct irregular graphs that are suitable for

local encoding and decoding, i.e., irregular graphs with a compact description that

still allows efficient computation of the neighbors of any given vertex. Although it

may be difficult to prove rigorous results for irregular graphs, since constructing ir-

87

regular graphs with large girth is an open problem, it may be easy to show through

simulation that any reasonably random construction of irregular graphs achieves good

performance.

In a more theoretical direction, the data structure considered in this chapter shows

that for certain settings of the parameters N,A, and M , i.e., for certain classes of

sources, there exist source codes achieving rates close to the information-theoretic

limit that still possess constant time or nearly constant time algorithms for local

encoding and local decoding. This suggests the following two avenues for exploration.

First, are there other classes of sources for which there exist (nearly) optimal locally

encodable and locally decodable source codes? For example, do there exist locally

encodable and decodable source codes for every discrete memoryless source? Before

answering this question, one would need to determine what the correct notion of local

encodability is for a probabilistic source. To see why this is not completely trivial, note

that implicit in the concept of local encoding is the fact that the source gets updated

over time, and for many natural update models, even if the initial source distribution

is i.i.d. P for some distribution P , after several updates the source may no longer

be distributed i.i.d. P . One possibility for addressing this issue is to generalize the

average and maximum constraints considered in this chapter to arbitrary constraints

on the type of the source, e.g., a Bernoulli source might be modelled as a binary source

constrained so that after every update, the fraction of 1’s in the source is always less

than p.

Coming at the problem from the other direction, are there nontrivial lower bounds

on the complexity of local encoding and local decoding in terms of the gap between

the space achieved by a particular source code and the information-theoretic limit?

In the context of succinct data structures, [95] shows how to construct a locally

decodable version of arithmetic codes. For local encoding, one might hope to obtain

lower bounds via a metric embedding argument. In more detail, one could try to

show that any function mapping the source into a small number of bits must map

two source realizations that are close to each other, e.g., that differ in only one

component, to bit strings that are far apart, e.g., differ in half of the coordinates. If

88

one had such a lower bound, one could conclude that even if auxiliary computation

is free, just updating the compressed version of the source is complex because half

of the coordinates need to be changed. Unfortunately, the results of [84] shows that

there exist very sparse nonlinear graph codes that approach the information-theoretic

limit for Bernoulli sources. Thus, if there are any nontrivial lower bounds for locally

encodable source codes for Bernoulli sources, then such bounds must rely on the

computational model and not just a metric embedding argument. Thus, it seems

likely that if there are nontrivial lower bounds on the complexity of locally encodable

and decodable source codes, proving such bounds may have to rely on the fact that

the code is simultaneously locally encodable and locally decodable, since the above

results suggest that one can construct codes possessing either property individually.

89

90

Chapter 4

Sparse Graph Codes for

Compressed Sensing

In this chapter, we explore the use of sparse graph codes for compressed sensing. In

Section 4.1, we formally define the compressed sensing problem considered in this

thesis and summarize some of the prior work. Then, we present some positive results

regarding the use of sparse graph codes for compressed sensing. Specifically, we

analyze a simple message-passing algorithm for the compressed sensing of nonnegative

signals. We show that our message-passing algorithm can not only recover sparse

signals, but can also provide a nontrivial ℓ1/ℓ1 guarantee—see Section 4.4 for a formal

statement of our results.

In the second half of this chapter (Section 4.6), we prove that two classes of

matrices—binary matrices (matrices whose entries are either 0 or 1) and very sparse

matrices—do not behave well with respect to the restricted isometry property (RIP)

for the ℓ2 norm. We define the RIP and give some background on its importance in

Section 4.6, but the reader familiar with compressed sensing knows that the RIP is the

main tool used in known constructions of algorithms providing ℓ2/ℓ1 guarantees, and

that ℓ2/ℓ1 guarantees are desirable because they are stronger than ℓ1/ℓ1 guarantees.

Thus, our results suggest that either sparse graph codes are inherently not capable of

providing ℓ2/ℓ1 guarantees, or a new proof technique is needed to prove such strong

recovery guarantees for sparse graph codes.

91

4.1 Background on Compressed Sensing

The basic compressed sensing problem is to estimate a vector x ∈ R
n from a set of

linear measurements y = Ax, where y ∈ R
m and A is a known m-by-n matrix. As

briefly discussed in Chapter 1, the key idea in compressed sensing is that if the signal

x is constrained to be sparse or approximately sparse, then it is possible to recover

x even when m << n. More precisely, one of the basic results in compressed sensing

is that there exist matrices A with only m = O(k log (n/k)) rows such that for all

k-sparse x, i.e., all x with at most k nonzero components, we can recover x exactly

from Ax. Furthermore, [35] and [16, 17] observed that recovery can be accomplished

in polynomial time via linear programming (LP), provided that the measurement

matrix A satisfies certain technical conditions.

When defined over a finite field, the problem of recovering a sparse vector from

linear measurements, e.g., recovery of a sparse vector from linear measurements over

GF (2), is essentially the fundamental problem in the design of binary linear error-

correcting codes. In essence, compressed sensing and coding theory both aim to

design a matrix A and an estimation or decoding algorithm that allows for faithful

recovery of x from y when x is constrained to be sparse.

Given the close connection between the goals of compressed sensing and error-

correcting codes, it is natural to ask if the message-passing algorithms that have

been so successfully applied to the decoding of error-correcting codes can also be

applied to compressed sensing. In the first half of this chapter, we take a step in

this direction by analyzing the performance of a message-passing recovery algorithm

when the matrix A corresponds to the adjacency matrix of a bipartite graph with

good expansion properties. Results of a similar flavor are well-known in the context

of coding theory, but are only beginning to be explored in the context of compressed

sensing. We summarize some of the related work in this direction below.

Compressed sensing was first put forward in [35] and [16, 17], and as mentioned

previously, these works proved that linear programming (LP) can be used to find

the sparsest solution to y = Ax under certain conditions on the measurement matrix

92

A. Since then, many reconstruction algorithms have been proposed [11, 25, 26, 47,

48, 61, 62, 90, 116, 121]—see, e.g., [62] for a summary of various combinations of mea-

surement matrices and algorithms, and their associated performance characteristics.

Most existing combinations fall into two broad classes. In the first class, inspired by

high-dimensional geometry, the measurement matrix A is typically dense (almost all

entries are nonzero), and the recovery algorithms are based on linear or convex opti-

mization. The second class consists of combinatorial algorithms operating on sparse

measurement matrices (A typically has only O(n) nonzero entries). Examples include

the algorithms of [11, 62, 121]. In particular, Algorithm 1 from [121] is essentially

identical to the Sipser-Spielman message-passing algorithm [113]. The algorithm we

consider in this chapter also falls into the second class, and is a minor variant of the

algorithm proposed in [73]. 1 Very recent work on the use of a message-passing algo-

rithm to identify compressed sensing thresholds appears in [36, 37]. Relative to our

analysis, [36] and [37] are more general in that arbitrary (i.e., even dense) matrices A

are considered. However, [36, 37] restrict attention to a probabilistic analysis, while

we perform an adversarial analysis, and thus we are able to provide deterministic

reconstruction guarantees for arbitrary (nonnegative) x.

On the coding theory side, we briefly recall some of the results alluded to in Chap-

ter 1. Specifically, Spielman [113] proved that when the Tanner graph of an LDPC

code has sufficiently high expansion, a simple bit-flipping algorithm can correct a

constant fraction of errors, even if the errors are chosen by an adversary. In [15], this

result was extended to show that a broad class of message-passing algorithms, includ-

ing common algorithms such as the so-called “Gallager A” and “B” algorithms, also

correct a constant fraction of (adversarial) errors when there is sufficient expansion.

Finally, [40] suggested decoding LDPC codes via LP, and [41] proved that this LP

decoder can correct a constant fraction of (adversarial) errors when there is sufficient

expansion. We show that similar techniques can be used to analyze the performance

of the message-passing algorithm proposed considered in this chapter.

1For the reader who has already read Chapter 3, the algorithm is just the BAILOUT subroutine
of Section 3.5.2.

93

4.2 Problem Formulation

In Sections 4.2, 4.3, 4.4, and 4.5, we describe and analyze a message-passing algorithm

for the compressed sensing of nonnegative signals. As our problem model, we seek

to estimate a vector x ∈ R
n
+ of interest from observations of the form y = Ax ∈ R

m
+ ,

where A = [Aij] ∈ {0, 1}m×n is a known measurement matrix (R+ denotes the set

of nonnegative real numbers). Associated with A is the following bipartite graph

G = (X,Y,E). We define X = {1, . . . , n}, Y = {1, . . . ,m}, and E = {(i, j) ∈
X × Y : Aij = 1}. Next, associated with vertex i ∈ X is xi, the ith component of x,

and with vertex j ∈ Y is yj, the jth component of y. Further, we define

Nx(i) = {j ∈ Y : (i, j) ∈ E}, for all i ∈ X,

Ny(j) = {i ∈ X : (i, j) ∈ E}, for all j ∈ Y .

Note that the degrees of i ∈ X, j ∈ Y are |Nx(i)|, |Ny(j)|, respectively. The structure

in A is specified via constraints on the associated graph G. Recall the definition of a

(c, d)-regular (k, α)-expander given in Chapter 2.

Definition 4.2.1 (Expander graph). A given bipartite graph G = (X,Y,E) is a

(c, d)-regular (k, α)-expander if every vertex i ∈ X has degree c, every vertex j ∈ Y

has degree d, and for all subsets S ⊂ X such that |S| ≤ k, we have |Γ(S)| ≥ αc|S|,
where Γ(S) , ∪i∈SNx(i).

4.3 An Iterative Recovery Algorithm

The message-passing algorithm for iteratively recovering x is identical to the BAILOUT

subroutine defined in Section 3.5.2. For convenience, we describe the algorithm again

below. The algorithm maintains two numbers for each edge (i, j) ∈ E, corresponding

to a message in each direction. Let t ≥ 0 denote the iteration number, and let m
(t)
i→j

and m
(t)
j→i denote the two messages along edge (i, j) ∈ E in the tth iteration. The

principle behind the algorithm is to alternately determine lower and upper bounds

94

on x. Specifically, m2t
i→j and m2t+1

j→i are lower bounds on xi for all t ≥ 0; m2t+1
i→j and

m2t
j→i are upper bounds on xi for all t ≥ 0. Also, these lower (respectively, upper)

bounds are monotonically increasing (respectively, decreasing). That is,

m0
i→j ≤ m2

i→j ≤ . . . ; m1
i→j ≥ m3

i→j ≥

Formally, the algorithm is given by the following pseudocode.

1: Initialization (t = 0): for all (i, j) ∈ E, set m0
i→j = 0.

2: Iterate for t = 1, 2, . . . :

a) t = t + 1, update messages for all (i, j) ∈ E via

m2t−2
j→i = yj −

∑

k∈Ny(j)\i
m2t−2

k→j (4.1)

m2t−1
i→j = min

l∈Nx(i)

(

m2t−2
l→i

)

(4.2)

m2t−1
j→i = yj −

∑

k∈Ny(j)\i
m2t−1

k→j (4.3)

m2t
i→j = max

[

0, max
l∈Nx(i)

(

m2t−1
l→i

)

]

(4.4)

b) Estimate xi via x̂s
i = ms

i→j for s = 2t− 1, 2t.

3: Stop when converged (assuming it does).

Algorithm 4: Recovery Algorithm

4.4 Main Results

Our results on the performance of the message-passing algorithm are summarized in

the following two theorems. The first establishes that the algorithm is able to recover

sparse signals exactly.

Theorem 4.4.1. Let G be a (c, d)-regular (⌊ 2
1+2ε

k + 1⌋, 1
2

+ ε)-expander. Then, as

long as k ≥ ‖x‖0 = |{i ∈ X : xi 6= 0}|, the estimate produced by the algorithm satisfies

x̂t = x, for all t ≥ T = O(log1+ε(k)) .

95

The second theorem establishes that the algorithm can approximately recover

x that are not exactly k-sparse, i.e., the algorithm can provide an ℓ1/ℓ1 recovery

guarantee.

Theorem 4.4.2. Let G be a (c, d)-regular (⌊ k
2ε

+ 1⌋, 1
2
+ ε)-expander. Let x(k) denote

the best k-sparse approximation to x, i.e.,

x(k) = min
z∈Rn

+:‖z‖0≤k
‖x− z‖1.

Then, for all even t ≥ T = O(log1+ε(k) log1+ε(cd)),

‖x− x̂t‖1 ≤
(

1 +
d

2ε

)

‖x− x(k)‖1.

Discussion: As a sample choice of parameters, we mentioned in Chapter 2 that

there exist (c, d)-regular (k,> .5)-expanders with c = O(log(n
k
)) and d = O(n

k
). With

such expanders, Theorem 4.4.1 implies that the message-passing algorithm can recover

any k-sparse x from O(k log(n
k
)) measurements in time O(n log(n

k
) log(k)). Compared

to the Sipser-Spielman algorithm [113], the message-passing algorithm requires less

expansion (0.5 vs. 0.75), but the Sipser-Spielman algorithm works for arbitrary (i.e.,

not just nonnegative) vectors x. In [67], it is shown that recovery of nonnegative

x is possible from far less expansion, but the recovery algorithm proposed in [67] is

significantly slower. In particular, they are only able to prove a running time bound

of O(nk2).

Similarly, with appropriate expanders, Theorem 4.4.2 implies that the message-

passing algorithm can be implemented to use O(k log(n
k
)) measurements, and the

factor multiplying the error in the ℓ1/ℓ1 guarantee is O(n
k
). The algorithm can be im-

plemented sequentially in O(n(log(n
k
))2 log(k)) time, or in parallel O(n

k
log(k) log(n

k
))

time using O(n) processors. In particular, when k = Θ(n)—a regime typically of

interest in information-theoretic analysis—the algorithm provides a constant factor

ℓ1/ℓ1 guarantee with O(n log(n)) running time. In this regime, our algorithm is faster

than almost all existing algorithms, e.g., [47,48,90]; the only exception is [62], which

96

is faster, and stronger, in that the multiplier in the ℓ1/ℓ1 guarantee is only (1 + ε) for

the algorithm of [62], rather than O(n
k
). However, relative to the algorithm of [62],

ours has the advantage of working with a smaller expansion factor (albeit at the cost

of requiring expansion from larger sets), and is easily parallelizable. In addition, we

believe that this message-passing algorithm may be applicable in more general set-

tings, e.g., providing guarantees for recovering “random” vectors when the graph is

not an expander, but possesses other properties, such as large girth.

4.5 Analysis

4.5.1 Analysis of Sparse Recovery

(Note: The proof of Theorem 4.4.1 is essentially the same as the proof of Lemma 3.8.7,

but because we use Theorem 4.4.1 as the starting point for our proof of Theorem 4.4.2,

we repeat the proof below.)

We start by recalling a certain monotonicity property of the messages. For each

i ∈ X, the messages m2t
i→j are monotonically nondecreasing lower bounds on xi, and

the messages m2t+1
i→j are monotonically nonincreasing upper bounds on xi. This can be

easily verified by induction. Given this monotonicity property, clearly the messages

at even and odd times have limits: if these messages are equal after a finite number

of iterations, then the algorithm recovers x. We establish that this is indeed the case

under the assumptions of Theorem 4.4.1.

To this end, define W2t = {i ∈ X : xi > m2t
i→·}, i.e., W2t is the set of vertices whose

lower bounds are incorrect after 2t iterations. Clearly, |W0| ≤ k since ‖x‖0 ≤ k, and

the lower bounds to xi, m2t
i→·, are nonnegative for all t. The monotonicity property

of the lower bounds implies that for 0 ≤ s < t, W2t ⊆ W2s. Therefore, it is sufficient

to establish that |W2t+2| < (1 − 2ε)|W2t| if 0 < |W2t| ≤ k; this implies that after

O(log(k)) iterations, W2t must be empty.

Suppose 0 < |W2t| ≤ k. Since W2t+2 ⊂ W2t, it suffices to show that at least a 2ε

fraction of the vertices in W2t are not in W2t+2 . We prove this by using the expansion

97

properties of G. Let V = Γ(W2t) ⊂ Y be the set of all neighbors of W2t. Let T ⊂ X

be {i ∈ X : Nx(i) ⊂ V }. Since G is (c, d)-regular, |V | ≤ c|W2t|. Also, by definition

W2t ⊂ T . We state three important properties of T :

P1. |T | < 2|W2t|/(1 + 2ε). Suppose not. Then, consider any T ′ ⊂ T with |T ′| =

⌊2|W2t|/(1 + 2ε) + 1⌋. We reach a contradiction as follows:

c|W2t| ≥ |V | ≥ |Γ(T ′)| ≥ |T ′|(1 + 2ε)
c

2
> |W2t|c.

P2. Let U = {i ∈ X : m2t+1
i→· > xi}. Then, U ⊂ T . This is because m2t+1

i→· = xi

if there exists j ∈ Nx(i) such that j /∈ V . To see this, note that for such a

j, all k ∈ Ny(j) \ i are not in W2t, and hence xk = m2t
k→j for all these k, so

yj −
∑

k∈Ny(j)\i = xi.

P3. Let T 1 = {i ∈ T : ∃j ∈ V s.t. Ny(j) ∩ T = {i}}. Then, |T 1| ≥ 2ε|T |. To see

this, let A = |{j ∈ V : |Ny(j) ∩ T | = 1}|, and let B = |V | − A. Then, number

of edges between T and V is at least 2B + A, and since G is (c, d)-regular, the

number of edges between T and V is at most c|T |. Therefore, A + 2B ≤ c|T |.
Now, by [P1], |T | < 2k/(1 + 2ε), so |Γ(T)| ≥ c|T |(1 + 2ε)/2. Therefore,

A + B ≥ c|T |(1 + 2ε)/2, whence A ≥ 2εc|T |.

To complete the proof, note that T 1 ⊂ W2t, and |T 1| ≥ 2ε|T | by [P3]. For each i ∈ T 1,

let j(i) ∈ V be its unique neighbor in the definition of T 1, i.e., Ny(j(i)) ∩ T = {i}.
Then, [P2] implies that for all k ∈ Ny(j(i)) \ i, we have m2t+1

k→j(i) = xk. Therefore,

m2t+1
j(i)→i = xi, so m2t+2

i→· = xi. Thus, i /∈ W2t+2, i.e., T 1 ⊂ W2t \W2t+2, completing the

proof of Theorem 4.4.1.

4.5.2 Analysis of ℓ1/ℓ1 Recovery

This section establishes Theorem 4.4.2 in two steps. First, using techniques similar to

those used to prove Theorem 4.4.1, we obtain a very weak bound on the reconstruction

error. Next, we improve this weak bound, by showing that when the error is large, it

must be reduced significantly in the next iteration. This yields the desired result.

98

Given x ∈ R
n
+, let x(k) denote the best k-term approximation to x. Let X+ = {i ∈

X : x
(k)
i 6= 0}, and let X0 = X \X+. For an arbitrary S ⊂ X, let et(S) =

∑

i∈S(xi−x̂t
i)

at the end of iteration t; recall that x̂t is the algorithm’s estimate after t iterations.

Note that x̂2s
i ≤ xi ≤ x̂2s+1

i , so et(S) ≥ 0 for even t, and et(S) ≤ 0 for odd t.

Now, we state the first step of the proof, i.e., the weak bound on reconstruction

error.

Lemma 4.5.1. Let G be a (c, d)-regular (⌊ 2k
1+2ε

+1⌋, 1
2
+ ε)-expander, for some ε > 0.

Then, after t = O(log k) iterations,

‖x− x̂t‖1 ≤ O
(

(cd)O(log(k)) log(k)
)

‖x− x(k)‖1.

Proof. We use ideas similar to those used in the proof of Theorem 4.4.1. Let V =

Γ(X+) be the set of neighbors of X+, and let S ′ = {i ∈ X : Nx(i) ⊂ V }. Also, define

sets Sℓ, ℓ ≥ 0 as follows:

S0 = X \ S ′, S1 = {i ∈ S ′ : ∃j ∈ V s.t. Ny(j) ∩ S ′ = {i}},

and for ℓ ≥ 2,

Sℓ = {i ∈ S ′ : ∃j ∈ V s.t. Ny(j) ∩ (S ′ \ ∪ℓ′<ℓSℓ′) = {i}} .

We note that by arguments similar to those used to establish property [P3], it follows

that |Sℓ| ≥ 2ε|S ′ \ ∪ℓ′<ℓSℓ′ |. Also, [P1] implies that |S ′| ≤ 2k
1+2ε

. Therefore, Sℓ is

empty for ℓ ≥ O(log k).

Adapting arguments used in the proof of Theorem 4.4.1, we bound e2ℓ(Sℓ) for

ℓ ≥ 0. First, by definition S0 ⊂ X0, so e0(S0) ≤ ‖x − x(k)‖1. Now, consider e2(S1).

By definition, each vertex i ∈ S1 has a unique neighbor j, i.e., a neighbor j such that

Ny(j) \ i ⊂ S0. Therefore,

xi − x̂2
i ≤

∑

i′∈Ny(j)\i
(x̂1

i′ − xi′).

99

Each i′ ∈ S0, so for each i′ we have a neighbor j′ 6∈ V , i.e., Ny(j
′) ⊂ X0. Therefore,

x̂1
i′ − xi′ ≤

∑

i′′∈Ny(j′)\i′
(xi′′ − x̂0

i′′),

where all i′′ ∈ X0. Thus,

xi − x̂2
i ≤

∑

i′∈Ny(j)\i

∑

i′′∈Ny(j′)\i′
(xi′′ − x̂0

i′′),

and summing over all i ∈ S1, we obtain

e2(S1) ≤
∑

i∈S1

∑

i′∈Ny(j)\i

∑

i′′∈Ny(j′)\i′
(xi′′ − x̂0

i′′).

Now, we bound the number of times a particular vertex i′′ ∈ S0 can appear on

the right-hand side of the above inequality. i′′ can only occur in sums corresponding

to a vertex i ∈ S1 such that there exists a walk of length 4 between i′′ and i in

G. Therefore, i′′ can occur in at most (cd)2 terms; hence, e2(S1) ≤ (cd)2e0(S0).

Similarly, we can bound e2ℓ(Sℓ) for ℓ > 1 by induction. Assume that for all ℓ′ < ℓ,

e2ℓ′(Sℓ′) ≤ (cd)2ℓ′‖x − x(k)‖1. For each vertex i ∈ Sℓ, there exists a unique neighbor

j, i.e., j satisfies Ny(j) \ i ⊂ ∪ℓ′<ℓSℓ. Thus, xi − x̂2ℓ
i ≤

∑

i′∈Ny(j)\i(x̂
2ℓ−1
i′ − xi′). As

before, each i′ has a unique neighbor j′, and summing over i ∈ Sℓ, we obtain

e2ℓ(Sℓ) ≤
∑

i∈Sℓ

∑

i′∈Ny(j)\i

∑

i′′∈Ny(j′)\i′
(xi′′ − x̂2ℓ−2

i′′),

where all i′′ ∈ ∪ℓ′<ℓ−1Sℓ. Again, each i′′ can only occur (cd)2 times, so we conclude

that

e2ℓ(Sℓ) ≤ (cd)2

ℓ−2
∑

ℓ′=0

e2ℓ−2(Sℓ′) ≤ (cd)2

ℓ−2
∑

ℓ′=0

e2ℓ′(Sℓ′)

≤ (cd)2

ℓ−2
∑

ℓ′=0

(cd)2ℓ′‖x−x(k)‖1 ≤ (cd)2ℓ′‖x−x(k)‖1,

100

where the second inequality is true because of the monotonicity property of the lower

bounds. Thus, we have shown inductively that e2ℓ(Sℓ) ≤ (cd)2ℓ‖x − x(k)‖1 for all ℓ.

Since there are at most O(log k) nonempty sets Sℓ, it follows that after t = O(log k)

iterations,

‖x−x̂t‖1 ≤
∑

ℓ

e2ℓ(Sℓ) ≤ O
(

(cd)O(log(k)) log(k)
)

‖x−x(k)‖1.

On one hand, Lemma 4.5.1 gives a weak bound on the reconstruction error, as

the multiplier is poly(n). On the other hand, it provides good starting point for us to

boost it to obtain a better bound by using the second step described next. To that

end, we first state a definition and lemma adapted from [41].

Definition 4.5.1. Given a (c, d)-regular bipartite graph G = (X,Y,E) and a subset

S ⊂ X, let B(S) = {i ∈ X \ S : Nx(i) ∩ Γ(S) > c
2
}. For a given constant δ > 0, we

say that S has a δ-matching if there exists a set M ⊂ E such that: (a) ∀j ∈ Y , at

most one edge of M is incident to j; (b) ∀i ∈ S ∪ B(S), at least δc edges of M are

incident to i.

Lemma 4.5.2. Let G = (X,Y,E) be a (c, d)-regular (⌊ k
2ε

+ 1⌋, 1
2

+ ε)-expander, for

some ε > 0. Then, every S ⊂ X of size at most k has a 1
2

+ ε-matching.

To keep this chapter self-contained, we include the proof of Lemma 4.5.2. The

following proof is essentially identical to Proposition 4 and Lemma 5 in [41].

Proof. We construct a 1
2

+ ε-matching by analyzing the following max-flow problem.

Consider the subgraph of G induced by the set of left vertices U = S ∪ B(S) and

right vertices V = Γ(S ∪ B(S)). We assign a capacity of 1 to every edge in this

subgraph, and direct these edges from U to V . Finally, we add a source s with an

edge of capacity (1
2
+ ε)c pointing to each vertex in U , and a sink t with an incoming

edge of capacity 1 from every vertex in V . If the maximum s− t flow in this graph is

(1
2
+ ε)c|U |, then we have constructed a 1

2
+ ε-matching. To see this, recall that if the

101

capacities are integral, then the maximum flow can always be chosen to be integral,

and the edges between U and V with nonzero flow values in an integral maximum

flow form a 1
2

+ ε-matching.

To complete the proof, we show that the minimum s − t cut in the max-flow

problem constructed above is (1
2

+ ε)c|U |. To see this, consider an arbitrary s − t

cut s ∪ A ∪ B, where A ⊂ U and B ⊂ V . The capacity of this cut is (1
2

+ ε)c(|U | −
|A|) + |B|+ C, where C is the number of edges between A and V − B. Assume, for

sake of contradiction, that Γ(A) 6⊂ B. Then, from the above formula it follows that

we can produce a cut of at most the same value by replacing B by B ∪ Γ(A). In

more detail, imagine that we move the vertices in Γ(A) ∩ V − B to B one by one,

i.e., we move these vertices from the t-side of the cut to the s-side of the cut. Each

time we move such a vertex, |B| goes up by 1, and C decreases by at least 1 because

by definition we are moving vertices in Γ(A). Therefore, without loss of generality

we can assume that Γ(A) ⊂ B. Now, an argument similar to that used to prove P1

shows that |A| ≤ ⌊ |S|
2ε
⌋: |S| ≤ k, so if |A| ≥ ⌊ |S|

2ε
+ 1⌋, then there exists a set of size

k′ = ⌊ |S|
2ε

+ 1⌋ with at most c|S| + c
2
(k′ − |S|) < (1

2
+ ε)ck′ neighbors, contradicting

the (⌊ k
2ε

+ 1⌋, 1
2

+ ε)-expansion of G. Therefore, |Γ(A)| ≥ (1
2

+ ε)c|A|, so the min-cut

has capacity at least (1
2

+ ε)c(|U | − |A|) + (1
2

+ ε)c|A| = (1
2

+ ε)c|U |.

