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Blind Calibration of Timing Skew in Time-Interleaved
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Abstract—The performance of time-interleaved analog-to-dig-
ital converters is often significantly degraded by timing mismatch
errors. We develop methods for performing blind calibration of
such converters, i.e., for estimating the unknown time-skew pa-
rameters and for performing signal reconstruction from these es-
timates. The methods are low in complexity and allow for accurate
calibration in systems with large numbers of converters, provided
that the skews are sufficiently small in magnitude. We also present
modifications to calibrate gain mismatch as well as adaptive se-
quential methods of implementation. Performance and complexity
analysis is provided to support the viability of the methods.

Index Terms—Adaptive systems, analog-digital conversion
(ADC), calibration, parameter estimation, signal reconstruction,
signal sampling.

I. INTRODUCTION

S new applications require the use of higher performance

analog circuitry, two major problems arise. Often, the
analog components cannot realize the necessary system spec-
ifications in a power and cost-efficient manner. Also, process
variations in chip production can require larger design margins
to keep chip yields high.

With digital component performance scaling aggressively,
large benefits can be achieved by finding digital methods to
compensate for inadequate analog circuit performance and by
allowing the system designer to relax analog circuit constraints.
Advantages can include a reduction in cost, power consump-
tion, and size, along with providing an increase in speed,
accuracy, testability, and system robustness. In this paper, we
focus on high-speed sampling circuits and develop calibration
methods that mitigate the effects of the problems that arise.

As applications become more advanced, a single state-of-
the-art analog-to-digital converter (ADC) may be insufficient
to handle the system sampling requirements. The single con-
verter may not be able to sample fast enough or may consume a
large amount of power in order to do so. At high sampling rates,
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Fig. 1. Ideal time-interleaved ADC system with A/ converters.

time-interleaved analog-to-digital converters (TIADCs) offer, in
principle, an attractive method of sampling by distributing the
load across many converters [1].

TIADC:s operate in a round-robin manner. In a system of M
converters, to realize a system sampling period of 7%, each con-
verter operates with sampling period M T and a spacing of T
between consecutive converters, as seen in Fig. 1. Thus, the sam-
pling rate required by the ADCs in the system is reduced by a
factor of M, allowing for a lower amount of overall power con-
sumption and a greater control over sampling accuracy.

Although TTADCs may avoid some of the problems presented
by using a single high-speed ADC, they also introduce a new
set of problems. In particular, mismatches among the ADCs
in a time-interleaved system lead to inaccurate sampling [2],
[3]. One significant source of error in TIADCs is timing skew,
which can be caused by signal path length differences. Although
system designers try to ensure that the clock signal and input
signal travel uniform distances to each converter, restrictions
in the physical layout introduce unavoidable errors. Even when
clock and signal paths are precisely matched, variations in gate
delays also result in timing skew. Other nonlinear mismatches
can be modeled as gain and amplitude offset variations among
the converters [4]; however, a variety of circuit-based matching
techniques exist for the minimization of such errors [5]. For this
reason, we focus on signal recovery when only timing skews
are unknown in the system and assume that the gains and am-
plitudes are calibrated. The general case is examined briefly in
this paper and studied in more detail in, e.g., [6].

There are two general approaches to system calibration.
The first approach is to incorporate a known signal in the
input in order to facilitate direct estimation of the unknown
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timing-skews and other parameters [7], [8]. The various im-
plementations of such a method may require extra hardware,
decrease the sampling resolution, or cause system delays by
requiring operation of the converter to be interrupted.

The second approach is to perform blind recovery using only
the ADC outputs. Such methods may use oversampling and
take advantage of the excess bandwidth in the system to en-
able calibration. The primary focus is to perform calibration
without placing significant restrictions on the input class and
while keeping computation complexity low; however, it is often
the case that one of these goals is not achieved.

There has been growing interest in such blind methods for
time-interleaved ADCs. In addition to our own work [6], [9],
[10], upon which the present development is based, some of
the recent papers from parallel efforts include [5], [11]-[17].
In [11], the timing-skew estimation involves a exhausted search
through the parameter space, requiring a large amount of com-
plexity. Other approaches impose a stationarity property on the
input to reduce complexity. The computation required in [12] is
still high; while the calibration method in [13] for M = 2 con-
verters has low complexity and can be efficiently implemented
in hardware. An alternate 2-ADC blind calibration method that
does not require input stationarity is proposed in [5]. Although
the calibration algorithm has low complexity, it requires large
amounts of oversampling and does not generalize to M > 2
converters. The frequency domain approaches presented in [14],
[15] perform well with little oversampling; however, low-com-
plexity implementations are restricted to systems with few con-
verters (M = 2 in [14], M = 4 in [15]).

Calibration for systems with larger numbers of converters has
been developed by the authors in [9]. By using Taylor series ap-
proximations to linearize the problem, vast advances have been
made that reduce the complexity while providing accurate pa-
rameter estimates. This approach has also been explored in other
parallel works [16], [17]. In general, these calibration schemes
provide methods for estimating the time-skew parameters; from
these estimates, multiple methods have been developed for effi-
cient input signal reconstruction [18]-[22].

In this paper, we develop and analyze methods for blind cal-
ibration and signal reconstruction in TIADCs with many con-
verters, extending the results of [9] and [22]. We examine the
small timing mismatch case, which is typical of high-resolution
architectures where time-skews are generally small relative to
the system sampling period, and develop a method for blind cal-
ibration in this setting. We first derive a linear approximation to
the input reconstruction formula. This approximation leads to a
new method for mismatch estimation by imposing a bandlim-
ited restriction on the input reconstruction. By performing all
operations in the time-domain, the method maintains low com-
plexity even for systems with many converters. The calibration
method both estimates the converter skews and creates a recon-
struction of the input sampled on a uniform grid, provided that
the overall system sampling rate is above the input Nyquist rate.
Additional techniques are also presented for reconstruction in
the high noise setting.

The paper is organized as follows. In Section II, we present
the timing mismatch setup and develop a least-squares based
calibration algorithm for estimating the time-skew parameters.

Using these time-skew estimates, we present multiple methods
of input signal recovery in Section III. The simulation results
from each of the estimation methods is then presented in
Section IV. We conclude with remarks about future work.

II. TIMING MISMATCH CALIBRATION

In this section, we first describe the time-interleaved frame-
work. We then present a reconstruction method for recovering
uniform