We use δ-matchings to prove that the reconstruction error decays by a constant

factor in each iteration.

Lemma 4.5.3. Let G be a (c, d)-regular (⌊ k
2ε

+ 1⌋, 1
2

+ ε)-expander, for some ε > 0.

Then,

e2t+2(X+) ≤ 1− 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0).

In our proof of Lemma 4.5.3, we make use of the following lemma establishing a

simple invariance satisfied by the message-passing algorithm. Since this invariance

was used earlier in the proof of Lemma 4.5.1, a proof is omitted.

Lemma 4.5.4. For any i ∈ X, construct a set S as follows. First, choose a vertex

j ∈ Nx(i). Next, for each i′ ∈ Ny(j) \ i, choose a vertex w(i′) ∈ Nx(i
′) (note that

102

these choices can be arbitrary). Finally, define S as ∪i′∈Ny(j)\iNy(w(i′)) \ i′. Then,

no matter how j and w(i′) are chosen,

xi − x̂
(2t+2)
i ≤

∑

i′′∈S

(xi′′ − x̂
(2t)
i′′).

Proof of Lemma 4.5.3. Lemma 4.5.2 guarantees the existence of a 1
2

+ ε-matching,

say M , for the set X+ of (at most) k vertices in X. We use this 1
2

+ ε-matching

to produce a set of inequalities of the form given in Lemma 4.5.4. By adding these

inequalities, we prove Lemma 4.5.3.

For each i ∈ X+, let M(i) be the set of neighbors of i in the 1
2

+ ε-matching.

We construct an inequality, or equivalently, a set S, for each member of M(i). We

construct the sets S sequentially as follows. Fix i and j ∈M(i). For each i′ ∈ Ny(j)\i,
we must choose a neighbor w(i′). If i′ ∈ X+ or i′ ∈ B(X+), set w(i′) to be any vertex

in M(i′) that has not been chosen as w(i′) for some previously constructed set. If

i′ ∈ X \ (X+ ∪ B(X+)), choose w(i′) to be any element of Nx(i
′) \ Γ(X+) that has

not been chosen as w(i′) for some previously constructed set. Although it may not be

immediately apparent, we will see that this process is well-defined, i.e., i′ will always

be able to choose a neighbor w(i′) that has not been used previously. First, however,

we complete the proof assuming that the process is well-defined.

To that end, we establish Lemma 4.5.3 by adding together all the inequalities

associated with the sets S constructed above. First, consider the left-hand side of

this sum. The only terms that appear are xi − x̂
(2t+2)
i , where i ∈ X+, and each of

these appears at least (1
2

+ ε)c times since |M(i)| ≥ (1
2

+ ε)c for all such i. On the

right-hand side, we must count how many times each term xi− x̂
(2t)
i appears in some

inequality, i.e., how many times vertex i appears in the second level of some set S. We

break the analysis up into two cases. First, assume that i ∈ X+. Then, xi− x̂
(2t)
i can

appear in the second level of a set S only if some vertex in Nx(i) was chosen as w(i′)

for some i′ 6= i when we were defining S. This is only possible for i′ ∈ X+ ∪ B(X+).

To bound the contribution due to such i′, note that the vertices in M(i) can never

be chosen as w(i′) for i′ 6= i, and that every vertex in ∪i∈X+M(i) is chosen at most

103

once. Therefore, xi − x̂
(2t)
i appears at most (1

2
− ε)c times. To bound the number of

appearances of xi − x̂
(2t)
i for i 6∈ X+, note that any vertex can appear in some set S

at most cd times. To see this, note that any vertex in Y can appear as w(i′) for a set

S at most d times, once for each of its neighbors, because a single vertex in X never

chooses the same neighbor as its w(i′) more than once. The bound then follows since

each vertex in X has degree c. Hence,

(

1

2
+ ε

)

c e2t+2(X+) ≤
(

1

2
− ε

)

c e2t(X+) + c d e2t(X0),

or equivalently,

e2t+2(X+) ≤ 1− 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0).

We complete the proof by showing that the process for constructing the sets S is

well-defined. The analysis above implicitly establishes this already. First, note that

every i′ ∈ X+ ∪B(X+) has at least (1
2

+ ε)c distinct neighbors that can be chosen as

w(i′), and by definition every i′ ∈ X \ (X+∪B(X+)) has at least c
2

distinct neighbors

that can be chosen as w(i′). Therefore, in order to prove that the construction

procedure for the sets S is well-defined, it suffices to show that every vertex can

appear as an i′, i.e., in the first level of some S, at most c
2

times. For i′ ∈ X+∪B(X+),

at least (1
2
+ ε)c of i′’s neighbors are in the 1

2
+ ε-matching, so any such i′ appears at

most (1
2
− ε)c times. For i′ ∈ X \ (X+ ∪ B(X+)), by definition Nx(i

′) ∩ Γ(X+) ≤ c
2
,

so any such i′ appears at most c
2

times.

Completing the proof of Lemma 4.4.2. We combine lemmas 4.5.1 and 4.5.3. First,

from Lemma 4.5.1, after t = O(log(k)) iterations, the error satisfies the bound

‖x− x̂t‖1 ≤ O((cd)O(log(k)) log(k))‖x− x(k)‖1.

Lemma 4.5.3 implies that after an additional O(log(k) log(cd)) iterations, the error

satisfies

‖x− x̂t+O(log(k) log(cd))‖1 ≤
(

1 +
d

2ε

)

‖x− x(k)‖1.

104

To see this, apply the inequality

e2t+2(X+) ≤ 1− 2ε

1 + 2ε
e2t(X+) +

2d

1 + 2ε
e2t(X0)

repeatedly, and note that e2t(X0) is monotonically nonincreasing as a function of t,

so e2t(X0) < e0(X0).

4.6 Negative Results for Sparse Graph Codes

In this section, we define the RIP and give some background to explain its importance

in the context of compressed sensing. Sections 4.6.2 and 4.6.3 prove that binary and

very sparse matrices have bad performance with respect to the RIP.

4.6.1 Background on the Restricted Isometry Property (RIP)

As mentioned in Section 4.1, [35] and [16, 17] showed that when the measurement

matrix A satisfies certain technical conditions, LP can be used to recover sparse

signals. In particular, [18] introduced the RIPp as a useful tool for proving this

result.

Definition 4.6.1. Let A be an m× n matrix. Then, A satisfies the (k,D)−RIPp if

there exists c > 0 such that for all k-sparse x ∈ R
n,

c||Ax||p ≤ ||x||p ≤ cD||Ax||p.

Here ||·||p denotes the ℓp norm. c is a scaling constant that we include for convenience

in what follows.

In the following, we suppress the subscript p when the results being reviewed are

valid for any choice of p. The RIP is useful because it can be shown that if a matrix

A satisfies the RIP, then LP can be used recover a k-sparse signal x from Ax. We

note that there are other properties besides the RIP that can be used to prove that

a matrix can be used for compressed sensing (cf. [66]). However, one nice aspect of

105

the RIP is that the RIP allows one to prove bounds on the reconstruction error in

the case that x is only approximately sparse and/or the measurements are corrupted

by noise, e.g., the RIP2 can be used to prove ℓ2/ℓ1 reconstruction guarantees.

As mentioned in the introduction to this chapter, ℓ2/ℓ1 guarantees are stronger

than ℓ1/ℓ1 guarantees, so constructing matrices satisfying the RIP2 is a natural prob-

lem to consider. It is well-known that there exist matrices satisfying the RIP2 with

O(k log (n/k)) rows, and this is within a constant factor of a lower bound which states

that Ω(k log (n/k)) rows are necessary (see, for example, [5]). However, the proof that

such matrices exist uses the probabilistic method, and an explicit construction of such

a matrix remains elusive.

The currently known explicit constructions ([89], [26], [31]) use many more rows

than the best (randomly constructed) matrices. Specifically, these constructions re-

quires Ω(k2) rows. One would hope that these constructions could be improved to get

explicit matrices with close to O(k log (n/k)) rows. For example, the results of [9,10]

show that explicit matrices can be constructed that satisfy the RIP1. Specifically,

there exist (non-explicit) matrices with only O(k log (n/k)) rows which satisfy the

RIP1. In addition, there are explicit matrices with O(k2(log log n)O(1)
) rows that satisfy

the RIP1. Another nice property of these matrices is that they are sparse, in the sense

that most of the entries are 0. Sparsity is desirable because it can make algorithms

for computing Ax and recovering x from Ax more efficient [9, 10].

In Section 4.6.2, we show that for the RIP2, a fundamentally different approach is

needed. In particular, the previously mentioned explicit constructions all use binary

matrices, i.e., matrices whose entries are 0 or 1. We show that binary matrices require

substantially more than O(k log (n/k)) rows to satisfy the RIP2. In Section 4.6.3, we

show that even if one relaxes the binary constraint, matrices that satisfy the RIP2

must have significantly more nonzero entries that matrices satisfying the RIP1.

4.6.2 Binary Matrices are Bad With Respect to the RIP2

In this section we prove that binary matrices cannot achieve good performance with

respect to the RIP2. First, we make a couple of definitions that will be used in what

106

follows. Given a binary matrix A, let f be the minimum fraction of 1’s in any column

of A, i.e., fm is the minimum number of ones in a column of A. Also, let r be the

maximum number of 1’s in any row of A. By permuting the rows and columns of A,

we may assume that A1,i = 1 for 1 ≤ i ≤ r, i.e., that the first row of A has a 1 in

the first r entries. In the following proofs, we assume that this reordering has already

been done.

The following theorem shows that binary matrices require substantially more rows

than optimal matrices satisfying the RIP2.

Theorem 4.6.1. Let A be an m×n binary matrix satisfying the (k,D)−RIP2. Then,

m ≥ min
{

k2

D4 ,
n

D2

}

.

Before proving Theorem 4.6.1, we need the following lemma.

Lemma 4.6.1. Let A be an m×n binary matrix satisfying the (k,D)−RIP2. Then,

f ≤ D2

k
.

Proof. To start, we square the inequalities defining the (k,D)− RIP2 to obtain

c2||Ax||22 ≤ ||x||22 ≤ c2D2||Ax||22.

We can bound c by considering the 1-sparse vector x = ei, where ei is a standard

basis vector with a 1 in a coordinate corresponding to a column of A with fm 1’s.

Then, the inequalities above give c2fm ≤ 1 ≤ c2D2fm. We will only need the second

inequality, which we rewrite as
1

c2
≤ D2fm. (4.5)

Now, consider the vector x with 1’s in the first k positions and 0’s elsewhere, i.e.,

x =
∑k

i=1 ei. Let w(i) denote the number of 1’s in row i and in the first k columns

of A. From the definition of f , the first k columns of A contain at least fmk 1’s, so
∑

w(i) ≥ fmk. Applying the Cauchy-Schwartz inequality, we obtain

||Ax||22 =
m
∑

i=1

w(i)2 ≥ (
∑m

i=1 w(i))
2

m
≥ (fk)2 m.

107

But

||Ax||22 ≤
||x||22
c2
≤ D2fmk,

so putting the two inequalities together gives (fk)2 m ≤ D2fmk. Cancelling out fmk

from both sides gives f ≤ D2

k
.

Now, we prove Theorem 4.6.1.

Proof. Lemma 4.6.1 gives us a bound on f that will be useful when r > k. We can

obtain a second bound on f from the obvious inequality fmn ≤ number of 1’s in A ≤
rm. Thus, f ≤ r

n
. As we will see, this bound is useful when r ≤ k.

For notational convenience, let s = min{r, k}. Consider the vector x with 1’s in

the first s positions and 0’s elsewhere, i.e., x =
∑s

i=1 ei. For this choice of x, we see

that ||Ax||22 ≥ s2, because the first entry of Ax is s. Note that because s ≤ k, the

inequalities defining the (k,D)− RIP2 apply to x. Thus, we can apply equation 4.5

to get

s2 ≤ ||Ax||22 ≤
||x||22
c2
≤ D2fms.

We now plug in our two bounds on f . If r > k, then s = k, and we use the bound

from Lemma 4.6.1. This gives

k2 ≤ D2D2

k
mk,

so m ≥ k2

D4 . Similarly, if r ≤ k, then s = r, so using our second bound on f gives

r2 ≤ D2 r

n
mr.

Thus, in this case m ≥ n
D2 . Putting the two bounds together, we see that m ≥

min{ k2

D4 ,
n

D2}, completing the proof.

Note that our lower bounds on m are essentially tight for a large range of param-

eters. Specifically, assume that D = O(1) and that k = Θ(nα) for some constant

0 < α < .5. Then, the matrices constructed in [31] achieve m = O((k
α
)2), so these

matrices are within a constant factor of our lower bound.

108

4.6.3 Very Sparse Matrices are Bad with Respect to the RIP2

Using an argument similar to that in the previous section, we can show that sparse

matrices (with arbitrary nonzero entries) do not achieve good performance with re-

spect to the RIP2. Define the density ρ of A as

ρ =
number of nonzero entries in A

n
,

i.e., ρ is the average number of nonzero entries per column. We have the following

result.

Theorem 4.6.2. Let A be an m×n matrix that satisfies the (k,D)−RIP2. Assume

that A has density ρ. Then, ρ ≥ min
{

n
4D2m

, k
2D2

}

.

Proof. Because there are no restrictions on the entries in A, we can rescale A, and

thus without loss of generality we may assume that the c appearing in the definition

of the RIP2 is 1. Now, by Markov’s inequality, if the density is ρ, then at most n
2

columns of A have more than 2ρ nonzero entries. If we discard these columns, the

modified matrix A′ still satisfies the (k,D) − RIP2, and has at least n
2

columns. All

columns of A′ have at most 2ρ ones. Now, by considering the definition of the RIP2

when x is a standard basis vector, we see that the norm of every column of A′ ≥ 1,

and therefore every column of A′ has an element with absolute value ≥ 1√
2ρ

.

Now, associate each column of A′ with the row of the largest element (in absolute

value) in the column, breaking ties arbitrarily. Then, by the pigeonhole principle,

some row has at least n
2m

columns associated with it. By appropriately permuting the

rows and columns, without loss of generality we may assume that columns 1, . . . , n
2m

are associated with the first row. Consider the vector x =
∑

n
2m

i=1 sgn(A1,i)ei, where

sgn(A1,i) denotes the sign of the ith entry in the first row of A, i.e., sgn(A1,i) = 1

if the ith entry is positive, and −1 otherwise. Clearly ||x||22 = n
2m

, but A′x has first

entry at least n
2m

√
2ρ

. Thus, if n
2m
≤ k, then x is k-sparse, and we have

n2

8ρm2
≤ ||A′x||22 ≤ D2 n

2m
.

109

Rearranging this inequality, we see that ρ ≥ n
4D2m

.

On the other hand, if n
2m

> k, we can consider the k-sparse vector x =
∑k

i=1 sgn(A1,i)ei.

This gives us
k2

2ρ
≤ ||A′x||22 ≤ D2k,

so ρ ≥ k
2D2 .

Theorem 4.6.2 gives us a lower bound on the density for matrices that are (asymp-

totically) optimal with respect to the RIP2. Namely, Theorem 4.6.2 implies that to

have m = O(k log n
k
), ρ must be at least min{Ω(n

4D2k log n
k

), k
2D2}. For example, in the

case that D = O(1) and k = nα for some 0 < α < 1, we see that matrices satisfying

the RIP2 with m = O(k log n
k
) must have density at least Ω(nmin{α,1−α}−o(1)). This is

in contrast with the case for the RIP1, where the results of [9, 10] imply that there

exist (non-explicit) matrices with density O(log n
k
) and O(k log(n

k
)) rows that satisfy

the RIP1.

4.7 Conclusion

In the first part of this chapter, we performed an adversarial analysis of a sim-

ple message-passing algorithm for recovering a vector x ∈ Rn
+ from measurements

y = Ax ∈ Rm
+ , where A ∈ {0, 1}m×n. We showed that when x has at most k nonzero

entries and A corresponds to a bipartite graph with expansion factor greater than

0.5, the message-passing algorithm recovers x exactly. For approximate recovery, we

proved that when A corresponds to a bipartite graph with expansion factor greater

than 0.5, the message-passing algorithm produces an estimate x̂ satisfying an ℓ1/ℓ1

recovery guarantee of the form ‖x − x̂‖1 ≤ O(n
k
)‖x − x(k)‖1, where x(k) is the best

k-sparse approximation of x. Choosing appropriate expanders, this implies that the

message-passing algorithm can recover k-sparse x from O(k log(n
k
)) measurements in

time O(n log(n
k
) log(k)), and can recover arbitrary x with an ℓ1/ℓ1 guarantee from

O(k log(n
k
)) in time O(n(log(n

k
))2 log(k)). As noted in Section 4.4, these results are

better than almost all algorithms in the literature, with the exception of [62]. Viewed

110

more broadly, our results can be interpreted as a further step toward formally con-

necting the theory of message-passing algorithms with that of compressed sensing,

which we anticipate being of growing importance to further advances in the field.

In the second part of this chapter, we showed that sparse graph codes are inher-

ently limited with respect to the RIP2. Finding an explicit construction of matrices

satisfying the RIP2 remains an interesting open problem. We showed that existing

constructions have essentially been pushed as far as possible, in the sense that our

bound on the number of rows required by binary matrices is within a constant factor

of the construction in [31]. We also proved that matrices satisfying the RIP2 must

have significantly more nonzero entries than matrices satisfying the RIP1. This sug-

gests that from the point of view of developing efficient algorithms, either a new class

of codes, or a new analysis technique, is required to design efficient (linear or nearly

linear time) algorithms providing stronger reconstruction guarantees, e.g., ℓ2/ℓ1 guar-

antees.

111

112

Chapter 5

Lossy Source Coding

This chapter presents several results on lossy source coding. In the first half of this

chapter (Sections 5.2 and 5.3), we show that for a broad class of rate-distortion prob-

lems, LDPC codes can achieve rates arbitrarily close to the rate-distortion function.

In addition, our proof technique shows that if one ignores computational complex-

ity, there is a strong connection between channel coding and rate-distortion coding.

Specifically, we show that for a broad class of rate-distortion problems, a channel code

achieving low probability of error (under ML decoding) for the reverse channel [28]

automatically achieves low distortion (using an optimal quantizer) for the original

rate-distortion problem. In particular, as the code rate approaches the capacity of

the reverse channel, the distortion approaches the rate-distortion bound.

In retrospect, this result is not surprising—many authors, for example [28], have

observed that there is a connection between the standard random coding arguments

used for channel coding and lossy source coding. However, the fact that the random

coding solutions are related does not mean that a given good channel code can be used

for lossy source coding. Phrased differently, just knowing that on average, randomly

chosen codes are good for both channel coding and lossy source coding does not allow

one to conclude that every good channel code is a good lossy source code. In fact,

recent work on lossy source coding suggests that lossy source coding and channel

coding are not as closely related as one would hope. For example, [80] suggests that

although LDPC codes are much better than LDGM codes for channel coding, LDGM

113

codes may be fundamentally better than LDPC codes for lossy source coding. Our

results do not rule out the possibility that LDPC codes are worse than LDGM codes

when complexity is taken into consideration, but they do show that the connection

between the lossy source coding and channel coding problems is stronger than just

a relationship between random codes—ignoring complexity, any given good channel

code must be a good lossy source code.

In the second half of the chapter (Sections Section 5.4 and Section 5.5), we in-

vestigate different sparse graph structures to see how the choice of graph structure

impacts the tradeoff between graph sparsity, i.e., the number of edges in the graph-

ical representation of the code, and the best achievable rate-distortion performance.

For the problem of compressing a binary symmetric source under Hamming distor-

tion (BSS-HD) (see Section 5.1 for a precise definition of this problem), we provide

lower bounds on the number of edges in the graph representing an LDGM code or

an LDPC code as a function of the rate-distortion performance. More precisely, we

show that even if an optimal (and potentially computationally expensive) quantiza-

tion algorithm is used, the average degree of the vertices in the graph representing

an LDGM code or an LDPC code most grow like Ω(log(1
ε
)) in order for the code to

come within ε of the rate-distortion bound. Contrast this with a compound code

formed by concatenating LDGM and LDPC codes. It has been shown [79] that using

an optimal quantization algorithm, the compound construction can produce codes

achieving performance arbitrarily close to the rate-distortion bound for the BSS-HD

problem [79], and the average degree remains uniformly bounded regardless of the

gap ε to the rate-distortion bound.

We emphasize that the lower bounds on sparsity for LDGM codes and LDPC

codes should not be viewed as a strong argument against using these codes. The

logarithmic dependence of the average degree on the gap to the rate-distortion bound

is identical to the famous lower bound from [45] on the performance of LDPC codes

for the BSC as a function of the average check node degree. Despite this lower

bound, LDPC codes remain one of the best practical solutions to many channel coding

problems, and our lower bounds by no means preclude either LDGM or LDPC codes

114

from being practically useful for lossy source coding. However, our lower bounds

represent a first step towards extending some results from channel coding to the

context of lossy source coding. Specifically, in the context of channel coding for the

BEC, LDGM codes cannot achieve low block error rates, and [106] shows that the

average degree of the vertices in good LDPC codes must grow logarithmically as

a function of the gap to capacity. On the other hand, the compound construction

formed by concatenating LDGM codes and LDPC codes can achieve rates arbitrarily

close to channel capacity (under ML decoding) for any memoryless binary input

output-symmetric channel [58]. Furthermore, several classes of compound codes have

been found that achieve capacity for the BEC under message-passing decoding with

uniformly bounded complexity [58,96]. In summary, for the BEC, these results show

that compound codes offer fundamental advantages over either LDGM codes or LDPC

codes in the limit of long blocklengths and very small gaps to capacity.

Our lower bounds show that it is possible that compound codes offer a similar

advantage in the context of lossy source coding. Of course, to formalize the analogy

between lossy source coding and the BEC one would have to develop an efficient

quantization algorithm for compound codes, and as mentioned previously, our lower

bounds do not rule out the possibility of efficient quantization algorithms for LDGM

codes and LDPC codes, just as the lower bound from [45] did not rule out efficient

algorithms for decoding LDPC codes over the BSC. All one can conclude from our

lower bounds is that if a message-passing algorithm, or similar algorithm whose com-

plexity is proportional to the number of edges in the graph, is used for quantization,

then compound codes can potentially achieve performance near the rate-distortion

bound with lower complexity than LDGM codes or LDPC codes.

5.1 Rate-Distortion Problem Formulation

In this section, we review the rate-distortion problem [109] and define some notation.

In the standard rate-distortion problem formulation, X and Y denote finite source

and reconstruction alphabets, respectively, and PX denotes a probability distribution

115

over X. Let d : X × Y → R denote the per-symbol distortion function, and let

M denote the maximum value of d over X × Y. We consider a quantizing an i.i.d.

source Xn where each symbol is distributed according to PX . Given two strings

xn ∈ Xn and yn ∈ Yn, define the distortion as the sum of the per-letter distortions,

i.e., d(xn, yn) =
∑n

i=1 d(xi, yi). The goal is to represent Xn using as few bits as

possible, subject to the constraint that the expected distortion between Xn and the

reconstruction Y n(Xn) is at most Dn, or equivalently, the expected average distortion

per source symbol is at most D. We define the rate-distortion function R(D) as the

minimum rate of any code capable of quantizing Xn to within expected average

distortion D. As shown in [109],

R(D) = min
QY |X :EPXQY |X

[d(X,Y)]≤D
I(X; Y),

where X is a random variable distributed according to PX , Y is a Y-valued random

variable, QY |X denotes the conditional distribution of Y given X, and EPXQY |X
de-

notes expectation with respect to the distribution where the pair X,Y ∼ PXQY |X ,

i.e., p(x, y) = PX(x)QY |X(y|x) for all pairs x ∈ X, y ∈ Y.

Here are three examples of rate-distortion problems considered in this chapter.

• Binary Erasure Quantization: The binary erasure quantization (BEQ) problem

has X = {0, 1, ∗} and Y = {0, 1}. The distortion function is given by

d(x, y) =



















0 for x ∈ {0, 1} and x = y

1 for x ∈ {0, 1} and x 6= y

0 for x = ∗
.

The source distribution PX is specified in terms of the erasure probability e.

Given e ∈ [0, 1], PX(∗) = e and PX(0) = PX(1) = 1−e
2

. The associated rate-

distortion function at 0 distortion is R(0) = 1− e.

• Quantization Of A Binary Symmetric Source Under Hamming Distortion: The

problem of quantizing of a binary symmetric source under Hamming distortion

116

(BSS-HD) is the rate-distortion problem where X = Y = {0, 1}, PX(x) = .5 for

both x = 0 and x = 1, and

d(x, y) =







0 for x = y

1 for x 6= y
.

The associated rate-distortion function is R(D) = 1− hb(D), where

hb(D) = −D log(D)− (1−D) log(1−D) denotes the binary entropy function.

• Quantization of a Gaussian Source Under Mean-Square Distortion: Quantiza-

tion of a Gaussian source under mean-square distortion is the rate-distortion

problem where X = Y = R, X ∼ N(0, 1), and d(x, y) = (x−y)2. The associated

rate-distortion function is R(D) = 1
2
log(1

D
). Note that this problem does not

satisfy our definition of a rate-distortion problem because X and Y are not finite,

but as we will see in Section 5.3, our proof techniques can easily be extended

to this case.

5.2 LDPC Codes are Good for BEQ

To start our study of lossy source coding, we reexamine the BEQ problem, which was

first considered in [80]. The following lemma, from [80], gives a useful relationship

between good codes for the BEC and good codes for BEQ.

Lemma 5.2.1. A linear code C with block length n can recover from a particular

erasure sequence (under ML decoding) if and only if the dual code C⊥ can quantize

the dual sequence, i.e., the sequence where all the erased symbols have been turned into

unerased symbols and vice versa. Also, if C can recover from an erasure sequence using

message-passing decoding, then C⊥ can quantize the dual sequence using a dualized

form of message-passing decoding. (For the details of how to dualize message-passing

to work for BEQ, see [80].)

Based on Lemma 5.2.1, one can show that LDGM codes that are duals of capacity-

achieving LDPC codes for the BEC achieve the rate-distortion function for BEQ (at 0

117

distortion). On the other hand, in [80] the authors prove that low complexity LDPC

codes are not effective for this problem. Specifically, they prove that for BEQ, if an

LDPC code is capable of quantizing the source so that the distortion is exactly 0

with high probability, then the check degree must be at least Ω(log n). This result

would suggest that LDPC codes are bad quantizers, because even for the simple

distortion in BEQ, the check degree must grow at least logarithmically to achieve

good performance.

As we will demonstrate, there is a simple way around the lower bound proved

in [80]. The bound in [80] is reminiscent of the Ω(log n) lower bound on the check

degree for LT codes [75] on the BEC. By combining LT codes with a precode, Raptor

codes [110] are able to beat the lower bound for LT codes and achieve constant

complexity encoding and decoding per bit. So, let us consider the dual of a Raptor

code. Figure 5-1 shows the graph representing a Raptor code, and Figure 5-2 shows

the graph representing the dual of a Raptor code.

LT Code

+

AA
AA

AA
AA

PPPPPPPPPPPPPP +

AA
AA

AA
AA

+

AA
AA

AA
AA

UUUUUUUUUUUUUUUUUUUUUU +

CC
CC

CC
CC

. . . +

AA
AA

AA
AA

{{
{{

{{
{{

+

nnnnnnnnnnnnnn +

}}
}}

}}
}}

+

}}
}}

}}
}}

= = = . . . = = =

+

AAAAAAAA

mmmmmmmmmmmmmmm

PPPPPPPPPPPPPP
. . . +

}}}}}}}}

nnnnnnnnnnnnnnLDPC Precode

Figure 5-1: Raptor code—this code performs well on the BEC.

Dual LT Code

=

AA
AA

AA
AA

PPPPPPPPPPPPPP =

AA
AA

AA
AA

=

AA
AA

AA
AA

UUUUUUUUUUUUUUUUUUUUUU =

CC
CC

CC
CC

C
. . . =

AA
AA

AA
AA

{{
{{

{{
{{

{
=

nnnnnnnnnnnnnn =

}}
}}

}}
}}

=

}}
}}

}}
}}

+ + + . . . + + +

=

AAAAAAAA

mmmmmmmmmmmmmmm

PPPPPPPPPPPPPP
. . . =

}}}}}}}}

nnnnnnnnnnnnnn
Dual Precode

Figure 5-2: Dual Raptor code—this code performs well for BEQ.

Figure 5-2 warrants some explanation. If we define G to be a generator matrix for

the LT part of a Raptor code, and H to be a parity check matrix for the precode, then

118

a Raptor code is the set {c|∃x s.t. xG = c,HxT = 0}. Therefore, the dual is the set

{y|∃z s.t. GyT +(zH)T = 0}. To see this, note that for any vectors c and y satisfying

these constraints, cyT = xGyT = x(zH)T = xHT zT = (zHxT)T = 0. Thus, the set

of y’s defined by our constraint must be contained in the dual code. Assuming that

G and H have full rank, it is easy to see that the dimension of our set of y’s is the

maximum possible value, which shows that the constraint exactly specifies the dual.

Translating the constraint into normal graph notation [42], computing GyT can be

accomplished by dualizing the LT part of the Raptor code, i.e., switch the variable

and check nodes as in the top part of Figure 5-2. 1 To compute (zH)T we just dualize

the precode, i.e., switch the variable and check nodes as in the bottom part of Figure

5-2. Thus, the constraint GyT +(zH)T = 0 is exactly captured by the graph in Figure

5-2. Because the dual constraint only asks for some z to exist, to interpret Figure

5-2 properly, the codeword is placed on the top set of variable nodes, and the bottom

variables nodes are all erased, i.e., we can set them arbitrarily in order to satisfy the

check nodes.

Because Raptor codes are capacity-achieving for the BEC, it follows from Lemma

5.2.1 that the duals of Raptor codes achieving the rate-distortion function for BEQ.

Now, imagine redrawing Figure 5-2 with all the variable nodes on the top, i.e., move

the variables nodes corresponding to the dual precode to the top of the figure. Then,

we see that a dual Raptor code is really just an LDPC code. The important point is

that the variable nodes corresponding to the precode are always erased, i.e., a dual

Raptor code is an LDPC code where a few variable nodes are always erased. This is

analogous to the situation in channel coding. Intuitively, the reason that LT codes

must have Ω(log n) average degree to achieve low error probability is that otherwise

there are always a few variable nodes that are never connected to any checks. The

LDPC precode of a Raptor code allows a Raptor code to beat the Ω(log n) lower

bound because the precode covers every variable node, so there are no longer any

1As noted in Chapter 2, for LDGM and LDPC codes drawn using Forney’s normal graph notation
[42], the dual code can be obtained by swapping the variables nodes with the check nodes. More
generally, swapping the variables nodes with the check nodes allows us to compute GyT if we do not
view the check nodes as constraints, but instead think of them as producing outputs.

119

isolated variable nodes. In the context of BEQ, the key idea in the proof of the

Ω(log n) lower bound from [80] on the check degree for LDPC codes is that if the

degree is too small, then some check nodes will not be connected to any erased

variable nodes, and with probability .5 such check nodes will be unsatisfiable. The

dual of the precode allows dual Raptor codes to beat this lower bound because by

padding the input with a small number of erased variable nodes, every check node is

now guaranteed to be connected to at least one erased variable node. Put differently,

just as the LDPC precode in a Raptor code “fixes” the few variable nodes we could

not recover by decoding the LT code, the LDGM dual precode of a dual Raptor code

fixes the few parity checks we could not satisfy using the dual LT code. Thus, the

simple modification of reserving a set of variables nodes in an LDPC code to always

be erased, i.e., padding the input with a few erasures, allows LDPC codes to achieve

optimal performance for BEQ. This suggests that we should not give up on LDPC

codes so quickly, and as we show in the next section, it turns out that LDPC codes

can perform quite well for the BSS-HD problem, at least when we assume that an

optimal (and potentially computationally complex) quantization algorithm is used.

5.3 LDPC Codes are Good for Hamming Distor-

tion

In this section, we prove that LDPC codes can achieve points arbitrarily close to the

rate-distortion bound for the BSS-HD problem. We actually prove a more general

statement which roughly says that good channel codes are also good lossy source

codes. The proof is based on two simple ideas. First, if a channel code allows reliable

transmission, then intuitively it is clear that the typicality regions associated to dif-

ferent codewords cannot overlap significantly. The second idea is to take advantage

of the concentration of measure phenomenon in high dimensional spaces. Specifi-

cally, we can use isoperimetric inequalities to show that for any code, the distortion

is tightly concentrated around its expectation. We note that this approach has been

120

pursued in [30]. Our results are essentially identical to the results derived in [30],

but we state the results in more generality, and we simplify the presentation by using

Azuma’s inequality instead of the Blowing Up Lemma of [30].

Now, we proceed with the formal argument. The usual proof that rates above

R(D) are achievable, as given in [109] or [28], uses a random coding argument. For our

purposes, it is useful to instead prove achievability in a manner similar to that of [30].

Roughly speaking, this achievability proof picks a certain channel (corresponding to

the minimizing Q in the formula for R(D)), and shows that a code coming very close

to the capacity of this channel is also a good code for the original rate-distortion

problem. The following theorem summarizes our formal result.

Theorem 5.3.1. Let Q∗ denote the minimizing conditional distribution in the for-

mula for R(D). Define the reverse channel Q′ : Y → X so that when X,Y ∼ PXQ∗,

Q′ is the conditional distribution of X given Y . Let C be a code for the reverse

channel Q′ with rate R that has average error probability at most .5. Then, when

an optimal quantization algorithm is used (i.e., an algorithm that always encodes the

source to the codeword minimizing the distortion), the code C achieves expected aver-

age distortion at most D + 2
√

R(D)−R + f(R) + o(1), where f(R) is a continuous

function of R satisfying limR→R(D) f(R) = 0, and the o(1) is with respect to n. In the

case that the reverse channel is symmetric, we can choose f(R) = R(D)−R.

Before proving Theorem 5.3.1, we note that the theorem easily implies that LDPC

codes are good for the BSS-HD problem.

Theorem 5.3.2. For every 0 ≤ δ ≤ .5 and every ε > 0, there exist LDPC codes of

rate 1 − hb(δ) + ε achieving expected average distortion δ for the BSS-HD problem.

The maximum degree of any node in the graphs of these codes is O(log(1
ε
)).

Proof. It is well-known that the reverse-channel for the BSS-HD problem with dis-

tortion constraint D = δ is simply BSC(δ). It is also well-known [45, 77] that LDPC

codes can achieve rates arbitrarily close to the capacity of BSC(δ) with vanishing

probability of error under ML decoding. In particular, Mackay’s ensemble [77] gives

a family of LDPC codes with rate 1− hb(δ)− ε that achieves probability of error at

121

most .5 (in fact, the probability of error decays exponentially with the blocklength

n), and the maximum degree of any variable node in the Tanner graphs associated

with this family of codes is O(log(1
ε
)). (We can also construct codes such that the

maximum degree of any node, variable or check, is at most O(log(1
ε
)).) Although [77]

does not explicitly state the above bound on degree, the bound follows immediately

from the equation right after equation 42 in [77]. Applying Theorem 5.3.1, noting

that BSC(δ) is symmetric, so that we may take f(R) = R(D) − R, it follows that

this family of codes achieves expected average distortion at most δ + 2
√

2ε + o(1),

completing the proof.

Now, we proceed with the proof of Theorem 5.3.1. As alluded to above, this

theorem is essentially identical to Thm. 2.3 of [30]. The main difference is that we

state the theorem in a form that makes it explicitly clear that the theorem provides

a nontrivial bound on the distortion obtained from codes that are not quite capacity-

achieving, while the statement in [30] may leave the reader with the impression that

the distortion can only be bounded for codes that achieve the capacity of the reverse

channel. To prove Theorem 5.3.1, we need the following lemma, which is just a special

case of Theorem 7.4.2 from [3], which in turn is a special case of Azuma’s inequality.

Lemma 5.3.1. Let P1, . . . , Pn be probability distributions over X, and let P =
∏n

i=1 Pi

be the product probability distribution over {0, 1}n, i.e., P generates each source sym-

bol independently. Consider a set S ⊂ Xn, and define

Sε = {xn ∈ Xn : ∃x′n ∈ S such that xn and x′n differ in at most εn coordinates}.

If P (S) ≥ e−
ε2n
2 , then P (S2ε) ≥ 1− e−

ε2n
2 .

This lemma captures the isoperimetric inequality/concentration of measure that

we need to prove Theorem 5.3.1. In [30], the equivalent lemma is the Blowing Up

Lemma. Our lemma is much simpler to prove, and although our lemma does not give

the optimal isoperimetric constants that one could obtain by applying, for example,

Harper’s isoperimetric inequality [56], our slightly cruder estimates are sufficient to

prove Theorem 5.3.1.

122

Proof of Theorem 5.3.1. We prove Theorem 5.3.1 by showing that the typical sets for

the codewords in C are approximately disjoint from each other. Then, we use the

union of these typical sets as the set S in Lemma 5.3.1 to obtain the Theorem.

Formally, since C has average probability of error at most .5 when used on the

reverse channel Q′, it follows that for at least one quarter of the codewords c ∈ C, the

conditional probability of error given that c is sent is at most .75. We classify these

codewords according to their types (see Chapter 2 for a quick review of some basic

results in the method of types). Let C ′ be the code consisting of only those codewords

in the type that contains the maximum number of codewords, and let PY denote the

type of the codewords in C ′. Then, C ′ clearly achieves average probability of error at

most .75. Therefore, there exists a channel Q̃ such that ||Q̃PY −Q′PY ||1 ≤ 1
log n

, and

so that conditioned on the event that the empirical channel Q̂X|Y = Q̃, the average

probability of error is at most .8. Note that without loss of generality, we may assume

that the decoding rule is deterministic, i.e., we can always choose a deterministic ML

decoding rule. Performing one more level of expurgation, we see that for at least one

tenth of the codewords c ∈ C ′, the conditional probability of error given that c is sent

and that the empirical channel is Q̃ is at most .9, and that this guarantee is achieved

by a deterministic decoding rule. Let C ′′ be this set of codewords. Then, we have

shown that all codewords in C ′′ have the same type, and for every codeword c ∈ C ′′,

the probability of error given that c is sent and that the empirical channel is Q̃ is at

most .9. Also, because the total number of types is at most (n + 1)|Y|, we see that

|C ′′| ≥ |C|
40(n+1)|Y| .

Let P̂ be the type induced by Q̃ and PY , i.e.,

P̂ (x) =
∑

y∈Y

PY (y)Q̃(x|y).

Fix a codeword c ∈ C ′′, and let T denote the size of the set xn ∈ Xn such that

the conditional distribution Q̂X|Y induced by xn and c is equal to Q̃. Note that by

symmetry, it does not matter which codeword c is chosen since the size of this set

only depends on the type, and all codewords in C ′′ have type PY . Now, because

123

the decoding rule for C ′′ is deterministic, we conclude that for each c ∈ C ′′, there

is a decoding region D(c) of size at least .1T such that the decoder declares c when

the decoder’s input is in D(c), and the decoding regions D(c) and D(c′) are disjoint

whenever c 6= c′. Therefore, we conclude that | ∪c∈C′′ D(c)| ≥ .1T |C ′′|. We apply

Lemma 5.3.1 with S = ∪c∈C′′D(c). Since the source is i.i.d., we choose all the Pi’s to

be PX , so that the product distribution P is the distribution of the i.i.d. source Xn.

Then, Sanov’s theorem implies that

P (S) ≥ .1T |C ′′|
(n + 1)|X||Y| e

−(D(P̂ ||PX)+H(X̂))n,

where H(·) denotes entropy and X̂ denotes a random variable distributed according

to P̂ . From [28] we know that T ≥ eH(X̂|Ŷ)

(n+1)|X||Y| , where Ŷ is a random variable distributed

according to PY , and the joint distribution of X̂ and Ŷ is Q̃PY . Thus,

P (S) ≥ 1

400(n + 1)3|X||Y| e
(H(X̂|Ŷ)+R−D(P̂ ||PX)−H(X̂))n.

Let α = −(H(X̂|Ŷ) + R−D(P̂ ||PX)−H(X̂)). Then, Lemma 5.3.1 implies that

P (S2
√

α+o(1)) ≥ 1− e−αn.

To complete the proof, we must bound α and the expected distortion. First,

we bound α. Since α = I(X̂; Ŷ) − R + D(P̂ ||PX), we bound I(X̂; Ŷ) − R and

D(P̂ ||PX) separately. Recall two basic facts about the rate-distortion problem. First,

the capacity of the reverse channel Q′ is the same as the capacity of the channel Q∗.

Second, for any DMC, the capacity-achieving output distribution is always unique,

and the capacity-achieving output distribution for Q′ is PX . The first fact implies

that I(X̂; Ŷ) ≤ R(D), so I(X̂; Ŷ) − R ≤ R(D) − R. The second fact allows us to

bound D(P̂ ||PX). Specifically, let

f(R) = sup
P ′

Y :I(X′;Y ′)≥R

D(P ′
X ||PX),

124

where P ′
Y denotes a probability distribution over Y, Y ′ denotes a random variable dis-

tributed according to P ′
Y , X ′ denotes a random variable distributed so that (X ′, Y ′) ∼

Q̃P ′
Y , and P ′

X denotes the marginal distribution of X ′. The second fact implies

that the function f is continuous and limR→R(D) f(R) = 0, and the converse to

the coding theorem [30] implies that f + o(1) is an upper bound on D(P̂ ||PX).

In the case of a symmetric reverse channel, we know that the capacity-achieving

output distribution is uniform, and that H(X̂|Ŷ) does not depend on the distribu-

tion of Ŷ . Therefore, in this case, to achieve rate R = R(D) − g, we must have

H(X̂) ≥ log(|X|)− g− o(1). Thus, D(X ′||X) = log(|X|)−H(X ′) ≤ g, which proves

that we can take f(R) = R(D) − R in the case of a symmetric reverse channel. In

any case, we have shown that α ≤ f(R) + R(D)−R + o(1).

Now, we bound the expected distortion. By definition, E[d(X,Y)] ≤ D, so

EQ̃[d(X,Y)] ≤ D + 1
log n

. Therefore, whenever xn ∈ S, the distortion is at most

D + M
log n

, and since the distortion measure is additive and bounded by M , it follows

that for all xn ∈ S2
√

α+o(1), the distortion is at most D + 2M
√

α + o(1). Since the

distortion is always at most Mn, we conclude that the expected distortion is at most

D + 2M
√

α + o(1) + Mne−αn.

Comments:

1. The authors of [82] analyze the performance of MacKay’s ensemble for BSS-

HD. One might hope for a more direct proof that LDPC codes are good for

quantization by strengthening their approach. We briefly explain why their

approach is not sufficient to prove that LDPC codes with sublogarithmic degree

can come close to the rate-distortion bound. The authors of [82] provide a

fairly complicated proof, but the same result can be derived using Chebyshev’s

inequality and bounding the covariance term. However, even with this method,

choosing codes from MacKay’s ensemble still gives a logarithmic degree bound.

Intuitively, the reason MacKay’s ensemble does not give a better bound is that

it takes n ln n steps before a random walk on a hypercube has mixed well enough

for the covariance term to be small.

125

A more fundamental limitation of the proof in [82] is that this proof is based on

trying to lower bound the probability that all (or almost all) possible syndromes

can be written using only a few columns of the parity check matrix. This

approach makes it impossible to prove any bound of better than logarithmic

degree for MacKay’s ensemble. Specifically, if we want to be able to write

all syndromes, the matrix we look at must have full rank. However, one can

easily show that if we use a constant (or sublogarithmic) degree in MacKay’s

ensemble, then with high probability the matrix will have a row where every

entry is 0. Thus, with high probability the matrix does not have full rank. The

probability of every row having at least one entry set to 1 does not become large

until the degree becomes logarithmic, which explains why the analysis in [82]

only produces a logarithmic degree bound.

2. The authors of [82] observe that for dense parity check matrices, convergence

to the optimal distortion is exponential, i.e., the probability that the realized

distortion is larger than the expected distortion by any fixed constant decays

exponentially with the blocklength. Lemma 5.3.1 shows that this exponential

convergence is actually a property of any code. However, in the context of rate-

distortion, we can actually ask for something stronger. Specifically, there exist

codes that come close to the rate-distortion function for quantization under a

Hamming distortion in the worst-case, i.e., the covering radius can be made close

to the optimal distortion. To see this, say we have a code with expected distor-

tion δ. From Lemma 5.3.1, with probability at most 1
n

the observed distortion

is greater than δ +
√

2n ln(n). So, to create a worst-case quantizer, repeatedly

try to quantize a given source by adding independent, uniformly chosen strings

to the given source. A simple union bound argument shows that after n trials,

with high probability the worst-case distortion is at most δ +
√

2n ln(n). This

only increases the rate by log n
n

, so we see that asymptotically we achieve the

same distortion and rate as before, but now with a worst-case guarantee.2 If we

2As noted in the proof of Theorem 5.4.1, we can assume without loss of generality that n is as
large because we can always repeat a code without changing its performance, so we can get into the
asymptotic regime where log n

n
becomes negligible.

126

restrict ourselves to linear codes, the arguments in [6] show that we can append

a few extra columns (or rows for LDGM codes) so that the resulting linear code

works well in the worst-case. The basic idea is that by adding O(log n) suit-

ably chosen columns, we can “fix” the original code to cover the small fraction

of words that previously would have been quantized with high distortion. The

drawback of this method is that the resulting code may no longer be sparse, i.e.,

the matrix may now have O(n log n) nonzero entries instead of O(n) entries.

We close this section by observing that Theorem 5.3.1 can be extended to the problem

of quantizing a Gaussian source under mean-square distortion. The argument is

essentially the same, except that instead of Lemma 5.3.1, we apply the Gaussian

isoperimetric inequality [114].

Lemma 5.3.2 (Gaussian Isoperimetric Inequality). Let Xn be distributed i.i.d. N(0, 1),

and for an arbitrary (Lebesgue measurable) set S ⊂ Rn, let Sε denote the set of points

whose Euclidean distance to S is at most ε
√

n. Then, for all positive δ and ε,

argmin
S:Pr[Xn∈S]≥δ

Pr[Xn ∈ Sε]

is a halfspace chosen so that Pr[Xn ∈ S] = δ.

Theorem 5.3.3. Let Xn be a source whose components are i.i.d. N(0, 1). Let C be

a code of rate R for the additive white Gaussian noise (AWGN) channel with noise

variance D that has average error probability at most .5. Then, when an optimal

quantization algorithm is used (i.e., an algorithm that always encodes the source to

the codeword minimizing the distortion), the code C achieves expected average mean

square distortion per symbol of at most D + 2
√

R(D)−R + o(1).

Proof. The proof proceeds along similar lines to the proof of Theorem 5.3.1, so we

will be brief. Because a Gaussian source is continuous, we cannot use types the way

we did for discrete memoryless sources. However, because the reverse channel for a

Gaussian source under mean-square distortion is the AWGN channel, we can take

advantage of spherical symmetry. In particular, we replace the notion of type with

127

the power of the codewords, and then quantize the power into a suitable number

of bins. This allows us to define decoding regions D(c) as before, and we obtain a

similar formula for α. Since the Gaussian channel is symmetric, the same method of

bounding f(R) applies. Now, from Lemma 5.3.2, we see that if the probability of a

set S under the Gaussian measure is e−αn, then the probability of S√
8α is at least

1− e−αn, so we obtain the required bound on the distortion.

5.4 A Lower Bound on the Degree of LDGM Codes

Now, we move on to the problem of proving lower bounds. In this section, we show

that LDGM codes cannot come arbitrarily close to the rate-distortion bound for

the BSS-HD problem unless the average variable node degree becomes unbounded.

Formally, we prove the following theorem.

Theorem 5.4.1. Let d be the average degree of the variable nodes in some LDGM

code. Let R be the rate of the code, and let δ be the expected distortion. Define

ε = δ − δopt, where δopt is the optimal distortion for rate R, i.e., R + hb(δopt) = 1.

Then, d = Ω(log 1
ε
).

Note that Theorem 5.4.1 applies to any code, not codes drawn from some specific

random ensemble. Before proving Theorem 5.4.1, we state the following lemma,

which is closely related to Lemma 5.3.1, and is also just a special case of Theorem

7.4.2 from [3].

Lemma 5.4.1. Let P1, . . . , Pn be probability distributions over X, and let P =
∏n

i=1 Pi

be the product probability distribution over Xn, i.e., P generates each source symbol

independently. Let C ⊂ Yn be a code, and let D be the distortion when Xn is quantized

to the codeword in C that minimizes the distortion. Then, Pr[D − E[D] > εM] ≤
e−

ε2n
2 .

Thus, for any code, the distortion is tightly concentrated.

Proof of Theorem 5.4.1. This is a simple application of Lemma 5.4.1. Consider a

code with rate R and average variable node degree d. We prove Theorem 5.4.1 by

128

proving a lower bound on ε in terms of d. Let D be a random variable denoting

the realized distortion. From Lemma 5.4.1, we know that Pr[D > δopt + 2ε] < e−
ε2n
2 .

Thus, since the source is uniform, at least 2n−2(1− log (e)ε2

2
)n .

= 2n words have distortion

less that δopt + 2ε.

Let ε1 be a parameter that we set later. If we flip ε1n
2d

information bits of the

code, and these bits correspond to variable nodes with degree ≤ 2d, then the triangle

inequality implies that the distortion increases by at most ε1n. Note that if the

average variable node degree of the code is d, then it follows that at least half of

the variable nodes have degree at most 2d, so we do have quite a bit of freedom in

our choice of which ε1n bits to flip. We take advantage of this freedom by counting

the number of (codeword, source) pairs such that the relative distance between the

codeword and the source is ≤ δopt + 2ε + ε1 in two different ways.

First, from the point of view of codewords, the number of such pairs is clearly

2RnVol(n, (δopt+2ε+ε1)n), where Vol(n, d) denotes the number of words in a Hamming

ball of radius d in an n-dimensional space. We already observed that almost every

source word has a codeword within distance δopt+2ε. Therefore, using our observation

about flipping information bits, the number of such pairs is at least 2nVol(Rn
2

, ε1n
2d

).

Now, we may assume without loss of generality that n is as large as we like. This is

because if we are given a code C with block length n0, we can construct a code with

block length Kn0 with the same rate, average check degree, and expected distortion,

where K is any integer greater than 1. This code is simply the repetition of C K

times, i.e., the code quantizes a source of length Kn0 by splitting the source into K

blocks of length n0 and applying the code C separately to each block. Therefore, we

consider the limit as n → ∞, so that the exponent becomes the important term in

each of the two ways of counting (codeword, source) pairs. Specifically,

2RnVol (n, (δopt + 2ε + ε1) n)
.
= 2(R+hb(δopt+2ε+ε1))n

and

2nVol

(

Rn

2
,
ε1n

2d

)

.
= 2(1+.5Rhb(

ε1
Rd

))n.

129

Therefore, for sufficiently large n, the condition

2RnVol (n, (δopt + 2ε + ε1) n) ≥ 2nVol

(

Rn

2
,
ε1n

2d

)

implies that R + hb(δopt + 2ε + ε1) ≥ 1 + .5Rhb(
ε1

Rd
), provided that δopt + 2ε + ε1 ≤ .5.

To complete the proof, observe that hb() is a concave function, so hb(δopt+2ε+ε1) ≤
hb(δopt) + h′

b(δopt)(2ε + ε1). This means that h′
b(δopt)(2ε + ε1) ≥ .5Rhb(

ε1

Rd
), i.e.,

ε ≥ 1
2
(

.5Rhb(
ε1
Rd

)

h′
b
(δopt)

− ε1). Now, we optimize over ε1. Taking the derivative with respect

to ε1, we find that

d

dε

(

.5Rhb(
ε1

Rd
)

h′
b(δopt)

− ε1

)

=
.5

dh′
b(δopt)

log

(

Rd

ε1

− 1

)

− 1.

Setting this expression to 0, we find that the optimal value is ε∗1 = Rd

1+2
2dh′

b
(δopt)

. Assume

for the moment that this value of ε∗1 satisfies the inequality δopt +2ε+ ε∗1 ≤ .5, so that

ε∗1 is a valid value of ε1. Then, substituting in ε∗1, we find that

ε ≥ 1

2

(

.5Rhb(
ε∗1
Rd

)

h′
b(δopt)

− ε∗1

)

=
1

2

(

.5R

h′
b(δopt)

1

1 + 22dh′
b
(δopt)

log
(

1 + 22dh′
b(δopt)

)

+
.5R

h′
b(δopt)

22dh′
b(δopt)

1 + 22dh′
b
(δopt)

log

(

1 + 22dh′
b(δopt)

22dh′
b
(δopt)

)

− Rd

1 + 22dh′
b
(δopt)

)

≥ .5R

2h′
b(δopt)

22dh′
b(δopt)

1 + 22dh′
b
(δopt)

log
(

1 + 2−2dh′
b(δopt)

)

≥ R

4h′
b(δopt)

(

1− 2−1−2dh′
b(δopt)

)

1 + 22dh′
b
(δopt)

≥ R

8h′
b(δopt)

1

1 + 22dh′
b
(δopt)

.

To obtain the second to last inequality, we have used the inequalities x ln (1 + 1
x
) ≥

1 − 1
2x

and log(e) > 1. In the last inequality, we have used the fact that h′
b(δopt) is

nonnegative, so the first term in the numerator is at least 1
2
. If we invert the last

130

inequality, we see that d ≥
log

„

R

8h′
b
(δopt)ε

−1

«

2h′
b
(δopt)

, proving that d must be Ω(log
(

1
ε

)

).

Finally, we must address the case that ε∗1 is invalid, i.e., δopt + 2ε + ε∗1 ≥ .5. For

ε < .25(.5− δopt), this implies that ε∗1 ≥ .25− .5δopt. Now, there exists a constant d0

depending only on δopt such that for d > d0, ε∗1 < .25− .5δopt, so we will be done if we

can show that if there exists a code with average degree d achieving distortion δopt+ε,

then there exists a code with average degree larger than d0 that achieves at most the

same distortion. But this is clear because we can always add, say 2d0 variable nodes

that are connected to every single check node, and hence make the average degree

greater than d0. Adding variable nodes clearly cannot increase the distortion, and

applying the repetition trick used previously, we see that we can make the additional

rate 2d0

n
as small as we want, so the proof is complete.

Discussion: This bound is tight in the sense that log(1
ε
) is the correct scaling of

the average degree as a function of the gap to the rate-distortion bound. In more

detail, one can show that there exists LDGM codes within ε of the rate distortion

bound and with maximum variable node degree d = O(log(1
ε
)). One way to see this

is to consider a dualized form of MacKay’s ensemble. 3 Alternatively, we can use

the simpler Poisson ensemble considered in [79]. This ensemble will have a few nodes

with large (logarithmic) degree, but a simple argument combining Lemma 5.3.1 with

an expurgation argument where we delete the few variable nodes with large degree

shows that if d = O(log (1
ε
)), then the gap can be reduced to ε.

In another sense, the bound in Theorem 5.4.1 is quite loose. The bound says

ε = Ω(1
2αd) for some constant α, while the random ensembles described above have

a much larger value of ε. (Note : we can optimize the bound without using the

simplification of approximating hb by a first order Taylor series expansion. However,

this does not improve the bound significantly.)

3By“dualized” form of MacKay’s ensemble, we mean an ensemble that selects each row of the
generator matrix independently using a random walk. This is not quite the dual of MacKay’s ensem-
ble, since the dual would select each column independently. However, selecting rows independently
is more convenient since this guarantees a bounded maximum variable degree. The proof that the
dualized form of MacKay’s ensemble works is similar to [79], but involves quite a bit of algebra.

131

5.5 A Lower Bound on the Degree of LDPC Codes

To complete the picture, we now show a similar lower bound for LDPC codes.

Theorem 5.5.1. Let d be the average degree of the check nodes in some LDPC

code. Let R > 0 be the rate of the code, and let δ be the expected distortion. Define

ε = δ − δopt, where δopt is the optimal distortion for rate R, i.e., R + hb(δopt) = 1.

Then, d = Ω(log(1
ε
)).

As with LDGM codes, in some sense this bound is tight, since Theorem 5.3.2

shows that MacKay’s ensemble achieves a gap of ε to the rate-distortion bound with

maximum variable node degree bounded by O(log(1
ε
)).4

Before going into the details, we summarize the main ideas of the proof of Theorem

5.5.1. Our proof is similar to the well-known proof from [45] that LDPC codes cannot

come arbitrarily close to the capacity of the BSC with uniformly bounded degree.

Specifically, let H denote the parity check matrix of the code under consideration,

and let w be a random vector whose components are generated i.i.d. with probability

δ of being 1 and probability 1−δ of being 0. Then, assuming that the check nodes have

bounded degrees, the syndrome Hw does not look close to uniform—in particular, the

syndrome has expected (normalized) Hamming weight less than .5. Next, we apply

Azuma’s inequality to bound deviations from the mean, and this allows us to count

the number of syndromes that can be realized by inputs with normalized Hamming

weight δ. In particular, the number of syndromes is substantially smaller than the

number of syndromes we would need for an optimal rate-distortion code, and it is

this gap in the number of syndromes that allows us to prove that the average degree

of the check nodes must grow as Ω(log(1
ε
)).

Now we fill in the details to complete the proof sketch above. We start with two

simple lemmas.

Lemma 5.5.1. Let H be an m × n parity check matrix for some code such that the

average Hamming weight of the rows of H, i.e., the average check degree of the code,

4As for LDGM codes, we can also delete the few check nodes with large degree to get codes with
maximum variable node and check node degree bounded by O(log(1

ε
)). Note that deleting check

nodes cannot increase the distortion.

132

is d. Let w ∈ {0, 1}n be a vector whose coordinates are generated i.i.d. with probability

δ of being 1 and probability 1− δ of being 0. Then,

E[|Hw|H]| < m
1− (1− 2δ)d

2
.

Proof. Let wi be the Hamming weight of the ith row of the parity check matrix. The

expected Hamming weight is

m
∑

i=1

1− (1− 2δ)wi

2
.

Applying Jensen’s inequality, we see that this sum is upper bounded by m1−(1−2δ)d

2
.

Note that for a random linear code, the expected Hamming weight would be m
2
, so

we see that the expected Hamming weight is noticeably smaller for a code with low

average check degree. This is the key fact in our proof.

Our second preliminary lemma, Lemma 5.5.2, is like Lemmas 5.3.1 and 5.4.1 in

that it is also a special case of Theorem 7.4.2 from [3].

Lemma 5.5.2. Let H be an m × n parity check matrix for some code, and assume

that every column of H contains at most c 1’s. Let w ∈ {0, 1}n be a vector whose

coordinates are generated i.i.d. with probability δ of being 1 and probability 1 − δ of

being 0. Then,

Pr[||Hw|H − E[|Hw|H]| > ε] ≤ 2e−
ε2n

2c2 .

Now, we combine Lemmas 5.5.1 and 5.5.2.

Lemma 5.5.3. Let H be an m × n parity check matrix for some code such that the

average Hamming weight of the rows of H is d. Let w ∈ {0, 1}n be a vector whose

coordinates are generated i.i.d. with probability δ of being 1 and probability 1 − δ of

being 0. Then, for any 0 < ε, f < 1, there exists a set Sf,ε ⊂ {0, 1}m with size at

133

most 2fnVol(m(1−(1−2δ)d

2
+ ε)) such that

Pr[Hw 6∈ Sf,ε] ≤ 2e
− ε2nf2

2(1−f)d2(1−R)2 .

Proof. We may assume without loss of generality that the parity check matrix has

been permuted so that the columns are sorted in descending order of Hamming weight.

Let the columns in sorted order be c1, . . . , cn. The first fn columns c1, . . . , cfn induce

at most 2fn possible syndromes, i.e., there are at most 2fn syndromes formed by

taking linear combinations of only the first fn columns. We denote these syndromes

by s1, . . . , s2fn .

We define the set Sf,ε as follows. Let B(x, d) to be the Hamming ball of radius d

around x. Then, we define

Sf,ε =
2fn
⋃

i=1

B

(

si,m

(

1− (1− 2δ)d

2
+ ε

))

.

Note that Sfε contains at most 2fnVol(m,m(1−(1−2δ)d

2
+ ε)) strings, as required.

To complete the proof, we show that with high probability, the syndrome lands

inside the set S. Observe that for the syndrome to land outside of the set S, it

is necessary that the syndrome induced by the columns c1+fn, . . . , cn has Hamming

weight at least m(1−(1−2δ)d

2
+ ε), because otherwise the syndrome of the whole word

will be close to the si corresponding to the induced syndrome for the first fn columns.

Thus, it suffices to bound the probability that the syndrome induced by the columns

c1+fn, . . . , cn has Hamming weight at least m(1−(1−2δ)d

2
+ ε). This probability can be

bounded easily by applying Lemmas 5.5.1 and 5.5.2 to the submatrix H ′ of H induced

by columns c1+fn, . . . , cn. First, since we have thrown away some columns, it is clear

that the average weight of the rows of H ′ is at most the average weight of rows in H.

Lemma 5.5.1 implies that E[|H ′w|H] ≤ nhb(δopt)
1−(1−2δ)d

2
. Next, observe that every

column of H ′ has weight at most d(1−R)
f

. To see this, note that average weight of the

rows of H is d, so the average weight of the columns of H is d(1−R). Thus, at most

a fraction f of the columns of H can have weight larger that d(1−R)
f

, which means

134

that columns c1+fn, . . . , cn have weight at most d(1−R)
f

.

Because the column weight is bounded, we can apply Lemma 5.5.2. Lemma 5.5.2

implies that

Pr[H ′w|H − E[|H ′w|H] > λ] ≤ 2e
− λ2f2

2(1−f)nd2(1−R)2 .

Combining this with our bound on E[|H ′w|H , we see that

Pr[Hw 6∈ S] ≤ 2e
− ε2nf2

2(1−f)d2(1−R)2 .

We use Lemma 5.5.3 to count the number of syndromes induced by vectors with

Hamming weight at most δn. First, we recall an elementary bound on binomial

coefficients.

Lemma 5.5.4. Let w be generated i.i.d. with probability δ of being 1. Assume that

δn is an integer. Then, Pr[|w|H = δn] =
√

1
2πδ(1−δ)n

(1 + o(1)).

Proof. Apply Stirling’s approximation n! = nne−n
√

2πn(1 + o(1)) to the expression

(

n

δn

)

(δn)δn((1− δ)n)(1−δ)n =
n!

(δn)!((1− δ)n)!
(δn)δn((1− δ)n)(1−δ)n.

Lemma 5.5.5. Let H be an m × n parity check matrix for some code such that the

average Hamming weight of the rows of H is d, and let f, ε, and Sf,ε be as in Lemma

5.5.3. Then, the number of syndromes induced by vectors w ∈ {0, 1}n with weight

≤ δn that are outside Sf,ε is at most

(1 + δn)2hb(δ)n
√

2πδ(1− δ)ne
− ε2nf2

2(1−f)d2(1−R)2 .

Proof. Consider the distribution on w analyzed in Lemma 5.5.3, i.e., the distribution

where each bit of w is generated i.i.d. with probability δ of being 1. Lemma 5.5.4

says that

Pr[|w|H = δn] =

√

1

2πδ(1− δ)n
(1 + o(1)).

135

Combining this with Lemma 5.5.3, we see that

Pr[Hw 6∈ Sf,ε||w|H = δn] ≤ 2
√

2πδ(1− δ)ne
− ε2nf2

2(1−f)d2(1−R)2 .

Now, since each bit of w is generated i.i.d., it is obvious that conditioned on

the event {|w|H = δn}, w is distributed uniformly over all strings with weight δn.

Therefore, the probability above is just the fraction of inputs with weight δn whose

induced syndromes are outside the set Sf,ε. Using the inequality
(

n
δn

)

≤ 2hb(δ)n, we see

that the number of syndromes outside of S that can be represented by inputs with

weight exactly δn is at most

2hb(δ)n
√

2πδ(1− δ)ne
− ε2nf2

2(1−f)d2(1−R)2 .

To complete the proof, note that we can repeat the analysis for all weights less

than δn as well. Specifically, Lemma 5.5.3 holds for all δ, and the bound above is

monotonically increasing in δ for δ < .5. Thus, we see that the number of syndromes

outside of S that are representable by w such that |w|H ≤ δn is

(1 + δn)2hb(δ)n
√

2πδ(1− δ)ne
− ε2nf2

2(1−f)d2(1−R)2 .

Proof of Theorem 5.5.1. To prove Theorem 5.5.1, we essentially just have to set f

and ε appropriately in Lemma 5.5.5. As in the proof of Theorem 5.4.1, note that we

can assume without loss of generality that n is as large as we want because repetition

preserves the rate, average degree, and expected distortion. Thus, the important part

of the bounds in Lemmas 5.5.3 and 5.5.5 is the exponent.

From Stirling’s approximation and Lemma 5.5.3, we know that size of Sf,ε is at

most n2fn+nhb(
1−(1−2δ)d

2
+ ε

1−R
). The exponent of this expression is

fn + nhb

(

1− (1− 2δ)d

2
+

ε

1−R

)

.

136

The exponent for the expression in Lemma 5.5.5 is

n

(

hb(δ)−
ε2f 2

2(1− f)d2(1−R)2

)

.

If both of these exponents are less than n(1−R), then it follows that for sufficiently

large n, a negligible fraction of the syndromes are represented by inputs with weight

at most δn. Thus, with probability going to 1 the (normalized) distortion is bigger

than δ, so the expected distortion is also bigger than δ.

Now, to make the first exponent sufficiently small, we need to choose ε small

enough so that the balls we draw around each si have normalized radius less than .5.

We choose ε = (1 − R) (1−2δ)d

4
. We set f = 1

8
((1−2δ)d

4
)2. Then, using the inequality

hb(
1
2
− x) ≤ 1− 4x2,5 we see that the first exponent is in fact less than n(1−R). To

make the second exponent sufficiently small, we need

hb(δ)−
ε2f 2

2(1− f)d2(1−R)2
< (1−R).

Since hb(·) is concave, it follows that hb(δ) < 1− R + h′
b(δopt)(δ − δopt), so it suffices

to choose δ such that

h′
b(δopt)(δ − δopt)−

ε2f 2

2(1− f)d2(1−R)2
< 0.

Using our expressions for ε and f , it is easily verified that

δ < δopt +
(1− 2δopt)

6d

219d2(h′
b(δopt) + 6d

1−2δopt
)

is a valid choice for δ. Thus, the expected distortion for any code is lower bounded

by the quantity on the right hand side of the last inequality. Inverting this inequality,

we see that d = Ω(log(1
ε
)), completing the proof.

5This inequality is easily derived using Taylor series.

137

5.6 Conclusion

In the first part of this chapter (Sections 5.2 and 5.3), we proved that LDPC codes

can be used for certain rate-distortion problems. First, we proved that a slight mod-

ification allows one to construct LDPC codes that are good for BEQ. Next, we im-

proved the results of [82] by showing that if an optimal encoding algorithm is used,

then LDPC codes can come arbitrarily close to the rate-distortion function for the

BSS-HD problem. Our proof also shows that for many rate-distortion problems, any

channel code that works well for the reverse channel will be good for the associated

rate-distortion problem, provided that an optimal quantization algorithm is used.

The key ingredient in the proof is an appropriate isoperimetric inequality. For our

purposes, Azuma’s inequality was sufficient for discrete sources, while the Gaussian

isoperimetric inequality was used for the case of quantizing a Gaussian source under

mean-square distortion. These isoperimetric inequalities allow us to show that in high

dimensions, good sphere-packings, i.e., good channel codes, are also good coverings,

i.e., good lossy source codes.

In the second half of this chapter (Sections 5.4 and 5.5), we proved lower bounds

on the average degree for LDGM and LDPC codes, and our lower bounds are within

a constant factor of the upper bounds we computed in the first half of the chapter. In

particular, our results imply that the compound construction from [79] achieves lower

average degree than LDGM codes or LDPC codes can achieve individually. Thus, it

seems that combining LDGM codes and LDPC codes could potentially lead to more

efficient algorithms for the BSS-HD problem. For the special case of the BEC, this is

already known to be the case [58,96].

Probably the most important problem related to this chapter is developing efficient

algorithms for quantization. Given the slow rate of growth for our bounds on average

degree, i.e., d = Θ(log(1
ε
)), even algorithms for LDGM or LDPC codes could be

very useful. One could argue that from a practical point of view that the BSS-HD

problem is essentially solved. For example, convolutional codes with a relatively

short constraint length already come quite close to the rate-distortion bound. Even

138

short random codes converge to the rate-distortion bound quickly. However, from a

theoretical point of view, developing algorithms for BSS-HD with complexity per bit

that provably scales subexponentially as a function of 1
ε
, where ε denotes the gap to

the rate-distortion bound remains an open problem, although there has been some

recent progress [68].

139

140

Chapter 6

Code Constructions for Wiretap

Channels

In this chapter, we consider code constructions for secure communication. Security

was first considered from an information-theoretic perspective in the classic paper by

Shannon [108]. One of the key results in [108] is that from an information-theoretic

perspective, the one-time pad is an optimal strategy for transmitting a secret message

from a transmitter to a receiver. From a practical standpoint, this result poses a

major problem, because it means that in order for a transmitter to send n bits to a

receiver securely, the transmitter and receiver must already share a key of n (uniformly

random) bits that is kept secret from the eavesdropper. Thus, the results from [108]

essentially say that to transmit a message of n bits securely over a channel in the

presence of an eavesdropper, the transmitter and receiver must meet in private and

agree to a secret key of n bits, which means that the transmitter and receiver might

as well exchange the message while they meet in private and not use the channel at

all.

In many introductory treatments of cryptography, this result is used as motiva-

tion for weakening the notion of security. Specifically, instead of requiring secure

transmission against an arbitrary eavesdropper, one can place the constraint that

the eavesdropper has limited computational power. Exploring this model turns out

to be very fruitful. Assuming that certain widely believed (but unproven) claims in

141

computational complexity are true, e.g., the existence of one-way functions and trap-

door functions, it is possible to implement many useful cryptographic protocols such

as public key cryptography, pseudorandom generators, signatures, etc. Of course,

these schemes are only secure against computationally bounded eavesdroppers, and

the security proofs rely on unproven assertions in computational complexity theory.

As an alternative to placing computational constraints on the eavesdropper, Wyner

introduced the wiretap channel as a new way of constraining the eavesdropper [120].

In the wiretap channel, we assume that communication occurs over a broadcast chan-

nel. Specifically, the transmitter can send information over a (potentially noisy)

channel to the intended receiver. The constraint on the eavesdropper is that the

eavesdropper only gets to see a noisy version of what the transmitter sends to the

intended receiver, i.e., although there may be a noisy channel between the transmitter

and the intended receiver, there is also a noisy channel between the transmitter and

the eavesdropper. The motivation for such a model is that at the physical layer, bits

are sent over noisy channels, so rather than abstract away the channel noise by as-

suming that channel coding has been used to create a clean channel, we may be able

to take advantage of the inherently noisy nature of the channel to accomplish secure

transmission. In [120], Wyner analyzed some simple channel models and showed that

when the channel between the transmitter and the eavesdropper is “noisier” than the

channel between the transmitter and the intended receiver, it is possible to construct

coding strategies that allow the transmitter and intended receiver to exchange mes-

sages at a positive rate (measure in terms of bits/channel use) in such a way that the

eavesdropper learns very little information about the sent message. The notion of se-

curity proposed by Wyner is rather weak, however. In [83] and [29] a stronger notion

of security was proposed, and it was shown in [83] that the maximum achievable rate

for this stronger notion of security is identical to the maximum achievable rate for

Wyner’s weaker notion of security, so there is no rate loss associated with using the

stronger notion of security. In Section 6.2, we describe the wiretap channel and the

associated security criteria more formally.

In recent years, there has been renewed interest in the wiretap channel, as well as

142

several other models of information-theoretic security. For example, in the context

of biometrics and secret-key generation, [81] presents some methods for securely ex-

tracting a shared secret when an eavesdropper has side information about the key.

This line of work also generalizes the notion of security by considering various notions

of security, some weaker and some stronger in the sense of giving the eavesdropper

stronger attack capabilities, e.g., [33, 34]. Also, several code constructions have been

proposed for specific wiretap channel models. For example, [105,115] construct codes

for a wiretap channel where the channel between the transmitter and the intended

receiver is noiseless and the channel between the transmitter and the eavesdropper

is a BEC, or a binary input additive white Gaussian noise channel. However, these

papers only consider the weak notion of security proposed by Wyner, and the com-

plexity of the proposed encoding algorithms is potentially O(n2), as it depends on

the encoding algorithm for LDPC codes proposed in [101], and it is unclear that ap-

propriate degree distributions can be designed to so that the resulting codes can be

encoded in subquadratic time by the algorithm from [101] while still providing even

weak security guarantees. Other than in the special case of the BEC, the proposed

codes do not achieve the maximum possible rate for secure communication.

6.1 Summary of Results

In this chapter, we start by describing the wiretap channel and the associated se-

curity criteria considered in [120] and [83]. Then, we introduce a new notion of

security which is slightly stronger that the notion considered in [83]. We call this

new notion of security semantic security, because of the close connection between our

notion and the notion of semantic security [49] widely used in computational cryp-

tography. Next, we introduce a new channel model that we call the constant-capacity

compound wiretap channel. This channel model is a special case of the compound

wiretap channel introduced in [71]. Roughly speaking, the constant-capacity com-

pound wiretap channel attempts to address one drawback of the standard wiretap

channel, namely that the standard wiretap channel assumes that the transmitter has

143

complete knowledge of the channel between himself and the eavesdropper. In practi-

cal situations, it seems unlikely that the transmitter can obtain this information, and

the constant-capacity compound wiretap channel attempts to address this concern by

assuming that the transmitter only knows the capacity (or at least an upper bound

on the capacity) of the channel connecting himself to the eavesdropper. We define

the constant-capacity compound wiretap channel more formally in Section 6.2. We

believe that finding coding strategies that provide security under weaker constraints

on the channel connecting the transmitter to the eavesdropper than those imposed by

the constant-capacity compound wiretap channel is an important open problem that

could have strong implications for the use of codes providing information-theoretic

security guarantees in practice.

After introducing the new notion of security and the constant-capacity compound

wiretap channel, we provide a simple reduction from the wiretap and constant-

capacity compound wiretap channel problems to the well-studied problem of channel

coding. Specifically, in Section 6.3, we show how to achieve the secrecy capacity of

a wiretap or constant-capacity compound wiretap channel by separately designing

a precode with good security properties and a good channel code for the channel

between the transmitter and the intended receiver. This reduction uses randomness

extractors [19] (see Chapter 2 for a quick review of randomness extractors). We note

that extractors were also used in [83], but we apply them in a different manner.

Our reduction is useful because it means that the design of codes for the wiretap

or constant-capacity compound wiretap channel can be separated into the design of

a good channel code and a precode with good secrecy properties, and the channel

code and the precode can be designed completely independently of each other. Our

reduction is able to provide strong security in the sense of [83], but unfortunately it

does not provide semantic security. Using some simple constructions of randomness

extractors, we show the existence of coding schemes possessing strong security for the

wiretap and constant-capacity compound wiretap channels achieving rates up to the

secrecy capacity of the (degraded) wiretap channel and up to one-half of the secrecy

144

capacity of the constant-capacity compound wiretap channel. 1 The encoding and

decoding complexity of these schemes is only O(n log(n) log log(n)), where n denotes

the block length of the code.

In Section 6.4, we construct a coding scheme that achieves rates up to the secrecy

capacity and possesses semantic security for the special case of a noiseless channel to

the intended receiver and a BEC to the eavesdropper, i.e., the same channel considered

in [115]. Our codes have encoding and decoding complexity O(n), and importantly,

the complexity is uniformly bounded regardless of how close we wish to come the

secrecy capacity. Finally, in Section 6.5, we construct a coding scheme that achieves

rates up to the secrecy capacity and possesses semantic security for the case of BECs

to the intended receiver and the eavesdropper. Our codes have encoding and decoding

complexity O(n
ε
(log(1

ε
))2), where ε is a measure of the gap to the secrecy capacity

(see Section 6.5 for a formal statement of the result).

6.2 Formal Model and Discussion of Various No-

tions of Security

The wiretap channel model introduced by [120] is essentially identical to the standard

broadcast channel, but the goals of communication are very different. Figure 6-

1 depicts a wiretap channel. There is a discrete memoryless channel (DMC) Q1

with input alphabet X and output alphabet Y connecting the transmitter to the

intended receiver, and another DMC Q2 with input alphabet X and output alphabet Z

connecting the transmitter to the eavesdropper. Recall the definition of a DMC given

in Chapter 1—if xn is the input to the wiretap channel, then the channel outputs Y n

and Zn at the intended receiver and the eavesdropper are random variables distributed

1A degraded wiretap channel is a special case of a wiretap channel satisfying a technical condition
that roughly states that the channel between the transmitter and the intended receiver is less noisy
than the channel between the transmitter and the eavesdropper. See Section 6.2 for a precise
definition.

145

2

Transmitter Noisy Channel Q

Noisy Channel Q

Intended
Receiver

Eavesdropper

1

Figure 6-1: Wiretap channel. Communication is carried over a broadcast channel
composed of a channel Q1 connecting the transmitter to the intended receiver, and a
channel Q2 connecting the transmitter to the eavesdropper.

according to

P (Y n = yn|xn) =
n
∏

i=1

Q1(yi|xi)

P (Zn = zn|xn) =
n
∏

i=1

Q2(zi|xi).

Note that the joint distribution of Y n and Zn is irrelevant for our purposes.

In addition to the standard wiretap channel, we define the constant-capacity com-

pound wiretap channel as follows. The constant-capacity compound wiretap channel

is specified by two parameters—a channel Q1 between the transmitter and the in-

tended receiver, and a capacity constraint C2. In the constant-capacity compound

wiretap channel, the eavesdropper is allowed to choose the channel Q2 to be any DMC

with capacity at most C2. Note that the eavesdropper is allowed to make this choice

in an adversarial manner even after seeing the coding scheme that the transmitter

and intended receiver have agreed upon, so we must design a coding scheme that is

secure no matter which channel the eavesdropper chooses.

As usual in information theory, we consider codes that map messages to code-

words consisting of n elements from X. Formally, we define a coding scheme to be a

sequence of codes {Mn, En, Dn}, where Mn denotes the number of messages that the

nth code can transmit, En denotes the encoding function, which maps the Mn mes-

sages to elements of Xn, and Dn denotes the decoding function used by the intended

146

receiver. Note that En can be randomized, but we do not allow the transmitter and

the intended receiver to share common randomness. Intuitively, it is clear that al-

lowing randomness in the encoding procedure makes achieving security easier, since a

randomized encoding function should increase the eavesdropper’s uncertainty about

which message the transmitter sent. One can allow randomized decoders Dn as well,

but it is easy to see that this will not help, e.g., we can always choose a deterministic

MAP decoder.

There are three important performance metrics associated with a coding scheme

{Mn, En, Dn}. The first is the rate of the coding scheme, defined as

R = lim inf
n→∞

log Mn

n
.

(Note that we could equally well have chosen lim sup—this will not change any of

our results, and in any case, in the sequel we always construct coding schemes for

which the lim inf in the definition of the rate is actually a limit, i.e., the sequence

converges.) The second performance metric is probability of error. Formally, let

M denote the sent message, so that M is a random variable uniformly distributed

over the set {1, 2, . . . ,Mn}. Let Y n denote the output of the channel Q1 when M is

sent, i.e., Y n is the output when En(M) is the channel input. Then, we define the

probability of error in the standard way, i.e.,

Pe,n = Pr[Dn(Y n) 6= M],

where the subscript n denotes the probability of error for the nth code in the coding

scheme.

The final performance metric of interest is the security guarantee of the scheme.

As discussed in the introduction, we consider three notions of security. Let Zn denote

the output of the channel Q2 when M is sent, i.e., Zn is the output received by the

eavesdropper when En(M) is sent. The first notion of security is weak security, the

definition given by Wyner.

147

Definition 6.2.1. We say that a coding scheme possesses weak security if

lim
n→∞

I(M ; Zn)

n
= 0.

The motivation for such a definition is that if one accepts that mutual informa-

tion I(M ; Zn) captures how useful Zn is in determining M , then the normalized

mutual information I(M ;Zn)
n

represents the rate of information leakage to the receiver.

Compared to other notions of security widely used in the cryptographic community,

however, this notion of security is unacceptable, which is why we refer to this notion

as weak security. As an example, note that a scheme for which the eavesdropper is

always able to learn the first
√

n bits of M can still satisfy the definition of weak se-

curity, while in many cryptographic applications we want to guarantee that learning

even 1 bit of M is difficult. This motivates our next definition.

Definition 6.2.2. We say that a coding scheme possesses strong security if there

exists an ε > 0 such that

I(M ; Zn) ≤ 2−εn.

Strong security was first defined in [83]. Note that strong security at least elimi-

nates the problem posed by our previous example—a coding scheme that allows the

eavesdropper to reliably learn the first
√

n bits of the message will certainly not have

I(M ; Zn) decay exponentially with n.

Our final notion of security, semantic security, is a very slight strengthening of

strong security. We define semantic security so that it is the analog for the wiretap

channel of semantic security as defined by [49] for computationally secure cryptosys-

tems. Before stating the definition, we briefly recall the motivation given by [49] for

their definition of semantic security. At an intuitive level, we want our definition of

security to capture the idea that the eavesdropper learns no information after ob-

serving the ciphertext, or in our case, the outputs of the channel Q2. The weak and

strong notions of security are an attempt to capture this fact, but instead of directly

moving to mutual information as a measure of the information leakage, the approach

taken by [49] is to give an operational definition of security. This is similar to the

148

standard channel coding problem in information theory. In [107], Shannon defined

an operational notion of capacity, and then proved that the operational definition

of capacity happens to coincide with the mutual information. As we will see in a

moment, the operational definition of security embodied in the definition of semantic

security is closely related to the definition of strong security given above, i.e., mutual

information will appear as a reasonable measure of information leakage, but by giving

an operational definition we will see that a small modification of strong security can

be interpreted as giving a strong operational definition of security.

We now state the definition of semantic security. As in [49], we capture the idea

that the eavesdropper learns no information from the channel output by saying that

if the eavesdropper is capable of computing some function of the sent message after

observing the output of the channel Q2, then the eavesdropper is capable of computing

the same function without ever looking that the output of the channel Q2. The key

extension of semantic security beyond the previous notion of strong security is that

we consider the case that the eavesdropper may have some side information about the

sent message. We model this side information by assuming that the eavesdropper’s

prior on the message may not be uniform.

Definition 6.2.3. Let {Mn, En, Dn} denote a coding scheme. Given a set S, a func-

tion fn : Mn → S, and a probability distribution Pn over {1, . . . ,Mn}, let pg =

maxy∈Y Pr[fn(M) = y], where M is a random variable distributed according to Pn.

We say that the coding scheme {Mn, En, Dn} possesses semantic security if there

exists an ε > 0 such that for all sufficiently large n, all probability distributions Pn

over Mn, all functions fn, and all functions An : Zn → S,

Pr[An(Zn) = fn(M)] ≤ pg + 2−εn,

where M is a message distributed according to Pn and Zn denotes the output of Q2.

Note that pg represents the maximum probability that the eavesdropper can guess

fn(M) correctly without any knowledge except the probability distribution Pn and the

function fn. Thus, the definition above formally captures the idea that regardless of

149

any side information (modelled by the probability distribution Pn), the eavesdropper

cannot compute any function of the sent message after seeing the channel output

unless he could compute the function without looking at the channel output at all.

However, this definition appears quite unwieldy. Fortunately, as shown in [49], the

definition can be simplified as follows.

Proposition 6.2.1. The following definition is equivalent to Definition 6.2.3. A

coding scheme possesses semantic security if and only if there exists an ε > 0 such

that for all sufficiently large n, all pairs of messages m1,m2 ∈ {1, . . . ,Mn}, and all

functions An : Zn → {m1,m2},

Pr[An(Zn) = M] ≤ 1

2
+ 2−εn,

where M denotes the random variable that is equally likely to take on the values m1

and m2, and Zn denotes the channel output when M is transmitted.

The proof of equivalence in [49] is complicated by the fact that they are dealing

with the computational setting. In our situation, where arbitrary functions An are

allowed, the proof of equivalence is simpler.

Proof. The definition given in Proposition 6.2.1 cannot be stronger than Definition

6.2.3, because the side information can always be chosen so that Pn places probability

.5 on messages m1 and m2. Thus, the definition give in Proposition 6.2.1 is just a

special case of Definition 6.2.3.

In the other direction, note that the best algorithm An for the definition given in

Proposition 6.2.1 is the maximum a posteriori (MAP) estimate of the message given

Zn, and since the two messages are equally likely, the probability that this estimate

is correct is simply 1
2

+ ||P (Zn|m1)−P (Zn|m2)||1
4

, where P (Zn|mi) denotes the probability

distribution of the eavesdropper’s channel output given that message mi is sent, and

|| · ||1 denotes the ℓ1-norm. Thus, the definition given in Proposition 6.2.1 implies that

the ℓ1-distance between any two conditional distributions P (Zn|m1) and P (Zn|m2)

is exponentially small.

150

We complete the proof with a simple hybrid argument. Let Pn and fn denote the

side information and function to guess, respectively. Let M denote the message that

the transmitter sends to the intended receiver, and let Zn denote the corresponding

channel output observed by the eavesdropper. Imagine that instead of En(M), the

input to channel Q2 is actually En(M ′), where M ′ distributed according to Pn, and

M ′ is independent of M . Let Z ′n denote the corresponding channel outputs. If the

eavesdropper is given access to Z ′n instead of Zn, clearly the probability that the

eavesdropper guesses fn(M) correctly is at most pg, since Z ′n is independent of M .

To complete the proof, observe that the distribution of (M,Zn) is very close to the

distribution of (M,Z ′n). Specifically, the definition given in Proposition 6.2.1 implies

that ||P (Zn|M = m) − P (Z ′n)||1 ≤ 22−εn for m = m1 and m = m2. Therefore, for

any algorithm An, Pr[An(Zn) = M] ≤ Pr[An(Z ′n) = M] + 22−εn.

Proposition 6.2.1 starts to make the connection with strong security clearer. As

a simple corollary, we obtain the following lemma.

Lemma 6.2.1. Any coding scheme possessing semantic security also possesses strong

security. Conversely, given any coding scheme possessing strong security, perform-

ing a negligible amount of expurgation produces a coding scheme of the same rate

possessing semantic security.

Proof. First, we show that semantic security implies strong security. Note that

I(M ; Zn) =
∑

m

1

Mn

D(PZn|m||PZn),

where PZn denotes the distribution of Zn when the sent message M is chosen uni-

formly from the set {1, . . . ,Mn}, and PZn|m denotes the distribution of Zn condi-

tioned on the event that M = m. Semantic security implies that for some ε > 0,

||PZn|m − PZn||1 ≤ 2−εn for all messages m. From the ℓ1-bound on entropy [28], it

follows that D(PZn|m||PZn) ≤ ||PZn|m − PZn||1, so I(M ; Zn) ≤ 2−εn, showing that

semantic security implies strong security.

In the other direction, assume that the coding scheme {Mn, En, Dn} possesses

151

strong security. Pinsker’s inequality [28] implies that

∑

m

1

2
||PZn|m − PZn||21 ≤ 2−εn,

so by Markov’s inequality, at least half of the messages m have the property ||PZn|m−
PZn||21 ≤ 22−εn. Therefore, if we expurgate the coding scheme by only including this

half of the messages, we end up with a scheme such that for any messages m1,m2,

||PZn|m1−PZn|m2 ||1 ≤ 22−.5εn. Thus, the expurgated coding scheme possesses semantic

security, and the rate loss is only 1 bit, i.e., 1
n
, so the expurgated scheme has the same

rate.

Before proceeding, we make a couple of remarks. First, the proof of Lemma 6.2.1

makes it clear that there is yet another equivalent definition of semantic security

that may perhaps looks more natural to information theorists. That is, we can also

define semantic security as the condition that I(M̃ ; Zn) ≤ e−εn for all M̃ , where M̃

denotes a random variable that can have any distribution over the message set, not

just the uniform distribution, and Zn denotes the channel output received by the

eavesdropper when M̃ is the sent message. Second, note that although the proof of

Lemma 6.2.1 shows that we can turn a code possessing strong security into a code

possessing semantic security by expurgating a vanishing fraction of the messages, the

expurgation procedure may not be computationally efficient. An interesting open

problem is to provide a computationally efficient reduction from strong security to

semantic security.

Finally, we can define the secrecy capacity of a wiretap channel.

Definition 6.2.4. The secrecy capacity of a wiretap channel is the supremum of the

rate computed with respect to coding schemes that (a) satisfy limn→∞ Pe,n = 0, and

(b) possess semantic security.

Lemma 6.2.1 shows that in the above definition, the secrecy capacity is unchanged

if we replace semantic security with strong security. As mentioned in the introduction,

[83] shows that if we replace strong security with weak security the secrecy capacity

152

is unchanged as well, so the secrecy capacity for weak security is identical to the

secrecy capacity for semantic security. We recall the following formula from [29] for

the secrecy capacity of degraded wiretap channels (degraded channels are a special

case of channels where Q1 is less noisy than Q2 in the sense of the following lemma).

Lemma 6.2.2. We say that the channel Q1 is less noisy than Q2 if I(U ; Y) ≥ I(U ; Z)

for every distribution PUPX|UPY,Z|X , where U is any auxiliary random variable such

that U is independent of Y and Z conditioned on X. The capacity of a wiretap

channel where Q1 is less noisy than Q2 is given by

max
PX

I(X; Y)− I(X; Z),

where the maximization is over all distributions PX over X.

From the above formula, it is clear that the secrecy capacity of the constant-

capacity compound wiretap channel is at most C1−C2, where C1 denotes the capacity

of the channel connecting the transmitter to the intended receiver. As we will see

in the next section, the rate C1 − C2 is achievable, so we define the capacity of the

constant-capacity compound wiretap channel as C1 − C2.

Since there is no rate loss associated with using a stronger definition of security,

from the point of view of code design, we should try to design codes meeting the

strongest definition of security. This is the goal of the rest of this chapter. In the

next section, we prove that one can construct a (possibly computationally complex)

precode to provide strong security for either the wiretap channel or the constant-

capacity compound wiretap channel, and this precode can be designed independently

of the channel code used to guarantee reliable communication between the transmitter

and the intended receiver. We illustrate the utility of this approach by providing two

concrete precodes with moderate computational complexity. In Sections 6.4 and 6.5,

we construct low complexity coding schemes possessing semantic security for the

special case where the channels Q1 and Q2 are both BECs.

153

FinalSecrecy Intermediate
Encoding

Good Channel
Code

Message

Expurgate
for semantic
security

Encoding

Precode for

Figure 6-2: Proposed coding strategy. We split the code construction problem into
the design of a precode with good security properties and a good channel code for
the channel Q1 connecting the transmitter to the intended receiver. A good precode
can provide strong security, and a (non-constructive) expurgation scheme can provide
semantic security.

6.3 General Approach for Strong Security Using

“Invertible” Extractors

In this section, we start by proving a general reduction that splits code design for

the wiretap channel and the constant-capacity compound wiretap channel into the

separate problems of designing a channel code and a precode providing secrecy. Then,

we provide some concrete examples to illustrate the kind of performance one can

achieve with this approach.

Figure 6-2 shows the coding strategy we propose for the wiretap and constant-

capacity compound wiretap channels. To encode a message, first we use a precode

based on a randomness extractor, followed by a good channel code for the channel

between the transmitter and the intended receiver. Before presenting a formal analysis

of this coding strategy, we provide some intuition for why this strategy should provide

security. As mentioned in Chapter 2, randomness extractors are functions that purify

randomness, i.e., a randomness extractor takes as input a source of randomness with

min-entropy k and produces k bits that are approximately uniformly distributed.

Now, to communicate a message m securely, imagine that we start by computing a

random preimage of m under a randomness extractor. Assuming that the extractor

has suitable properties, when m is a random k bit message, and we choose a random

preimage, we end up with a uniformly distributed k′-bit message, where k′ > k is a

parameter we can tune based on the rate we are trying to achieve. To complete the

154

encoding, imagine that we encode this k′-bit preimage with a good channel code for

Q1. The intended receiver can decode the code, hence recover the k′-bit preimage, and

compute m reliably. Now, because the eavesdropper’s channel Q2 is noisier than Q1,

intuitively we should be able to arrange things so that the eavesdropper’s conditional

distribution over the k′-bit preimage given the channel output Zn has min-entropy

k. Then, the extraction properties of the precode imply that the eavesdropper’s

conditional distribution over the k-bit message given Zn is approximately uniform,

i.e., the eavesdropper essentially learns nothing about the message m.

We formalize the intuition above with the following theorem.

Theorem 6.3.1. Let Q1 and Q2 denote two discrete memoryless channels (with the

same input alphabet), and let C2 denote the capacity of Q2. Given a channel code

C for Q1 with rate R and an (R− C2 − ε, 2−εn)-extractor Ext with the property that

Ext(X,S) is uniformly distributed when X and S are uniformly and independently

distributed, we can encode a message m of rate R − C2 − ε by computing a random

preimage p of m under Ext. Then, encoding the seed s and the preimage p with C

produces a code possessing strong security.

Proof. First, we analyze the intended receiver. By assumption, the channel code C

achieves low probability of error, so the intended receiver can decode the channel

input, i.e., the intended receiver can decode both p and s. Therefore, the intended

receiver can recover the message by computing Ext(p, s).

Now, we must show that most of the time, the eavesdropper learns very little after

observing the channel output. As mentioned above, the rough idea is to show that for

the eavesdropper, the conditional distribution of the channel input given the channel

output is exponentially close (in terms of statistical, i.e., ℓ1, distance) to a distribution

with min-entropy (R − C2 − ε)n. Then, the definition of (strong) extractor implies

that the conditional distribution of the message is essentially uniform. We fill in the

details below. (Note: for notational convenience, in the following proof we use ε to

refer to any constant that can be made arbitrarily small. For example, using this

notation, ε + ε = ε.)

155

First, we must show that the conditional distribution of the channel input given

the channel output is close to a distribution with large min-entropy. For simplicity,

we assume that the eavesdropper has access to the seed s—clearly this can only

help, and as we will see, the definition of a strong extractor implies that giving the

eavesdropper the seed does not help him much anyway. Thus, we are only interested

in the distribution of the channel input corresponding to p. We prove that with

high probability (over the choice of m, s, and the channel noise), the conditional

distribution of the channel input given the channel output is a ((R−C2− ε)n, 2−εn)-

source. To prove this, we group the codewords according to their type. Assume that

the sent codeword’s type has at least 2(R−ε)n codewords. Note that this happens with

probability at least 1− poly(n)2−εn because there are only polynomially many types.

Next, assume that the channel noise is typical. Specifically, assume that the joint type

P̂XZ between the sent codeword and the channel output satisfies ||P̂XZ−P̂XQ2||1 ≤ ε.

where P̂X denotes the type of the sent codeword. Again, it is well-known that such

typical sets have probability at least 1− 2−εn. We show that when the sent codeword

and the channel noise satisfy the above two assumptions, the conditional distribution

of the channel input given the channel output is a ((R− C2 − ε)n, 2−εn)-source.

We can model the situation with a bipartite graph. The left vertices correspond

to the codewords with type P̂X , and the right vertices correspond to all channel out-

puts with the type P̂Z , where P̂X and P̂Z are the marginal distributions induced

by P̂XZ , i.e., P̂X is the type of the sent codeword and P̂Z is the type of the eaves-

dropper’s channel outputs. We connect two vertices if they induce the joint type

P̂XZ . Thus, we have 2(R−ε)n vertices on the left, and every vertex on the left has the

same degree. This degree is at least 2n(H(Z|X)−ε), where X,Z ∼ P̂XQ2. There are

2n(H(Z)+ε) vertices on the right, so we see that the average degree of a vertex on the

right is 2n(R+H(Z|X)−H(Z)−ε) ≥ 2n(R−C2−ε). Note that by the symmetry of a discrete

memoryless channel, when we observe a particular channel output, the conditional

distribution of the channel input is uniform over the left vertices adjacent to the right

vertex corresponding to the observed channel output. Therefore, we simply need to

analyze the probability that the observed channel output has degree exponentially

156

smaller than the average degree. It is obvious that this happens with exponentially

small probability. In more detail, every edge of the graph is equally likely, so we just

need to bound the fraction of edges that are incident to right vertices with degree

less than 2−εn times the average degree, and clearly the fraction of such edges is at

most 2−εn. Therefore, we have shown that with probability 1− 2−εn, the conditional

distribution of the channel input given the channel output is an ((R−C2−ε)n, 2−εn)-

source.

To complete the proof, note that the definition of a strong extractor implies that

even with knowledge of the seed, with (exponentially) high probability the output of

the extractor is close to uniform.

We emphasize that the above coding scheme also works for the constant-capacity

compound wiretap channel, because the coding scheme does not require any knowl-

edge of Q2 other than the capacity (so that the rate of the extractor can be set

appropriately). Also, note that same arguments work for the AWGN channel and for

stationary ergodic channels, i.e., channels with a typical set, and that we can use the

same arguments to achieve the secrecy capacity for a given degraded wiretap channel

by shaping the channel code appropriately.

6.3.1 Precodes Based on the Leftover Hash Lemma

We now present a simple, but quite effective, precode construction based on the

Leftover Hash Lemma [59]. Recall from Chapter 2 that the Leftover Hash Lemma

provides a very simple construction of extractors. The extractor takes as input a

string of n bits, and uses a seed of n bits. We can naturally view an n-bit binary

string as an element of GF (2n). Then, the extractor is simply Ext(x, s) = x ·s, where

· denotes multiplication over GF (2n). We recall Lemma 2.3.6 from Section 2.3.4,

restated below for convenience.

Lemma 6.3.1. (Leftover Hash Lemma) The function Ext(x, s) = (x · s)⌊k+2 log ε⌋ is a

(k, ε)-extractor. The superscript notation indicates that the output of the extractor is

only the first ⌊k + 2 log ε⌋ bits of the product.

157

(Note: The domain of x is the set of nonzero elements of GF (2n), while the domain

of s is all elements of GF (2n). With these domains, it is easily seen that when X and

S are uniform, the output of the extractor is uniform, so Theorem 6.3.1 applies.)

Using this extractor construction in Theorem 6.3.1, we get a simple precode that

can be used for the wiretap or constant-capacity compound wiretap channel. The

complexity of encoding and decoding the precode is quite low. Specifically, encoding

requires us to select a random seed, invert it, and perform a single multiplication with

a random padding of the message. To decode, we just multiply the channel input

with the seed. Developing efficient algorithms for arithmetic over finite fields is a

well-studied problem, and although naive algorithms for multiplication and inversion

might take Ω(n2) time, using recent improvements to some well-known algorithms

for finite field arithmetic [46], the complexity of multiplication and inversion can be

reduced to O(n log(n) log log(n)).2

The main drawback of this construction is the seed length. For the constant-

capacity compound wiretap channel, since the seed is as long as the input message,

this means that we achieve a rate of C1−C2

2
instead of C1 − C2. On the other hand,

for the scenarios usually considered in the literature, i.e., where we are only trying

to construct a secure code against one possible eavesdropping channel, the seed can

be chosen once and does not need to be transmitted. Phrased differently, the seed

plays the role of a random ensemble of codes, and Theorem 6.3.1 and Lemma 2.3.6

imply that with exponentially high probability over the choice of the seed, the re-

sulting (deterministic) precode is very good for any particular eavesdropping channel

with capacity at most C2. Thus, for the standard wiretap channel where we only

need to be secure against a single eavesdropper channel, this construction achieves

rate C1 − C2, and satisfies the definition of strong security. By shaping the channel

2There is a minor technicality here. We assume that n is of the form (p− 1)pd for some integer
d and some prime p such that 2 is a generator of Z∗

p and 2p−1 6≡ 1 mod p2. The complexity of
the algorithm from [46] depends on p. In particular, the stated running times bounds hide a factor
depending on p in the big-O constant. For our purposes, it suffices to note that 3 is a valid choice
of p, so this means that for any n, we can find an n′ in the range n ≤ n′ ≤ 3n of the appropriate
form with p = 3. Thus, the condition that n be of the form (p− 1)pd is not a severe restriction. In
fact, since many small primes satisfy these conditions, e.g., 5 and 11 are also valid choices of p, we
can find an n′ in a much smaller range than [n, 3n], but we do not pursue this further.

158

code appropriately, we can achieve any rate up to maxPX
I(X; Y)− I(X; Z) with this

extractor, i.e., we can achieve the capacity of any degraded wiretap channel. To sum-

marize, we see that for the usual wiretap channel, the interesting remaining questions

are whether we can construct codes that achieve capacity with a linear running time

and/or codes that possess semantic security. For the special case where Q1 and Q2

are both BECs, we address these questions in the next two sections by giving schemes

that achieve semantic security with linear running time, but even for the case of a

noiseless channel to the intended receiver and a BSC to the adversary, the problem

of designing a linear time precode that possesses strong or semantic security remains

open.

For the constant-capacity compound wiretap channel, constructing codes that

can achieve the capacity is also an interesting challenge. Based on the previous

discussion, it should be clear that we could get closer to the capacity if we started

with an extractor with better seed length. In particular, it is well-known in the

extractor literature that a seed length of εn is sufficient to guarantee 2−εn statistical

distance to a uniform source (see, for example, [19]). In fact, relatively recently

(over the last decade), many extractors have been constructed that achieve much

better performance than the simple hashing-based construction above–in particular,

the performance is nearly optimal in terms of the seed length. For example, the recent

algebraic construction [54] produces extractors with parameters sufficient to achieve

rates arbitrarily close to the capacity of the constant-capacity compound wiretap

channel. However, existing constructions of extractors, although polynomial time,

are not very efficient. Furthermore, the extractor constructions in the literature do

not concern themselves with the problem of computing a random preimage, which is

crucial in our setting. For example, it is not even clear that a random preimage for

the construction in [54] can be found in polynomial time, let alone near-linear time.

The zigzag product was not designed for the case of exponentially small statistical

distance that we have in mind, but we can use the zigzag construction to construct

a precode providing security somewhere between weak and strong security. In more

detail, if we use the Margulis expanders (described, for example, in Section 2.3.2)

159

instead of the LPS construction in the zigzag construction, we can construct an

extractor such that evaluating the extractor and computing a random preimage can

both be accomplished in O(n) time—the key advantage of the Margulis construction

over the LPS construction is that the edge function can be computed using only

addition, as opposed to addition and multiplication, which is why we can eliminate the

logarithmic factors associated with finite field multiplication that would be present if

we used the LPS construction instead. This extractor only achieves a constant gap to

the uniform distribution, i.e., instead of exponentially decaying mutual information,

we can only produce extractors so that for any constant δ > 0, I(M ; Zn) ≤ δ. Thus,

there remains room for significant improvement for the constant-capacity compound

wiretap channel. Also, the question of how to construct codes for the constant-

capacity compound wiretap channel possessing semantic security remains open.

6.4 Semantic Security for the Noiseless/BEC case

In this section, we construct codes with linear time encoding and decoding algorithms

that possess semantic security and achieve the capacity of a wiretap channel with a

noiseless channel to the intended receiver and a BEC with erasure rate ee to the

eavesdropper. The codes we construct also have the property that the complexity

is uniformly bounded with respect to the gap from capacity. The code construction

we use is based on the nonsystematic irregular repeat-accumulate (NSIRA) codes

described in Section 2.2.3. Specifically, by taking the dual codes of NSIRA codes, we

get a suitable precode for the wiretap channel. We will explain why the dual codes

are useful in a moment, but first we show that NSIRA codes can be combined with

expander graphs to produce efficiently decodable codes achieving the capacity of the

BEC with exponentially decaying probability of error. Note that since the channel

to the intended receiver is noiseless, we do not need to use a channel code after the

precode.

The key fact we use about NSIRA codes is that these codes can achieve very

good performance on the BEC. Specifically, it is shown in [97] that NSIRA codes

160

can achieve capacity on the BEC for all erasure probabilities p ∈ [0, .95], and it is

conjectured that these codes achieve capacity for all p ∈ [0, 1). Furthermore, these

codes achieve capacity with uniformly bounded complexity regardless of the gap to

capacity.

For future reference, we note that it will be useful to modify the NSIRA codes by

adding a few extra parity checks. Specifically, we add εn parity checks with appro-

priate edges connecting these parity checks to the Rn information bits so that the

resulting graph between the information bits and the εn new parity checks has good

expansion properties. The reason for doing this is that the proof in [97] that NSIRA

codes can achieve capacity for the BEC uses the density evolution technique. As al-

luded to in Chapter 1, this technique proves that the bit error probability approaches

0 in the limit of long codes and a large enough number of message-passing iterations,

but density evolution does not directly provide bounds on the block error rate. By

adding new parity checks and connections that form a graph with good expansion

properties, we can construct a code that achieves rates arbitrarily close to the capac-

ity, but with the further property that the block error rate decays exponentially as a

function of n. Formally, we have the following lemma.

Lemma 6.4.1. There exist codes that achieve rates arbitrarily close to capacity for

the BEC with exponentially decaying block error probability, and these codes can be

decoded in linear time with uniformly bounded complexity.

Before proving Lemma 6.4.1, we need the following simple result about the existence

of certain expander graphs.

Lemma 6.4.2. For every sufficiently large n and every ε > 0, there exists a δ > 0

and a left-regular bipartite graph G with n left vertices, εn right vertices, and left

degree 10, so that G is also a (δn, .8)-expander.

(Note: in the lemma and proof, for simplicity we assume that εn is an integer)

Proof. We use the probabilistic method. Consider a random graph formed by having

each of the n left vertices randomly select (with replacement) 10 neighbors on the

161

right. We show that for a suitably small δ, every subset S of at most δn vertices on

the left has at least 8|S| neighbors on the right. First, consider a fixed set S. The

union bound implies that the probability that S has fewer than 8|S| neighbors is at

most
(

εn

8|S|

)(

8|S|
εn

)10|S|
.

Taking a union bound over all sets of size at most δn, we see that the probability

that any subset of size ≤ δn has too few neighbors is at most

δn
∑

s=1

(

n

s

)(

εn

8s

)(

8s

εn

)10s

≤
δn
∑

s=1

(ne

s

)s (εn

8s

)8s
(

8s

εn

)10s

=
δn
∑

s=1

(

64es

ε2n

)s

< 1

for sufficiently large n, provided that δ < ε2

64e2 .

Proof of Lemma 6.4.1. The codes we consider are the NSIRA codes with degree dis-

tribution as specified in [97], along with the expander modification suggested above.

Specifically, we add εn parity check nodes and connect them to the Rn information

bits so that the graph induced by the information bits and the εn extra parity check

nodes is a (δn, .8)-expander such that every information bit has degree 10. We know

that such an expander exists by Lemma 6.4.2. Now, we use the natural decoder,

i.e., first we decode the NSIRA code pretending that the extra parity checks are

not present. Once the decoder finishes, we attempt to decode (using the standard

message-passing algorithm) any remaining erased information bits by using the εn

extra parity checks. (In other words, the idea of “ignoring” the parity checks is purely

for conceptual reasons. The decoder we consider is equivalent to simply running the

message-passing decoder on the whole graph.) It is well-known that for a (k,≥ .5)-

expander, every subset of size at most k contains a vertex with a unique neighbor.

162

In the language of coding theory, all stopping sets have size greater than k. Since we

chose the connections so that the resulting graph has expansion factor .8 > .5, we see

that the only way the decoder can fail is if more than δn information bits are erased

after the first stage of decoding.

It is known [100] that the bit error rate of BP is tightly concentrated. That is,

although density evolution only provides a guarantee on the bit error rate, density

evolution does show that the probability that the bit error rate deviates from the

expected bit error rate by a constant is exponentially small. The density evolution

analysis from [97] shows that NSIRA codes achieve the capacity, which means that

after a suitably large number of BP iterations, the expected bit error rate is less

than .5δ, and therefore the probability that more than δn bits are erased after some

suitable number of iterations is exponentially small. Since the BP decoder on the

BEC has the property than once information bits are recovered, they stay recovered,

we don’t have to worry about information bits becoming erased in later iterations,

i.e., when the BP decoder finishes, fewer than δn bits are erased with exponentially

high probability. The decoding complexity is proportional to the number of edges in

the graph. For the expander, this is at most 10Rn regardless of how small we make

ε. As shown in [97], the number of edges in the NSIRA code also does not grow as a

function of the gap to capacity. Therefore, the proof is complete.

Comment: Lemma 6.4.1 shows that we can construct codes with uniformly bounded

decoding complexity that also have exponentially decaying block error rate. Using

the expanders of Lemma 6.4.2 in the construction of Spielman codes [113], we can

construct codes that have uniformly bounded encoding and decoding complexity, and

exponentially decaying block error rate.

It turns out that the dual codes of the modified NSIRA codes constructed above

are very good precodes for the noiseless/BEC wiretap channel. For the reader familiar

with the binary erasure quantization (BEQ) problem (defined in Chapter 5), the

intuition for taking the dual code is that good codes for the BEQ problem provide

semantic security for the noiseless/BEC wiretap channel, and as mentioned in Chapter

5, good codes for the BEQ problem can be constructed by taking the duals of good

163

codes for the BEC. To keep this chapter self-contained, we do not explicitly refer to

the BEQ problem in our analysis. Instead, we first work out the structure of the duals

of the modified NSIRA codes constructed above, and then explain how the dual codes

can be used as precodes. After explaining how the dual codes can used as precodes, we

analyze the properties that a precode must satisfy to possess semantic security—the

reader familiar with the BEQ problem will recognize that the properties guaranteeing

semantic security are equivalent to the properties that make a precode good for the

BEQ problem, but no knowledge of the BEQ problem is needed to understand our

analysis.

For simplicity, we start by describing the dual code of the standard NSIRA code,

i.e., without the extra expander graph. Recall from Chapter 2 that the dual of a code

can be computed by switching the variable nodes and the check nodes. Figure 6-3

shows the normal graph of the dual of an NSIRA code. Imagine that the bottom k

n Encoded Bits

+

BB
BB

BB
BB

+

BB
BB

BB
BB

+

CC
CC

CC
CC

. . . +

BB
BB

BB
BB

+

BB
BB

BB
BB

+

= = = . . . = = =

+

BBBBBBBB

}}}}}}}}

+

BBBBBBBB

mmmmmmmmmmmmmmm . . . +

}}}}}}}}

+

}}}}}}}}

QQQQQQQQQQQQQQQ

VVVVVVVVVVVVVVVVVVVVVVV

k Message Bits

Figure 6-3: Dual NSIRA code.

check nodes do not need to be set to 0, but rather these bottom nodes will be used to

encode a message. Specifically, we encode a k-bit message m as follows. First, assign

values to the variable nodes so that these values are uniformly distributed over all

values satisfying the constraint that the bottom k parity checks are equal to m. At

this stage, it may not be entirely clear that this can be done efficiently, but we will

address this concern in a moment. Once the variable nodes have been assigned these

values, we compute the values of the top n parity checks. The values of these checks

comprise the length n encoding of m.

With this strategy, observe that the intended receiver can easily recover m. Specifi-

164

cally, the intended receiver has a noiseless channel, so the intended receiver can recover

the variables node values by simply accumulating the n symbols of the encoding in

O(n) time. Then, because the bottom part of the graph has O(n) edges, the receiver

can compute the values of the bottom k parity checks in O(n) time, and the values

of these parity checks are equal to the sent message m. The eavesdropper, however,

will most likely learn absolutely nothing about the message, i.e., most of the time the

posterior distribution of m given the eavesdropper’s channel output is uniform over

all possible messages. To see this, first observe that by construction, the prior on the

channel input is uniform over all strings of length n. Therefore, the eavesdropper’s

channel output fixes some bits, but the erased bits are uniformly distributed. Now,

for a fixed message m′, the eavesdropper determines the probability that m′ is the

sent message by counting the number of assignments to the variable nodes that (a)

match the unerased bits received by the channel, and (b) result in m′ being the value

of the k bottom parity checks. This number is normalized by the number of possible

assignments to the variable nodes that match the unerased channel bits to get the

posterior distribution. Now, basic linear algebra implies that if the matrix induced

by the variable nodes, the unerased channel bits, and the k bottom parity checks has

full rank, then for every m′, the posterior is the same, i.e., the posterior distribution

is uniform. Since row rank equals column rank, we see that this matrix has full rank

if and only if the dual of the dual NSIRA code, i.e., the original NSIRA code, can

recover the message when a BEC erases the set of channel bits that are received

unerased by the dual NSIRA code. Formally, [80] proves the following lemma (note:

this lemma is identical to Lemma 5.2.1, but we restate it below for convenience).

Lemma 6.4.3. A linear code C with block length n can recover from a particular

erasure sequence (under ML decoding) if and only if the dual code C⊥ has full rank

when restricted to the dual erasure sequence, i.e, the sequence where all the erased

symbols have been turned into unerased symbols and vice versa. Also, if C can recover

from an erasure sequence using message-passing decoding, then we can perform the

encoding process described above for C⊥ using a dualized form of message-passing.

165

Comment: The dualized form of message-passing decoding allows us to perform

encoding in linear time. For the details of how to dualize message-passing decoding,

we refer the reader to [80].

Thus, we find that whenever the NSIRA code decodes a block correctly, our dual

precode secures the message perfectly, i.e., the eavesdropper learns nothing about the

message. Unfortunately, as we noted previously, the results on NSIRA codes rely on

the density evolution technique, and therefore the results in [97] only show that the

bit error probability, as opposed to the block error probability, is small. It is precisely

for this reason that we introduced the modified NSIRA codes above. Lemma 6.4.1

shows that the modified codes achieve exponentially small block error rate, so by

suitably modifying the strategy above, we are able to achieve semantic security.

Figure 6-4 shows the normal graph of the dual of a modified NSIRA code. It is still

+ ...++
n Encoded Bits

...== = =

...+ +

=
Extra Variables

k Message Bits

Figure 6-4: Dual modified NSIRA code.

possible to encode a message m efficiently by using a dualized form of message-passing

decoding. However, note that decoding is impossible, because the extra parity checks

in the modified NSIRA code become extra variables in the dual modified NSIRA

code, and the top n parity checks give us no information about these variable nodes.

Therefore, we need a way to communicate these extra variable nodes to the intended

166

receiver while keeping them secret from the eavesdropper. But this is exactly the

problem we started with, so a natural strategy is to recursively apply the strategy

outlined above until the number of variable nodes that needs to be communicated is

small, say O(
√

n), at which point we can use a brute-force algorithm and a random

linear code to communicate the variable nodes. We consider this approach later in

this section, but for now we present another way of communicating the extra variable

nodes.

The key idea is that the number of extra variable nodes is very small, i.e., there

are only εn such nodes to communicate. Therefore, we can be very inefficient in terms

of the rate at which we communicate these nodes. Based on the previous analysis, we

see that we can guarantee that the key remains secret if we encode the extra variable

nodes with a code that is the dual of a code with exponentially small error probability

on the BEC, but now we no longer need to use a capacity-achieving code. Of course,

the code still needs to have a suitable structure so that encoding and decoding can

be done in a computationally efficient manner. As we now show, the dual codes of

the repeat-accumulate-accumulate (RAA) codes proposed in [7] have all the required

properties. Recall from Chapter 2 that RAA codes with suitable parameters are

asymptotically good, i.e., the distance of these codes grows as δn for some constant

δ > 0.

As noted in Chapter 2, we define RAA codes so that the encoding includes the

information bits and the outputs of both accumulators—this is slightly different from

the definition of RAA codes in [7], as [7] only includes the output of the second

accumulator. However, clearly our encoding is asymptotically good if the encoding

from [7] is asymptotically good. We use the dual of an RAA code as our precode,

but with one extra modification. Specifically, we attach a parity check of degree d to

each code bit of the dual RAA code. We add this essentially so that we can amplify

the erasure rate seen by the eavesdropper. The following lemma summarizes the

important properties of dual RAA codes with the parity check modification.

Lemma 6.4.4. The dual RAA codes constructed above secure the message perfectly

with exponentially high probability. The encoding and decoding complexity is O(n).

167

(Note: whether the encoding /decoding complexity is uniformly bounded or not is

irrelevant, because the encoding complexity and decoding complexity are both going

to be measured with respect to εn anyway.)

Proof. To encode a message m, we start by assigning uniformly random values to the

variable nodes. This induces values for the check nodes. We take the exclusive-or of

the parity checks corresponding to the information bits of the RAA code with m to

get the actual values used in the encoding. Finally, for each encoded bit, we select a

uniformly random string of length d whose parity is equal to the parity check. Clearly

this whole process is linear time.

The intended receiver can easily decode the message. Specifically, first the receiver

computes the parities of the groups of d received symbols to recover the values used in

the encoding. Then, the receiver inverts the two accumulators, and uses the recovered

variable node values to compute the remaining parity checks. Taking the exclusive-or

of these parity checks with the received values produces m, and this process clearly

takes linear time.

Now, we analyze the probability that the eavesdropper’s posterior distribution is

not uniform. First, note that for each group of d symbols, if even a single symbol

is erased, then the posterior distribution on the value of the associated bit of the

encoding is uniform. Thus, we have essentially amplified the erasure probability for

each bit of the encoding from ee to 1− (1− ee)
d. As before, to prove security we need

to show that the matrix induced by the variable nodes and unerased bits received by

the eavesdropper has full rank, but since RAA codes have distance δn, by definition

this matrix has full rank whenever the eavesdropper receives fewer than δn unerased

bits. Thus, the probability that the encoding is not perfectly secure is at most the

probability that a channel that erases each bit with probability 1 − (1 − ee)
d erases

fewer than (1−δ)n bits. This is exponentially small provided that 1−(1−ee)
d > 1−δ,

i.e., d > log(δ)
log(1−ee)

.

Finally, we can state the main result of this section.

168

Theorem 6.4.1. The combination of a dual RAA code with the parity check modifi-

cation and a modified NSIRA code achieves the secrecy capacity of the noiseless/BEC

wiretap channel (with erasure probability at least .05) and possesses semantic secu-

rity. Furthermore, encoding and decoding can be accomplished with uniformly bounded

complexity, i.e., encoding and decoding take O(n) where the constant hidden inside

the big-O notation does not depend on the gap to capacity.

Proof. We have done most of the work already. The encoder encodes the modified

NSIRA code as described above, and then encodes the extra εn variable nodes using

the dual RAA code with the parity check modification. The analysis of the intended

receiver is trivial. The intended receiver first decodes the εn extra variable nodes

using the decoding procedure for dual RAA codes with the parity check modification.

Then, the intended receiver decodes the modified NSIRA code by first determining

the values of the n variable nodes via accumulation, and then determining the message

by computing the values of the remaining parity checks, which is possible because the

values of the εn extra variable nodes are known.

To analyze the eavesdropper, first note that Lemma 6.4.4 says that the extra

variable nodes are perfectly secure with exponentially high probability. The modified

NSIRA code is analyzed in the same way that we analyzed NSIRA codes, except

that now the probability that the matrix induced by the eavesdropper’s unerased

received bits, potential message bits, and the variable nodes does not have full rank

is exponentially small. Therefore, the probability that the overall coding scheme

does not perfectly secure the message is exponentially small. Finally, note that our

analysis of security does not depend on which message m was sent, i.e., the rank of

the associated matrix is only a function of which bits the channel erases, not which

message was sent, so we get semantic security for free.

6.4.1 Explicit Constructions

Theorem 6.4.1 shows that there exist codes with computationally efficient encoding

and decoding algorithms that possess semantic security for the special case of a noise-

169

less channel to the intended receiver and a BEC to the eavesdropper. However, our

construction is based on the analysis of a random ensemble of codes, so we cannot

prove that a particular code has the desired properties. It would be nice to have an

explicit construction of codes achieving the secrecy capacity with uniformly bounded

complexity that also possess semantic security, or at least an efficient method to verify

whether a particular code from a random ensemble possesses the desired properties.

We note that this is closely related to the notion of deterministic extraction from a

bit-fixing source [22]. In more detail, the coding scheme constructed above achieves

secrecy essentially by constructing an extractor for the special class of sources known

as bit-fixing sources, i.e., sources where some bits are uniform and other bits are fixed

to prescribed values. In the computer science literature, the class of bit-fixing sources

has been considered in the context of extractors because unlike the case of arbitrary

(k, ε)-sources, where it is obvious that random seed is necessary, for the case of bit-

fixing sources one can show via the probabilistic method that there exist deterministic

functions capable of extracting randomness from an arbitrary bit-fixing source. Ex-

plicit constructions capable of extracting a small amount of randomness are given

in [65]. In our case, we have made the problem easier because we only need to be

able to extract randomness from almost all bit-fixing sources—for an exponentially

small fraction of bit-fixing sources, it is okay if we fail to extract randomness. On the

other hand, we proved the existence of extractors that come equipped with extremely

efficient algorithms to perform extraction and compute a random preimage, and we

are able to extract almost all the randomness in the source. This is reminiscent of the

difference between the bounded errors model versus the BSC in channel coding—in

Shannon’s BSC model, we do not need to be able to correct all error patterns, just

the overwhelming majority of them.

To really compare our results with the results in deterministic extraction from

bit-fixing sources, it is not fair to use random ensembles, since the whole point of

the deterministic extraction problem is to provide a deterministic function that is

guaranteed to work. In other words, although we have proved that codes chosen from

a random ensemble work with very high probability, it would be nice to be able to

170

construct a particular code and prove that this fixed code has the desired security

properties. For the codes constructed above, verifying the properties of the NSIRA

code can be done easily for very large n by checking that the graph has large girth,

and then analyzing the appropriate subtrees of small depth with density evolution.

We can construct suitable expanders explicitly via the zigzag product [19]. In fact,

because we only require unique-neighbor expansion, we can use even more explicit

expanders [2]. However, explicitly constructing or verifying that an RAA code has

distance at least δn is an open problem, although some progress was made in [53].

More generally, using our strategy, to have an easily verifiable construction of a good

precode, we need to explicitly construct (or efficiently verify) an asymptotically good

code such that the dual code can easily be encoded and such that the dual code

supports an efficient inversion procedure (so that the intended receiver can decode

efficiently). Although we have not solved this problem, we can make some progress by

applying the recursive strategy suggested earlier. Once the number of extra variable

nodes is reduced to n
1
3 , we no longer have to worry about the efficiency of encoding

or inversion, since these procedures can be carried out in O(n2) and O(n3) time,

respectively, for any linear code. Constructing asymptotically good codes explicitly

is simple, since we can use the same expander constructions as before. Thus, we

get an explicit code, but this code does not quite achieve semantic security since the

probability that the eavesdropper learns some information only decays as e−n
1
3 , which

vanishes, but not exponentially quickly.

6.5 Semantic Security for the BEC/BEC case

In this section, we construct codes with linear encoding and decoding complexity

that possess semantic security and achieve the capacity of a wiretap channel where the

channel between the transmitter and the receiver is BEC(e1) and the channel between

the transmitter and the eavesdropper is BEC(e2). Unlike the previous section, the

codes we construct do not have uniformly bounded complexity—the complexity of

the precode is now O(n
ε
(log(1

ε
))2). As in the setup of Theorem 6.3.1, we do not make

171

any assumptions on the rate R channel code used for the BEC (other than the fact

that the code is linear), i.e., we construct an ensemble of precodes such that for any

linear channel code, with high probability a randomly chosen member of the ensemble

is a good precode for the given channel code.

Copying the approach from the previous section, we would like to construct an

extractor for the appropriate source. Assuming that a linear code is used for the chan-

nel code, it follows that the eavesdropper learns that the channel input is uniformly

distributed over some affine subspace of GF (2)Rn. Thus, instead of constructing an

extractor for bit-fixing sources, we must construct an extractor for arbitrary affine

subspaces. It turns out that we can accomplish this by introducing some more ran-

domness into the construction. At a high level, the construction contains many of the

same basic ingredients as the previous case. We start by showing how to communicate

near the secrecy capacity assuming that the intended receiver already has εn secret

bits, i.e., the analog of a modified NSIRA code. Then, we show a highly suboptimal

(in terms of rate) scheme for transmitting the εn secret bits, i.e., the analog of the

dual RAA codes with the parity check modification.

To construct a capacity-approaching precode assuming a secret key, we proceed

as follows. Construct a matrix

M =
[

I H
]

.

Here I denotes the n(e2 − e1 − ε)-dimensional identity matrix, and H is an n(e2 −
1 + R − ε) by n(R − e2 + e1 + ε) matrix distributed so that each entry is i.i.d. with

probability c
n

of being 1, where c is a parameter that we set later. In addition to M ,

form an n(e2− e1− ε) by nε′ matrix N such that every set of εn rows of N is linearly

independent. One way of accomplishing this by taking N to be the adjacency matrix

of an (εn,> .5)-expander graph with n(e2−e1−ε) left vertices and nε′ = O(nε log(1
ε
))

right vertices. Intuitively, N corresponds to the small key that needs be transmitted

secretly, but at a potentially suboptimal rate. Formally, the encoding process proceeds

as follows. Given an n(e2 − 1 + R− ε)-bit message m , first we pick a random secret

172

key s of length nε′, and a random string x of length n(R − e2 + e1 − ε). Then, we

compute

t = Hx + Ns + m.

The input to the channel code is the Rn-bit string [t, x]. Note that m = M [t, x]+Ns,

so if the intended receiver can learn the secret key s by some other means, then the

message m can be recovered easily. As we will see, for suitable choices of c, ε, and ε′,

the probability that the eavesdropper’s posterior distribution on the message is not

uniform is exponentially small.

Now, we explain how to transmit s. We start with the dual RAA codes, but

we use a generalization of the parity check modification. Specifically, we apply a

random permutation to a dual RAA code with relative distance at least .001 and

rate 1
K

such that K(hb(.001) − .0001) > 2. Then, we encode with a channel code

capable of recovering from a .001 fraction of erasures. Finally, we encode each bit of

the output using a constant size code to transform the given wiretap channel into a

channel where the transmitter and the receiver are connected by BEC(≤ .0005) and

the transmitter and the adversary are connected by BEC(≥ .99995).

Theorem 6.5.1. The code construction above can achieve rates arbitrarily close to the

secrecy capacity for the BEC/BEC wiretap channel, and possesses semantic security.

Encoding and decoding take O(n
ε
(log 1

ε
)2) time, where ε denotes the gap to capacity.

Proof. The complexity of encoding and decoding the main code, specified by M and

N , is O(cn + n log(1
ε
)), assuming that N is chosen as an optimal expander graph.

The complexity of encoding and decoding the dual RAA code used to transmit the

secret key is O(nε′ log(1
ε
)). Thus, the complexity of encoding and decoding is

O(n(c + log(1
ε
))).

To analyze the security of the scheme, we show that regardless of the (linear)

channel code used to correct errors on the BEC connecting the transmitter to the

intended receiver, the precode described above provides semantic security. As in the

case of a noiseless channel between the transmitter and the intended receiver, our

analysis essentially boils down to proving that certain matrices have full rank with

173

high probability. Formally, assume that the channel connecting the transmitter and

the eavesdropper erases at least n(e2 − .5ε) symbols. Note that the probability that

this does not happen decays exponentially with n. Because the code is linear, the

eavesdropper learns n(1 − e2 + .5ε) linear combinations of the Rn-bit string [t, x].

We show that regardless of the choice of the n(1− e2 + .5ε) linear combinations, the

matrices M and N protect the message m perfectly with high probability. Formally,

let S denote a basis for any n(1 − e2 + .5ε) dimensional subspace of GF (2)Rn. We

show that

T =





S 0

M N





has full rank, i.e., rank n(R − .5ε) with high probability. To see this, compute the

expected number of strings y such that yT = 0. We represent y as y = [y1, y2], where

y1 is a string of length n(1− e2 + .5ε) and y2 is a string of length n(e2 − 1 + R− ε),

so that yT = y1S + y2M . Note that S is a basis, so for each y2, there is at most one

y1 such that y1S + y2M = 0. However, we show that when y2 has w > εn 1’s, the

probability that there exists any y1 such that y1S + y2M = 0 is small. To see this,

observe that for such a y2, y2M is distributed as a string of Rn independent bits,

where each bit has probability
1 + (1− 2 c

n
)w

2

of being 0. Thus, for c = 1
ε
log(1

ε
), the probability of any string is at most (1+ε2

2
)Rn.

Thus, the expected number of strings y2 with at least εn 1’s for which there exists a

y1 such that y1S + y2M = 0 is at most

2n(e2−1+R−ε)2n(1−e2+.5ε)

(

1 + ε2

2

)Rn

≤ 2−.5εn+log(e)ε2Rn

≤ 2−.25εn

for sufficiently small ε, e.g., ε < .25 ln(2). Therefore, by Markov’s inequality, the

174

probability that there exists any string y such that yT = 0 and such that the associ-

ated y2 has more than εn 1’s is exponentially small. On the other hand, if y2 has at

most εn 1’s, then by the choice of N it is impossible to have yT = 0, so it follows that

T has full rank with high probability. Therefore, with all but exponentially small

probability, m is perfectly secured provided that s is perfectly secured.

To complete the proof, we must show that s is perfectly secured with all but

exponentially small probability. Let S be a subspace as above, but now of dimension

.0001Kε′n. Let C denote the code formed by taking the set of encodings of the all 0-

string. Then, C⊥ is an RAA code, except that we have applied a random permutation.

Proving that s is communicated secrectly boils down to showing that the matrix

T =





S

C⊥





has full rank, where with a slight abuse of notation, C⊥ in definition of T denotes

a basis for the code C⊥. To show that yT = 0 has no nonzero solutions, we must

show that no codeword in C⊥ lies in S. The key point is that the RAA code is

asymptotically good. Thus, if c is a codeword in C⊥, then c has at least .001Kε′n 1’s,

and at most .999Kε′n 1’s. 3 Therefore, after the random permutation, the probability

that c lies in S is at most poly(n)2.0001Kε′n2−Khb(.001)ε
′n, so the probability that any

codeword lies inside S is at most poly(n)2nε′(1−K(hb(.001)−.0001)), completing the proof

of secrecy.

Finally, notice that the gap to capacity is O(ε′) = O(ε log(1
ε
)), and the encod-

ing and decoding complexities are O(n
ε′
(log(1

ε′
))2), which completes the proof of the

theorem.

6.5.1 Explicit Constructions

Theorem 6.5.1 shows that there exist codes with computationally efficient encoding

and decoding algorithms that possess semantic security for the special case of erasure

3To obtain the upper bound on the number of 1’s, we slightly modify an RAA code by appending
0’s to every codeword.

175

channels to the intended receiver and the eavesdropper. As in the case of Theorem

6.4.1, we can ask for an explicit construction of a code with the desired properties.

This is closely related to the notion of deterministic extraction from affine sources [4],

i.e., sources that are uniform over some affine subspace. In the computer science

literature, this has been considered for large alphabets, where a Reed-Solomon like

construction provides some nontrivial guarantees. Also, the weaker notion of an affine

disperser, which is a function that only produces one bit of output, with the property

that the function is not constant on any affine source, has been considered in [8].

As before, we have made the problem easier because we only need to be able to

extract from almost all affine sources—for an exponentially small fraction of affine

sources, it is okay if we fail to extract randomness. On the other hand, we have once

again proved the existence of extractors that come equipped with extremely efficient

algorithms to perform extraction and compute a random preimage, and we are able

to extract almost all the randomness in the source. Of course, the new construction

uses much more randomness than in the case of Theorem 6.4.1, so it is no longer so

simple to construct an explicit, or easily verifiable, code. We leave the construction

of explicit codes for the case of BECs to the intended receiver and the eavesdropper

as an open problem.

6.6 Conclusion

In this chapter, we proposed a new channel model called the constant-capacity com-

pound wiretap channel, and we proposed semantic security as a slight strengthening

of the notion of strong security from [83]. We also proposed several different code

constructions based on the principle that secrecy can be guaranteed using a precode,

so channel codes can be treated as a black box designed independently of the pre-

code. In particular, we showed a simple construction that achieves the capacity of

any degraded wiretap channel, for example the Gaussian wiretap channel, possesses

strong security, and has O(n log(n) log log(n)) encoding and decoding complexity.

For the constant-capacity compound wiretap channel, we provided a code construc-

176

tion that achieves half of the secrecy capacity, possesses strong security, and has

O(n log(n) log log(n)) encoding and decoding complexity. We also constructed codes

possessing semantic security for two simple cases of the wiretap channel. First, for the

case of a noiseless channel to the intended receiver and a BEC to the eavesdropper,

we constructed codes that achieve the secrecy capacity, possess semantic security,

and can be encoded and decoded with uniformly bounded complexity. For the case

of BECs to both the intended receiver and the eavesdropper, we constructed codes

that achieve the secrecy capacity, possess semantic security, and can be encoded and

decoded with O(n
ε
(log(1

ε
))2) complexity, where ε denotes the gap to capacity.

There are several open problems related to results in this chapter. As mentioned

in Sections 6.4.1 and 6.5.1, constructing explicit codes with the same performance

as our random ensembles could be interesting. In particular, constructing explicit

RAA codes that are asymptotically good is an interesting challenge for future work.

Also, constructing secrecy-capacity achieving codes with linear time encoding and de-

coding algorithms that possess semantic security for more general channels remains

open. For example, even in the simple case of a noiseless channel to the intended

receiver and a BSC to the eavesdropper, it is not known how to construct such codes.

Finally, it would be interesting to explore other methods of generalizing the wiretap

channel. We have proposed the constant-capacity compound wiretap channel in this

chapter as an attempt to make the constraint that the eavesdropper is somehow fun-

damentally limited by physics in terms of how well he can receive the transmitter’s

signal more plausible, but coming up with more general models is particularly impor-

tant assuming that one wants to pursue the wiretap channel as an actually practical

model, rather than just an interesting theoretical toy problem. As one example of

why such generalizations are important, we note that assuming certain conjectures

in computational complexity theory are true, e.g., the existence of trapdoor permu-

tations, computationally secure transmission is possible at the usual capacity of the

channel between the transmitter and the intended receiver, and this remains the case

even if the channel between the transmitter and the eavesdropper is noiseless. Thus,

we pay a large penalty by using information-theoretic security (unless the channel be-

177

tween the transmitter and the eavesdropper has very low capacity), so unless a strong

argument can be made for the underlying assumptions of the wiretap channel model,

it is unlikely that one can justify using the information-theoretic security guarantee

over a computational security guarantee.

178

Chapter 7

Conclusion

This thesis has explored the application of sparse graph codes to four different prob-

lems, showing that sparse graph codes have potential as a low complexity alternative

to random codes in contexts beyond channel coding. We briefly summarize the main

results of Chapters 3, 4, 5, and 6. Then, we describe possible directions for future

work.

7.1 Summary of Results

First, in Chapter 3 we considered using sparse graphs codes to construct locally

encodable and decodable source codes. For a simple class of sources, namely vectors

of nonnegative integers subject to average and maximum constraints, we proposed

a solution based on sparse graph codes that possesses nontrivial local encoding and

local decoding properties, while still using space close to the information-theoretic

limit.

In Chapter 4, we applied sparse graph codes to the problem of compressed sensing.

In the first half of Chapter 4, we showed that linear measurements derived from sparse

graph codes, specifically expander graphs, can perform well for compressed sensing,

and further, that message-passing algorithms can be used as an efficient alternative

to LP for recovering the original signal x from the measurements y. In particular,

we showed that a simple message-passing algorithm can be used to recover sparse

179

signals, and the same algorithm also provides an ℓ1/ℓ1 guarantee. In the second half

of Chapter 4, we showed that linear measurements based on binary matrices or on

very sparse matrices do not behave well with respect to the RIP2, suggesting that

either a new proof technique or a different class of linear measurements is needed to

develop fast (i.e., linear or near linear time) reconstruction algorithms providing ℓ2/ℓ1

recovery guarantees.

In Chapter 5, we considered using sparse graphs codes for lossy source coding.

While we could not develop efficient algorithms for lossy source coding using sparse

graph codes, we were able to prove nontrivial guarantees on the performance of sparse

graph codes when optimal (and computationally very expensive) algorithms are used.

Specifically, we show that if one ignores computational complexity, there is a strong

duality between the lossy source coding problem and the channel coding problem—

for many rate-distortion problems, a good channel code (i.e., a code achieving low

probability of error under ML decoding) for an appropriate dual channel automatically

achieves low distortion for the original rate-distortion problem. This duality result

was proved using isoperimetric inequalities, and interestingly this result applies to

any code, not just sparse graph codes. Roughly speaking, our result says that in high

dimensions, i.e., for long blocklengths, good sphere-packings are automatically good

covers.

In the second half of Chapter 5, we analyzed the interplay between graph structure

and sparsity for the BSS-HD problem. We proved lower bounds on the sparsity

of LDGM codes and LDPC codes that are tight to within constant factors. As

explained in Chapter 5, this is the analog in lossy source coding of a phenomenon

that has already been observed for channel coding, where a compound construction

based on LDGM codes and LDPC codes can fundamentally achieve lower complexity

(uniformly bounded complexity for the BEC) than either LDGM codes or LDPC

codes individually.

Finally, in Chapter 6 we applied sparse graph codes to the wiretap channel [120].

First, we defined the information-theoretic analog of semantic security [49], and clari-

fied the relationship between our analog of semantic security and the notion of strong

180

security considered in the wiretap channel literature. Then, we proposed a general

architecture for constructing codes for wiretap channels, allowing the separate design

of a precode with good security properties and a good channel code. We used this ap-

proach to show that for any degraded wiretap channel, there exist precodes possessing

strong security whose encoding and decoding complexities are O(n log n log log n). For

the special case of wiretap channels where the component channels are BECs, we de-

signed sparse graph codes possessing semantic security whose encoding and decoding

complexities are only O(n).

7.2 Future Work

There are many interesting avenues for future research. We briefly review some of

the open problems suggested in Chapters 3, 4, 5, and 6.

For Chapter 3, an interesting direction for future work is to consider methods from

the data structures literature. Specifically, techniques from that field may provide

lower bounds showing that local encoding and local decoding cannot be simultane-

ously achieved with low complexity. On the positive side, techniques from the data

structures literature may also suggest techniques for improving our code construc-

tions. More broadly, extending our results to the design of locally encodable and

decodable source codes for a larger class of sources would be very interesting.

We view the results in Chapter 4 as a step towards formally connecting the the-

ory of message-passing algorithms with that of compressed sensing. An interesting

research direction would be to extend the connection between message-passing and

compressed sensing further. For example, it would be interesting to design message-

passing algorithms that provide ℓ2/ℓ1 reconstruction guarantees. We note that this

problem was also suggested in [52] in the context of explicitly constructing good mea-

surement matrices, but even proving results for randomly constructed matrices would

be interesting.

Finding an explicit construction of matrices satisfying the RIP2 remains an inter-

esting open problem. We have shown that existing constructions have essentially been

181

pushed as far as possible, in the sense that our bound on the number of rows required

by binary matrices is within a constant factor of the construction in [31]. From the

point of view of developing efficient algorithms, it would be interesting to explore

new class of codes, or develop a new analysis technique besides RIP2, to design more

efficient algorithms providing ℓ2/ℓ1 guarantees.

The main open problem related to Chapter 5 is to design a provably efficient algo-

rithm for the BSS-HD problem. As noted in Chapter 5, even developing algorithms

for the BSS-HD problem with complexity per bit that provably scales subexponen-

tially as a function of 1
ε
, where ε denotes the gap to the rate-distortion bound, is still

an open problem.

There are several open problems related to results in Chapter 6. As mentioned

in Sections 6.4.1 and 6.5.1, constructing explicit codes with the same performance as

our random ensembles could be interesting. In particular, constructing explicit RAA

codes that are asymptotically good is an interesting challenge. Also, constructing

secrecy-capacity achieving codes with linear time encoding and decoding algorithms

that possess semantic security for more general channels remains open. For example,

even in the simple case of a noiseless channel to the intended receiver and a BSC

to the eavesdropper, it is not known how to construct such codes. Finally, it would

be interesting to explore other methods of generalizing the wiretap channel. We

proposed the constant-capacity compound wiretap channel as an attempt to make

the constraint that the eavesdropper is somehow fundamentally limited by physics

in terms of how well he can receive the transmitter’s signal slightly more palatable,

but coming up with more general models is particularly important assuming that one

wants to pursue the wiretap channel as an actually practical model, rather than just

an interesting theoretical toy problem.

In a broader context, there are many other problems in information theory where

random codes have been used, and it would be interesting to construct sparse graph

codes for these problems. The examples considered in this thesis showed mainly

positive results, i.e., for the problems we considered sparse graph codes could replace

random codes with essentially no loss in performance, but sparse graph codes could

182

lower the complexity dramatically. It would be interesting to see if there are problems

where there is a fundamental performance loss incurred by using sparse graph codes.

For example, the results on RIP2 in Chapter 4 are in this vein, but because RIP2 is

not a necessary condition for ℓ2/ℓ1 reconstruction guarantees, these result does not

quite furnish an example where sparse graph codes are provably substantially worse

than random codes.

183

184

Appendix A

Additional Proofs for Chapter 3

This appendix contains a proof of lemma 3.8.2, including a detailed example of the

density evolution technique, and a proof of Lemma 3.5.5, that the BAILOUT algo-

rithm can be modified to run in a small amount of space.

A.1 Analysis of modified BAILOUT algorithm

In this section, we describe the modified BAILOUT algorithm and prove Lemma

3.5.5.

The modified BAILOUT algorithm is very similar to the original BAILOUT al-

gorithm. The reason that the BAILOUT algorithm cannot be implemented in the

natural way is that if we store the numbers associated with each edge naively, then

the space will be to large. So, the modified BAILOUT algorithm stores the messages

in compressed form. Of course, storing the messages in compressed form requires

some modifications of the BAILOUT algorithm.

To give a more formal description of the modified BAILOUT algorithm, we first

describe the compression scheme that will be used. The compression scheme is just

a simple prefix-free code, similar to the naive prefix-free coding solution described

in Section 3.2. Given an integer x, the prefix-free encoding is computed as follows.

First, we compute l, the length of the binary expansion of x. Then, we compute l′,

the length of the binary expansion of l. Now, the prefix-free encoding of x starts with

185

1: Initialization - Set lv = mv = 0 for all left vertices v.
2: Update mv by computing

mv = max
w∈N(v)



cw −
∑

x∈N(w)−v

min
y∈N(x)



cy −
∑

z∈N(y)−x

lz









+

.

3: Set lv = mv for all left vertices v.
4: Termination - Repeat steps 1-2 until the values converge. By convergence, we

mean that lv = mv for all left vertices before step 2 is run, i.e., step 2 has no
effect.

5: return overflow(v) = lv for all vertices.

Algorithm 5: Modified BAILOUT Subroutine

l′ 1’s, followed by a 0. Next, we append the binary expansion of l. Finally, we append

the binary expansion of x. 1

Now, the modified BAILOUT algorithm stores a number for each left vertex, in-

stead of for each edge. Intuitively, this makes sense because the BAILOUT subroutine

has the property that all numbers associated with edges in the direction leaving a

left vertex v are the same, and clearly storing the same information multiple times is

redundant.

The modified BAILOUT algorithm stores the numbers associated with left ver-

tices in compressed form by concatenating the prefix-free encodings described above.

Algorithm 5 gives a pseudocode description of the modified BAILOUT subroutine.

For simplicity, we store two numbers lv and mv for each left vertex, corresponding

to upper and lower bounds. In the pseudocode of Algorithm 5, we leave out the

subscripts ℓ− 1 and ℓ since these should be clear from Section 3.5.2.

The overall modified BAILOUT algorithm calls this subroutine recursively, in an

identical way to the BAILOUT algorithm, except for one difference. The cv values

used in all layers except the last layer are also stored in a compressed form using the

prefix-free encoding. Note that because the lv, mv, and cv values are always stored

in compressed form, reading or updating a single lv or mv can be as computationally

expensive as reading through the entire compressed representation.

1This scheme is very similar to Elias delta coding [38], and Elias delta coding would also work
for our application, but our method is slightly easier to describe.

186

Proof of Lemma 3.5.5. Correctness is clear because the modified BAILOUT subrou-

tine performs an equivalent computation to the original BAILOUT subroutine. To

analyze the running time, observe that the BAILOUT subroutine is called L times

(once for each layer 0 ≤ ℓ ≤ L − 1), and the proof of Lemma 3.5.4 shows that we

require at most N iterations for a single subroutine call to converge. In each iteration,

we update O(N) values. To update a single value, we need to read O(1) values stored

in compressed form. Let U be an upper bound on the length of any of the compressed

strings representing lv,mv, and cv. Then, reading or updating a single value takes

O(U) time. Therefore, the total running time is at most O(N2LU) time.

The workspace needed is the space to store lv, mv, and cv in each layer. 2 Note

that the space can be recycled. Specifically, as we work our way back towards the first

layer, the initialization destroys the lv,mv, and cv values from the previous subroutine

call. Therefore, we just need to analyze the maximum space needed for one subroutine

call. The space is O(U), so this means we just need to produce an upper bound on

U .

We complete the proof by showing that U = 4N + O(ε log(1/ε)N). First, note

that for positive x, our prefix-free encoding uses at most 4 + log x + 2 log log(2x) bits

to represent the integer x, and our prefix-free encoding uses 4 bits to encode x = 0.

Now, consider layer 0. We know that lv and mv are always at most overflow(v),

so the compressed representation of these numbers has length at most
∑N

i=1 4 +

log(overflow(xi))+2 log log(2overflow(xi)), where it is understood that for those terms

where the overflow is 0, we take the value of the logarithm to be 0 rather than −∞.

The functions log x and log log(2x) are both concave,
∑

overflow(xi) ≤ N/K2, and

overflow(xi) > 0 for at most N/K2 inputs. Therefore, the maximum of
∑N

i=1 4 +

log(overflow(xi)) + 2 log log(2overflow(xi)) is achieved when all the nonzero overflows

are equal, giving us an upper bound of 4N + O(N/K2). The same technique can be

used to bound the length of the compressed representation of the cv values in the

first layer. The analysis can also be repeated for the higher layers, using Lemma

2There is also workspace associated with performing arithmetic, e.g., subtraction, but this is
O(log(AN)), and hence negligible for our purposes.

187

3.8.9. However, because the size of the layers shrinks geometrically, not surprisingly

the largest upper bound comes from the first layer. Thus, U = 4N +O(ε log(1/ε)N),

completing the proof.

A.2 Completing the Analysis of WHP

In this section, we complete the analysis of WHP by proving Lemma 3.8.2. The proof

involves several steps. First, we show that no counters in VL can ever overflow. Thus,

even though bL is finite, the counters in bL already contain the values that they would

have stored if bL =∞. Next, we focus on a single computation tree, and analyze how

the failure probability decays as a function of the depth of the tree. We show that

the failure probability decays doubly exponentially as a function of the depth. This

proof is done in two steps. First, we introduce a new probability distribution on the

counter values. This distribution is different than the probability distribution induced

by our data structure. For the new distribution, we are able to modify an argument

from [70] to prove doubly exponential decay. In the second step, we show that the new

distribution is in some sense close to the distribution induced by our data structure,

and in particular doubly exponential decay under the first distribution implies doubly

exponential decay under the second distribution. Finally, we use a union bound over

computation trees to bound the probability of failure for each layer ℓ.

A.2.1 Bounds on the Number of Overflowing Counters

In this section we prove two lemmas bounding how many counters can overflow.

These lemmas are the analog of Lemmas 3.8.8 and 3.8.9 for the Vℓ’s, and the proofs

are identical.

Lemma A.2.1. No counter in VL can overflow.

Proof. We prove that the largest possible value that needs to be stored in a counter

in VL is at most M
2K2A2 . Because 2bL > M

2K2A2 , none of these counters overflow.

188

To verify the upper bound, consider the first layer. By assumption, the inputs

have maximum value M . Therefore, the overflow is at most
⌊

M
K2A

⌋

. Each counter

in V1 computes the sum of the overflows associated with its K neighbors in V0. Let

s denote this sum. Then, the overflow is given by
⌊

s
12KA

⌋

. Thus, the overflow is

bounded by
K(M

K2A
)

12KA
= M

12K2A2 .

Now, each counter in V2 takes the sum of the overflows of its 6 neighbors in V1,

and each of these overflows is at most M
12K2A2 . Thus, the overflow for counters in V2

is bounded by
6 M

12K2A2

8
<

M

12K2A2
.

Continuing down to the last layer, we see that in the last layer the counters in VL

have an overflow of at most M
12K2A2 . Since each counter in VL+1 is connected to 6

counters in VL, the largest possible value that a counter in VL needs to store is at

most M
2K2A2 .

Now, we show that even for V0, . . . , VL−1, the fraction of counters that overflow

must be small.

Lemma A.2.2. The fraction of counters in V0 that overflow is at most 1/K2. Also,

for all ℓ > 0, the fraction of counters in Vℓ that overflow is at most 1/12.

Proof. Recall that the input must satisfy
∑

xi < AN . Thus, at most a 1/K2 fraction

of the inputs can have values that are greater than or equal to K2A, which proves the

first part of the lemma. Because G1 is (3, K)-regular, the average value associated

with counters on the right is at most KA, and therefore at most 1/12 of the counters

in V1 are greater than or equal to 12KA. Repeating this analysis for the future layers,

we see that at every layer at most 1/12 of the counters overflow.

A.2.2 Failure Probability for a Single Computation Tree,

Part 1

In this section we introduce a probability distribution over the counter values, and

prove that for this distribution the failure probability decays doubly exponentially.

189

This will be useful later when we prove Lemma 3.8.2.

First, we describe the probability distribution considered in this section. Pick an

arbitrary ℓ. We want to analyze a computation tree in Gℓ, so we define a probability

distribution over the counters in Vℓ−1. For each counter in Vℓ−1, we independently

assign it an overflow as follows. With probability q, the overflow is 0, i.e., there is

no overflow. With probability 1− q, the overflow is nonzero. We do not specify how

to assign a specific nonzero value to the overflow because, as we shall see, for the

purposes of analysis it is sufficient to know whether the overflow is 0 or nonzero. In

other words, for nonzero overflow, the precise value of the overflow does not affect

whether the WHP subroutine is successful or not. Regardless of how the nonzero

overflows are assigned, we assume that the input to the WHP subroutine has the

correct cv values for the counters in Vℓ, i.e., once the overflows in Vℓ−1 have been

assigned, we pretend that bℓ = ∞, so that each counter in Vℓ stores the sum of the

overflows of its neighbors in Vℓ−1.

Now that the probability distribution is set, we can analyze the probability of fail-

ure for the WHP subroutine under this probability distribution. Specifically, consider

a counter (v, ℓ− 1) in Vℓ−1, and imagine running the WHP subroutine (omitting step

7, the termination step) on computation trees rooted at (v, ℓ−1) of increasing depths.

Let pt be the probability that after running the subroutine on the computation tree

rooted at (v, ℓ− 1) of depth t, the message outgoing from (v, ℓ− 1) (either a lower or

upper bound depending on the depth of the tree mod 4) is not equal to (v, ℓ − 1)’s

overflow. Also, let λ(x) = x2, and let ρ(x) = x5 if ℓ > 1. If ℓ = 1, let ρ(x) = xK−1.

Lemma A.2.3. There exists a constant τ > 0 so that p4t+2 = λ(1− ρ(1− p4t)) and

p4t+4 = qλ(1− ρ(1− p4t+2)) for t < τ log N .

Remarks: As promised in Chapter 1, Lemma A.2.3 is an application of density

evolution to our construction. Also, Lemma A.2.3 is implicit in Theorem 2 of [73].

Proof. To prove the formulas above, we consider steps 1 through 5 of the WHP

subroutine separately. For ease of exposition, we start by considering a computation

tree of depth 4.

190

First, consider the value on an edge outgoing from a leaf of the computation tree,

i.e., the outgoing value from a counter at depth 4. Recall that these messages are all

0, and thus, p0 = q, because by assumption each counter overflows with probability

q.

Next, consider the value on an edge from a counter (u, ℓ) at depth 3 to its parent

P (u, ℓ). We want to compute the probability that this value is correct, i.e., the value

is equal to the overflow of P (u, ℓ). Recall that this value is computed by subtracting

from cu the sum of incoming values to (u, ℓ) from C(u, ℓ). Thus, the outgoing value

from (u, ℓ) is correct if and only if the incoming values are all correct. For our

probability model, recall that every counter in Vℓ−1 sets its overflow independently,

and therefore the messages coming into (u, ℓ) are independent. Each value is correct

with probability 1− p0, which means that for the definition of ρ(x) given above, the

probability that the value leaving u is correct is ρ(1− p0).

Now, consider the probability that the value on an edge leaving a counter (u, ℓ−1)

at depth 2 is correct, i.e., the value is equal to (u, ℓ − 1)’s overflow. Recall that we

take the minimum of the values on the incoming edges. From Lemma 3.5.1, it follows

that this procedure produces the correct value if and only if at least one edge coming

into (u, ℓ − 1) has the correct value. Because every counter in Vℓ sets its overflow

independently, the incoming values to (u, ℓ− 1) are independent. For each incoming

value, the probability of being wrong is 1 − ρ(1 − p0). Thus, for the definition of λ

given above, the probability that all incoming values are wrong is λ(1 − ρ(1 − p0)),

i.e., p2 = λ(1− ρ(1− p0)).

Next, we must consider the value on an edge leaving a counter (u, ℓ) at depth 1.

Because the value is computed in the same way as the outgoing value from a counter

at depth 3, the analysis is identical. Therefore, the probability that the outgoing

value is wrong is simply ρ(1− p2).

Finally, consider the outgoing value from the root. This value is computed by

taking the maximum of the values on all incoming edges to the root, and 0. For this

value to be wrong, observe that two things must happen. First, from Lemma 3.5.1,

we see that for the outgoing value to be wrong every value coming into the root must

191

be wrong. However, from Lemma 3.5.1 we know that even if every incoming edge

has the wrong value, if the root has zero overflow, then the outgoing message is still

correct. This is because we take the maximum of not just the incoming values, but

also 0. The values coming into the root are independent of the root, and each of these

values is wrong with probability 1−ρ(1−p2). Thus, the probability that all incoming

values are wrong is λ(1 − ρ(1 − p2)). Because the incoming values are independent

of the root, the overall probability that the outgoing value from the root is wrong is

p4 = qλ(1− ρ(1− p2)).

The preceding analysis proves the lemma for t = 0. However, it is clear that

nothing in the analysis is specific to the t = 0 case, i.e., these recursions remain valid

for going from p4 to p6 and p6 to p8, and so on. Thus, we have proved the lemma,

except for one minor technical detail which we now describe.

The above derivation crucially relies on the fact that the computation tree is a

tree in the graph-theoretic sense—if the computation tree contains a cycle, then the

values on edges coming into a counter may not be independent. In order to guarantee

that the computation tree is a tree, 2(4t+4) must be less than the girth of the graph

Gℓ. By Lemma 3.3.1 we know that the girth of Gℓ is Ω(log N), and hence a suitable

τ > 0 exists.

As an aside, in the following analysis we implicitly assume that t≪ log N . Look-

ing at the values t
(p)
ℓ defined in Section 3.5.1, it is clear that all of the t

(p)
ℓ ’s are

o(log N), so for our purposes the assumption t≪ log N is not a major restriction.

Lemma A.2.3 gives us a method for bounding the probability of failure. Specifi-

cally, recall that the WHP subroutine (with step 7 included) fails if the computation

trees of depth t and depth t + 2 give different outgoing values for the root. For this

to happen, at least one of these two computation trees must give the wrong outgoing

value. Applying the union bound, we see that the probability that at least one of the

outgoing messages is wrong is at most pt + pt+2. Thus, our goal is to show that pt

decays doubly exponentially as a function of t.

We split the proof that pt decays doubly exponentially into two steps. First, we

show that pt → 0 as t → ∞. Then, we modify an argument from [70] to prove that

192

if pt → 0 as t→∞, then pt decays doubly exponentially.

Lemma A.2.4. For ℓ > 1, if q = 1/12, then pt → 0 as t → ∞. For ℓ = 1, if

q = 1/K2, then pt → 0 as t→∞.

Proof. Let f(x) = λ(1− ρ(1− λ(1− ρ(1− x)))). From Lemma A.2.3, we know that

p4t+4 = qf(p4t). Also, note that p0 = q.

Observe that f is a continuous function, f is nonnegative on the interval [0, q],

and f(0) = 0. Assume that qf(x) < x for all x ∈ (0, q]. Then, clearly the recursion

above satisfies the property pt → 0 as t → ∞. Thus, to complete the proof we just

have to show that qf(x) < x for all x ∈ (0, q]. Specifically, we must show that

1

12
(1− (1− (1− (1− x)5)2)5)2 < x

for 0 < x ≤ 1
12

, and that

1

K2
(1− (1− (1− (1− x)K−1)2)K−1)2 < x

for 0 < x ≤ 1
K2 .

The second inequality can easily be proved using Taylor series. Specifically, for

any 0 < x < 1, Taylor’s theorem implies that (1 − x)K−1 > 1 − (K − 1)x. 3

Thus, 1 − (1 − x)K−1 < (K − 1)x, so (1 − (1 − x)K−1)2 < (K − 1)2x2. Therefore,

(1− (1− (1− (1− x)K−1)2)K−1)2 < (K − 1)2((K − 1)2x2)2 < K6x4. Thus, it suffices

to show that K4x4 < x for 0 < x ≤ 1/K2. But K4x4 < x for all 0 < x < 1/K4/3, so

we are done.

Applying the analysis above with K = 6 gives the bound

1

5
√

5
(1− (1− (1− (1− x)5)2)5)2 < x

for 0 < x ≤
√

5/25, and 1/12 <
√

5/25, completing the proof.

Now that we know that pt → 0, we prove that the decay is doubly exponential.

3Recall that we assume that K > 2.

193

First, we summarize the results of Section V-A of [70] in the following lemma.

Lemma A.2.5. Let dl, dr be two positive integers, and assume that dl ≥ 3. Let

λ(x) = xdl−1, and let ρ(x) = xdr−1. Consider the recursion ys+1 = qλ(1− ρ(1− ys)),

where y0 = q. If q is chosen so that ys → 0 as s → ∞, then there exist constants

a > 0, d > 1, s∗ such that ys ≤ e−ads−s∗

.

We use Lemma A.2.5 to prove that pt decays doubly exponentially.

Lemma A.2.6. If q is chosen so that pt → 0 as t → ∞, then there exist constants

a > 0, d > 1, t∗ such that pt ≤ e−adt−t∗

.

Proof. The only difference between the recursion taking pt to pt+4 and the recursion

considered in Lemma A.2.5 is that we apply the map x → λ(1 − ρ(1 − x)) twice

instead of just once. By expanding λ(1− ρ(1− x)) in a Taylor series around x = 0,

i.e., expanding out the polynomial, it is clear that λ(1− ρ(1−x)) = O(x2) for x near

0, and thus λ(1− ρ(1− x)) < x for all x in some neighborhood of 0, say [0, α]. Also,

note that λ(1− ρ(1− x)) is monotonically increasing over the interval [0, 1].

Now, by assumption there exists some t∗ such that p∗t < α. For all future iterations,

we have

pt+1 ≤ pλ(1− ρ(1− pt)),

i.e., we can eliminate one instance of the map x→ λ(1− ρ(1− x)) because we know

that the map only makes things smaller for x < α. But once we eliminate one instance

of the map x → λ(1 − ρ(1 − x)), we are left with exactly the same recurrence as in

Lemma A.2.5.

To apply Lemma A.2.5, we need to verify that the value of q is such that the

recursion ys+1 = qλ(1 − ρ(1 − ys)), y0 = q has the property that ys → 0 as s → ∞.

By assumption, pt → 0 as t→∞. Looking at the recursions given in Lemma A.2.3,

we see that because λ(1 − ρ(1 − x)) is monotonically increasing for x ≥ 0, ys < p2s,

and thus ys → 0. Thus, Lemma A.2.5 does apply, and we can conclude that pt decays

doubly exponentially once pt < α.

194

Remark: As we observed above, λ(1− ρ(1− x)) is monotonically increasing on the

interval [0, 1]. Therefore, if we view pt as a function of q, then pt is monotonically

increasing, i.e., for all t, pt is larger for larger q. Thus, although we only explicitly

proved doubly exponential decay for the values q = 1/12 and q = 1/K2, it follows

that we have also proved doubly exponential decay for all values smaller than 1/12

and smaller than 1/K2.

A.2.3 Failure Probability for a Single Computation Tree,

Part 2

Now, we prove that for the probability distribution induced by our data structure,

the failure probability is doubly exponential. This represents the next step after the

analysis presented in Section A.2.2 towards proving Lemma 3.8.2.

To prove doubly exponential decay, we prove that in some sense, our choice of

random graphs induces a distribution that is “close” to the i.i.d. distribution con-

sidered in the previous section. We do this in two steps. First, we show that the

failure probability when a fraction q of the counters are chosen uniformly at random

to overflow is not much larger than the failure probability when the counters overflow

i.i.d. with probability q. Then, we show that the probability of failure under the

distribution induced by our data structure is not much larger than the probability of

failure in the uniform model. Together with Lemma A.2.6, this implies that we get

doubly exponential decay.

Lemma A.2.7. Under the same assumptions as in Lemma A.2.6, for any 0 ≤ q ≤
1, the probability of failure when we select a fraction q of the counters in Vℓ−1 to

overflow uniformly at random is at most
√

e times the probability of failure when the

set of counters that overflow is generated by selecting each counter independently with

probability q.

Proof. To show that the failure probability behaves essentially the same under the

two different models, we will show that the input to the subroutine has approximately

the same distribution under either model. Specifically, given a computation tree, let

195

a configuration be an assignment of either “overflow” or “don’t overflow” to each

counter at even depth in the computation tree. Then, the failure probability is the

sum of the probabilities of configurations that cause the WHP subroutine to fail.

We show that for each configuration, the probability of observing this configuration

under the model where we select a fraction q of the counters to overflow uniformly is at

most
√

e times as much as the probability when the counters overflow independently

with probability q. Note that our proof assumes that the local neighborhood is small—

in particular, our proof only works under the assumption that the computation tree

has at most
√

|Vℓ−1| vertices, i.e., the number of iterations in every layer must be

substantially smaller than log N . As noted previously, this is always the case for our

choice of parameters, so this assumption is valid.

Given the assumption that the computation tree is small, the proof is straightfor-

ward. Define N1 to be the number of counters that overflow in a particular configu-

ration, and define N2 to be the number of counters that do not overflow. Then, for

the independent overflow model, the probability of this configuration is qN1(1− q)N2 .

For the uniform model, the probability is

q|Vℓ−1| (q|Vℓ−1| − 1) (q|Vℓ−1| − 2) . . . (q|Vℓ−1| −N1 + 1)

·(1− q) |Vℓ−1| ((1− q) |Vℓ−1| − 1) . . . ((1− q) |Vℓ−1| −N2 + 1)

|Vℓ−1| (|Vℓ−1| − 1) . . . (|Vℓ−1| −N1 −N2 + 1)
.4

Now, we want to show that this second expression is not much bigger than qN1(1−
q)N2 . This is simple. The first N1 terms are all ≤ q, so we can upper bound the first

N1 terms by qN1 . For the remaining N2 terms, we rewrite each fraction as

(1− q)

(

1 +
i + N1 − i

1−q

|Vℓ−1| − i−N1

)

≤ (1− q) e
i+N1−

i
1−q

|Vℓ−1|−i−N1 ,

where i ranges from 0 to N2−1. To complete the proof, we just need to upper bound

e
PN2−1

i=0

i+N1−
i

1−q
|Vℓ−1|−i−N1 .

4This formula can of course be written more compactly using binomial coefficients, but expanding
it out this way makes the rest of the proof obvious.

196

This is where we use the assumption that the computation tree is small, i.e., that

N1 + N2 ≤
√

|Vℓ−1|. Because of this assumption, we know that the denominator of

every fraction is at least .5|Vℓ−1|, provided that |Vℓ−1| ≥ 4. Now, if q = 0 or q = 1,

both models are identical. Thus, we may assume that 0 < q < 1. This means that

i − i
1−q
≤ 0 for nonnegative i. Thus, we may bound the sum in the exponent by

∑

2N1/|Vℓ−1| = 2N1N2/|Vℓ−1|. But N1N2 < .25|Vℓ−1| because N1 +N2 ≤
√

|Vℓ−1|, so

the exponent is at most .5. This proves that for all configurations, the ratio between

the probabilities under the two models is at most
√

e. Thus, the failure probability

when the overflowing counters are selected uniformly is at most
√

e times as much as

the failure probability when the counters overflow independently.

Lemma A.2.8. The failure probability for the distribution induced by our data struc-

ture is at most twice the failure probability for the uniform case.

Proof. The proof is similar to the proof of Lemma A.2.7. Specifically, we prove that

the input distribution induced by our data structure is close to the distribution for

the uniform case. To do this, note that in terms of the grid interpretation of Q

given in Section 3.3.2, the uniform case corresponds to applying a uniformly random

permutation to the left vertices of G̃, instead of a permutation to the rows and

columns separately. Fix a computation tree, and consider the distribution of where

the computation tree gets mapped under a uniformly random permutation versus the

row-column permutation. The key observation is that because of our choice of the grid

layout in Section 3.3.2, i.e., our choice of F , the left vertices of every computation

tree all lie in different rows and columns. Therefore, the row-column permutation

distribution is identical to the uniformly random distribution, conditioned on the

event that the uniformly random permutation maps all left vertices in the computation

tree to different rows and columns.

To finish the proof, note that the probability that a uniformly random permu-

tation does not map a set of size S to all different rows and columns is at most
(

S
2

)

3/
√

2N , which is less than .5 for S < .5N .25. For our choice of t
(p)
ℓ , the compu-

tation tree is always smaller that .5N .25, so the probability that a uniformly random

197

permutation maps the computation tree to all different rows and columns is at least

.5, and therefore the failure probability conditioned on this event is at most twice the

unconditional failure probability.

Lemma A.2.9. The failure probability for the distribution induced by our data struc-

ture is at most e−adt−t∗

.

Proof. We prove the lemma by combining Lemmas A.2.7 and A.2.8. To start our

analysis, consider the event that exactly k counters in Vℓ−1 overflow. Conditioned

on this event, Lemma A.2.7 says that the failure probability is at most
√

e times

the failure probability when the counters overflow independently with probability

k/|Vℓ−1|. Lemma A.2.2 says that k/|Vℓ−1| ≤ 1/12 for ℓ > 0, and k/|V0| ≤ 1/K2. Also,

we noted above that for the independent overflow model, the failure probability is

monotonically increasing as a function of the overflow probability, i.e., monotonically

increasing as a function of k/|Vℓ−1|. So, we see that for all k, the failure probability

conditioned on k counters overflowing is at most
√

e times the failure probability

when the counters overflow independently with probability 1/12 (if ℓ > 0) or 1/K2

(if ℓ = 0).

Combining the above discussion with Lemma A.2.8, we see that the failure prob-

ability is bounded by 4
√

ee−adt−t∗

for all k. 5 To complete the proof, observe that the

probability of failure can be expressed as

Pr[failure] =
∑

k

Pr[exactly k counters overflow]

·Pr[failure|exactly k counters overflow]

≤
∑

k

4
√

ee−adt−t∗

Pr[exactly k counters overflow]

≤ 4
√

ee−adt−t∗

.

Note that the 4
√

e factor can be absorbed into a, d, and t∗.

5One factor of 2 comes from Lemma A.2.8. The other factor of 2 comes from the fact we use a
union bound, i.e., as mentioned previously, we must add pt + pt+2.

198

A.2.4 Completing the Proof of Lemma 3.8.2

Finally, we prove Lemma 3.8.2.

Proof of Lemma 3.8.2. From Lemma A.2.9, we know that for a single computation

tree, the failure probability is at most e−adt−t∗

. From the proof of Lemma 3.8.4, we

know that the number of computation trees in Gℓ during the pth repetition is at most

n
(p)
ℓ . The union bound implies that the probability that any subroutine call fails in

Gℓ is at most n
(p)
ℓ e−adt−t∗

. Substituting in the definitions given Section 3.5.1, we see

that n
(p)
ℓ e−adt−t∗ ≤ δ(p)/L.

199

200

Bibliography

[1] S. M. Aji and R. J. McEliece, “The Generalized Distributive Law,” IEEE Trans.

Inform. Theory, vol. 46, pp. 325-343, March 2000.

[2] Noga Alon and Michael Capalbo, “Explicit Unique-Neighbor Expanders,” in

Proc. FOCS, 2002.

[3] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience, 2000.

[4] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson, “Simulating

independence: new constructions of condensers, ramsey graphs, dispersers, and

extractors,” in in Proc. STOC, pp. 1–10, 2005.

[5] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the

restricted isometry property for random matrices,” Constructive Approximation,

vol. 28, no. 3, pp. 253–263, Dec. 2008.

[6] A. Barg, “Complexity Issues in Coding Theory,” in book: Handbook of Coding

Theory, vol. 1, Elsevier Science, 1998

[7] L. Bazzi, M. Mahdian, and D. A. Spielman,“The Minimum Distance of Turbo-

Like Codes,” IEEE Trans. Inform. Theory, vol. 55, pp. 6–15, January 2009.

[8] E. Ben-Sasson and S. Kopparty, “Affine dispersers from subspace polynomials,”

in Proc. STOC, pp. 65–74, 2009.

[9] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss, “Combining geom-

etry and combinatorics: a unified approach to sparse signal recovery,” 2008.

201

[10] R. Berinde and P. Indyk, “Sparse recovery using sparse random matrices,” MIT

CSAIL Technical Report, available at http://hdl.handle.net/1721.1/40089.

[11] R. Berinde and P. Indyk, “Sequential sparse matching pursuit,” in Proc. Allerton

Conf., Monticello, IL, 2009.

[12] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the inherent

intractability of certain coding problems,” IEEE Trans. Inform. Theory, vol. 24,

pp. 384–386, 1978.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-

Correcting Coding and Decoding: Turbo Codes,” in Proceedings of the Int. Conf.

on Communications, Geneva, Switzerland, May 1993.

[14] Burton H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[15] D. Burshtein and G. Miller, “Expander graph arguments for message passing

algorithms,” IEEE Trans. Inform. Theory, vol. 47, pp. 782–790, Feb. 2001.

[16] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact sig-

nal reconstruction from highly incomplete frequency information,” IEEE Trans.

Inform. Theory, vol. 52, pp. 489–509, Feb. 2006.

[17] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete

and inaccurate measurements,” Commun. Pure, Appl. Math., vol. 59, pp. 1208–

1223, Aug. 2006.

[18] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inform.

Theory, vol. 51, no. 12, pp. 4203–4215, December 2005.

[19] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness con-

ductors and constant degree lossless expanders,” in Proc. STOC, Montréal, QC,

Canada, May 2002.

202

[20] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman,

“Exact and approximate membership testers,” in Proc. STOC , pp. 59–65, 1978.

[21] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data

streams,” ICALP, 2002.

[22] B. Chor, J. Friedman, O. Goldreich, J. Hastad, S. Rudich, and R. Smolensky,

“The bit extraction problem or t-resilient functions,” in Proc. FOCS, pp. 396-

407, 1985.

[23] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the

design of low-density parity-check codes within 0.0045 dB of the Shannon limit,”

IEEE Communications Letters, vol. 5, no. 2, Feb. 2001.

[24] David R. Clark and J. Ian Munro, “Efficient suffix trees on secondary storage,” in

Proc. 7th ACM/SIAM Symposium on Discrete Algorithms, pp. 383–391, 1996.

[25] G. Cormode and S. Muthukrishnan, “Improved data stream summaries: The

count-min sketch and its applications,” Latin, 2004.

[26] G. Cormode and S. Muthukrishnan, “Combinatorial algorithms for compressed

sensing,” in Proc. CISS, Princeton, NJ, Mar. 2006.

[27] T. M. Cover, “Enumerative source encoding,” IEEE Trans. Inform. Theory, vol.

19, no. 1, pp. 73-77, 1973.

[28] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York:

Wiley, 1991.

[29] I. Csiszàr and J. Körner, “Broadcast channels with confidential messages,”

IEEE Trans. Inform. Theory, vol. 24, no. 3, pp. 339–348, 1978.

[30] I. Csiszàr and J. Körner, Information Theory: Coding Theorems for Discrete

Memoryless Systems, Academic Press, New York, 1981.

[31] R. DeVore,“ Deterministic Constructions Of Compressed Sensing Matrices,”

Preprint, 2007.

203

[32] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for ‘turbo-like’ codes,”

in Proc. Allerton Conf., Monticello, IL, 1998.

[33] Y. Dodis and A. Smith, “Correcting Errors Without Leaking Partial Informa-

tion,” in Proc. STOC, May 2005.

[34] Y. Dodis and D. Wichs, “Non-malleable Extractors and Symmetric Key Cryp-

tography from Weak Secrets,” in Proc. STOC, May 2009

[35] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, pp.

1289–1306, Apr. 2006.

[36] D. Donoho, A. Maleki and A. Montanari, “Message passing algorithms for com-

pressed sensing: I. Motivation and construction,” in Proc. IEEE ITW, Cairo,

Egypt, Jan. 2010.

[37] D. Donoho, A. Maleki and A. Montanari, “Message passing algorithms for com-

pressed sensing: II. Analysis and validation,” in Proc. IEEE ITW, Cairo, Egypt,

Jan. 2010.

[38] P. Elias, “Universal codeword sets and representations of the integers,” IEEE

Trans. Inform. Theory, vol. 21, no. 2, pp. 194–203, Mar. 1975.

[39] T. Etzion, A. Trachtenberg, and A. Vardy “Which codes have cycle-free Tanner

graphs?,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 2173–2181, September

1999.

[40] J. Feldman, “Decoding Error-Correcting Codes via Linear Programming,” Ph.

D. thesis, MIT, Cambridge, MA, Sep. 2003.

[41] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright, “LP

decoding corrects a constant fraction of errors,” CORC Tech. Rep. TR-2003-08,

Columbia Univ., New York, Dec. 2003.

[42] G.D. Forney, “Codes on Graphs: Normal Realizations,” IEEE Trans. Inform.

Theory, vol. 47, pp. 520-548, February 2001.

204

[43] Michael L. Fredman, Janos Komlos, and Endre Szemeredi, “Storing a sparse

table with 0(1) worst case access time,” Journal of the ACM, vol. 31, no. 3, pp.

538–544, 1984. See also FOCS 82.

[44] O. Gabber and Z. Galil, “Explicit constructions of linear-sized superconcentra-

tors,” Journal Comput. System Sci., vol. 22, no. 3, pp. 407-420, 1981. Special

issue dedicated to Michael Machtey.

[45] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,

1963.

[46] S. B. Gashkov and I. S. Sergeev, “The complexity and depth of Boolean cir-

cuits for multiplication and inversion in some fields GF (2n),” Moscow University

Mathematics Bulletin, Vol. 64, No. 4, pp. 139-143, August 2009.

[47] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “Algorithmic linear

dimension reduction in the L1 norm for sparse vectors,” in Proc. Allerton Conf.,

Monticello, IL, 2006.

[48] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One sketch for

all: fast algorithms for compressed sensing,” in Proc. ACM STOC, pp. 237–246,

2007.

[49] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental

poker keeping secret all partial information,” in Proc. ACM STOC, 1982.

[50] Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and S. Srini-

vasa Rao, “On the size of succinct indices,” in Proc. 15th European Symposium

on Algorithms, pp. 371382, 2007.

[51] Alexander Golynski, Rajeev Raman, and S. Srinivasa Rao, “On the redundancy

of succinct data structures,” in Proc. 11th Scandinavian Workshop on Algorithm

Theory, 2008.

205

[52] V. Guruswami, J. Lee, and A. Wigderson, “Euclidean sections with sublinear

randomness and error-correction over the reals,” in Proc. RANDOM, 2008.

[53] V. Guruswami and W. Machmouchi, “Explicit interleavers for a Repeat Accu-

mulate Accumulate (RAA) code construction,” in Proc. ISIT, 2008.

[54] V. Gurusami, C. Umans and S. Vadhan, “Unbalanced expanders and randomness

extractors from Parvaresh-Vardy codes,” Journal of the ACM, vol. 56, no. 4,

2009.

[55] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. USA:

Oxford University Press, 1979.

[56] L. H. Harper, “Optimal Numberings and Isoperimetric Problems on Graphs,” J.

Comb. Theory, vol. 1, no. 3, pp. 385–393, 1966.

[57] S. Hoory, N. Linial, and A. Wigderson, “Expander Graphs and their Applica-

tions,” Bulletin (New Series) of the American Mathematical Society, vol. 43, no.

4, pp. 439-561, Oct. 2006.

[58] C. Hsu and A. Anastasopoulos, “Capacity-Achieving Codes with Bounded

Graphical Complexity on Noisy Channels,” in Proc. Allerton Conf., Monticello,

IL, 2005.

[59] R. Impagliazzo, L. Levin and M. Luby, “Pseudo-random generation from one-way

functions,” in Proc. STOC, 1989, pp. 12–24.

[60] P. Indyk. Sketching, streaming and sublinear-space algorithms. Graduate course

notes, available at http://stellar.mit.edu/S/course/6/fa07/6.895/, 2007.

[61] P. Indyk, “Explicit constructions for compressed sensing of sparse signals,” in

Proc. SODA, San Francisco, CA, 2008.

[62] P. Indyk and M. Ruzic, “Practical near-optimal sparse recovery in the L1 norm,”

in Proc. Allerton Conf., Monticello, IL, 2008.

206

[63] Guy Jacobson, “Space-efficient static trees and graphs,” in Proc. FOCS, pp.

549–554, 1989.

[64] H. Jin, A. Khandekar, and R. J. McEliece, “Irregular repeat-accumlate codes,”

in Proc. Second International Conference on Turbo Codes and Related Topics,

pp. 1–8, Brest, France, September 2000.

[65] J. Kamp and D. Zuckerman, “Deterministic extractors for bit-fixing sources and

exposure-resilient cryptography,” in Proc. FOCS, pp. 92–101, 2003.

[66] B. Kashin and V. Temlyakov, “A remark on compressed sensing,” Preprint, 2007.

[67] M. A. Khajehnejad, A. G. Dimakis, W. Xu, and B. Hassibi, “Sparse

Recovery of Positive Signals with Minimal Expansion,” available at

http://arxiv.org/abs/0902.4045.

[68] S. B. Korada, “Polar codes for channel and source coding,” Ph.D. dissertation,

EPFL, Lausanne, Switzerland, July 2009.

[69] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-

Product Algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498-519, February

2001.

[70] M. Lentmaier, D. V. Truhachev, K. Sh. Zigangirov, and D. J. Costello, Jr., “An

Analysis of the Block Error Probability Performance of Iterative Decoding,”

IEEE Trans. Inform. Theory, vol. 51, no. 11, pp. 3834–3855, Nov. 2005.

[71] Y. Liang, G. Kramer, H. V. Poor, and S. Shamai (Shitz), “Compound Wiretap

Channels,” EURASIP Journal on Wireless Communications and Networking,

vol. 2009, Article ID 142374, 12 pages, 2009.

[72] S. Litsyn and V. Shevelev, “On Ensembles of Low-Density Parity-Check Codes:

Asymptotic Distance Distributions,” IEEE Trans. Inform. Theory, vol. 48, no.

4, pp. 887–908, April 2002.

207

[73] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar and A. Kabbani,

“Counter braids: a novel counter architecture for per-flow measurement,” in

Proc. ACM SIGMETRICS/Performance, June 2008.

[74] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica,

8(3):261–277, 1988.

[75] M. Luby, “LT-codes,” in Proc. FOCS, 2002.

[76] M. G. Luby, M. Mitzenmacher, M. Amin Shokrollahi, and D. A. Spielman, “Ef-

ficient Erasure Correcting Codes,” IEEE Trans. Inform. Theory, vol. 47, No. 2,

pp. 569-584, Feb. 2001.

[77] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, Mar. 1999. See also the

correction: IEEE Trans. Inform. Theory, vol. 47, pp. 2101, July, 2001.

[78] G. A. Margulis, “Explicit construction of concentrators,” Problemy Peredachi In-

formatsii 9 (4) (1973) 71-80 (English translation Problems of Information Trans-

mission, Plenum, New York (1975)).

[79] E. Martinian and M. Wainwright, “Low Density Codes Achieve the Rate-

Distortion Bound,” dcc, pp. 153-162, Data Compression Conference (DCC’06),

2006.

[80] E. Martinian and J.S. Yedidia, “Iterative Quantization Using Codes on Graphs,”

in Proc. Allerton Conf., Monticello, IL, 2003.

[81] E. Martinian, S. Yekhanin, and J. S. Yedidia, “Secure Biometrics Via Syn-

dromes,” in Proc. Allerton Conf., Monticello, IL, 2005.

[82] Y. Matsunaga and H. Yamamoto, “A Coding Theorem for Lossy Data Com-

pression by LDPC Codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 2225-2229,

September 2003.

208

[83] U. Maurer and S. Wolf, “Information-Theoretic Key Agreement: From Weak

to Strong Secrecy for Free,” Lecture Notes in Computer Science, pp. 351-368,

Springer-Verlag, 2000.

[84] A. Montanari and E. Mossel, “Smooth compression, Gallager bound and Non-

linear sparse-graph codes,” in Proc. ISIT, 2008.

[85] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge, U.K.: Cam-

bridge Univ. Press, 1995.

[86] J. Ian Munro, “Tables,” in Proc. 16th Conf. Foundations of Soft., Tech., and

Th. Comp. Sci., pp. 37–40, 1996.

[87] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao, “Space efficient suf-

fix trees,” Journal of Algorithms, vol. 39, no. 2, pp. 205–222, 2001. See also

FSTTCS98.

[88] S. Muthukrishnan, “Data streams: Algorithms and applications,” Available at

http://athos.rutgers.edu/ muthu/stream-1-1.ps, 2003.

[89] S. Muthukrishnan, “Some algorithmic problems and results in compressed sens-

ing,” in Allerton Conference, 2006.

[90] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete

and inaccurate samples,” Appl. Comp. Harmonic Anal., vol. 26, pp. 301–321,

2009.

[91] P. Oswald and A. Shokrollahi, “Capacity achieving sequences for the erasure

channel” IEEE Trans. Inform. Theory, vol. 48, no. 12, pp. 3017–3028, December

2002.

[92] Rasmus Pagh, “Low redundancy in static dictionaries with constant query time,”

SIAM Journal on Computing, 31(2):353–363, 2001. See also ICALP 99.

[93] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao, “An optimal Bloom filter re-

placement,” in Proc. SODA, pp. 823–829, 2005.

209

[94] Rasmus Pagh and Flemming Friche Rodler, “Cuckoo hashing,” J. Algorithms,

51(2):122–144, 2004. See also ESA 01.

[95] M. Patrascu, “Succincter,” in Proc. FOCS, pp.305-313, 2008.

[96] H.D. Pfister and I. Sason, “Accumulate-Repeat-Accumulate Codes: Systematic

Codes Achieving the Binary Erasure Channel Capacity with Bounded Complex-

ity,” in Proc. Allerton Conf., Monticello, IL, 2005.

[97] H.D. Pfister, I. Sason, and R. Urbanke. “Capacity-Achieving Ensembles for the

Binary Erasure Channel With Bounded Complexity,” IEEE Trans. on Inform.

Theory, Vol 51 (7), pp. 2352-2379, July 2005.

[98] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao, “Succinct indexable

dictionaries with applications to encoding k-ary trees and multisets,” in Proc.

SODA, pp. 233–242, 2002.

[99] T. J. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity- approach-

ing low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, Feb.

2001.

[100] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check

codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47,

pp. 599-618, February 2001.

[101] T. J. Richardson and R. Urbanke, “Efficient encoding of low-density parity-

check codes,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 638–656, February

2001.

[102] T. J. Richardson and R. Urbanke, “An introduction to the analysis of iterative

coding systems,” Institute for Mathematics and Its Applications, vol. 123, 2001.

[103] T. J. Richardson and R. Urbanke, Modern Coding Theory, Cambridge Univer-

sity Press, 2008.

210

[104] J. Rosenthal and P.O. Vontobel, “Constructions of LDPC codes using Ramanu-

jan graphs and ideas from Margulis,” in Proc. Allerton Conf., Monticello, IL,

2000.

[105] L. Ruoheng, L. Yingbin, H. V. Poor, and P. Spasojevic,“Secure Nested Codes

for Type II Wiretap Channels”, in Proc. IEEE ITW, Tahoe City, CA, Sept. 2007.

[106] I. Sason and R. Urbanke, “Parity-check density versus performance of binary

linear block codes over memoryless symmetric channels,” IEEE Trans. Inform.

Theory, vol. 49, no. 7, pp. 1611–1635, July 2003.

[107] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.

[108] C. E. Shannon, “Communication theory of secrecy systems,” Bell System Tech-

nical Journal, vol. 28, pp. 656–715, Oct. 1949.

[109] C. E. Shannon, “Coding theorems for a discrete source with a fidelity criterion,”

IRE Nat. Conv. Rec, 1959.

[110] A. Shokrollahi, “Raptor Codes,” available at

http://www.inference.phy.cam.ac.uk/MacKay/dfountain/RaptorPaper.pdf.

[111] A. Shokrollahi,“LDPC Codes: An Introduction,” 2003.

[112] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inform. Theory,

vol. 42, pp. 1710–1722, Nov. 1996.

[113] D. Spielman, “Linear-time encodable and decodable error-correcting codes,”

IEEE Trans. Inform. Theory, vol. 42, pp. 1723-1731, November 1996.

[114] V. N. Sudakov, B. S. Cirelson [Tsirelson], Extremal properties of half-spaces

for spherically invariant measures, (Russian) Problems in the theory of proba-

bility distributions, II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.

(LOMI) 41 (1974), 14–24, 165

211

[115] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J-M.

Merolla, “Applications of LDPC Codes to the Wiretap Channel,” IEEE Trans.

Inform. Theory, vol. 53, pp. 2933-2945, August 2007.

[116] J. A. Tropp, “Greed is good: algorithmic results for sparse approximation,”

IEEE Trans. Inform. Theory, vol. 50, pp. 2231–2242, Oct. 2004.

[117] L. Varshney, J. Kusuma, and V. K. Goyal, “Malleable Coding: Compressed

Palimpsests,” preprint available at http://arxiv.org/abs/0806.4722.

[118] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential families,

and variational inference,” Foundations and Trends in Machine Learning, vol. 1,

pp. 1-305.

[119] M. J. Wainwright and E. Maneva, “Lossy source encoding via message-passing

and decimation over generalized codewords of LDGM codes,” Proc. ISIT, 2005

[120] A. D. Wyner, “The Wire-Tap Channel,” Bell System Technical Journal, vol.

54, no. 8, pp. 1355–1387, Oct. 1975.

[121] W. Xu and B. Hassibi, “Efficient compressive sensing with determinstic guar-

antees using expander graphs,” in Proc. IEEE ITW, Lake Tahoe, CA, 2007.

[122] Jacob Ziv and Abraham Lempel, “A Universal Algorithm for Sequential Data

Compression,” IEEE Trans. Inform. Theory, vol. 23, no. 3, pp.337-343, May

1977.

212

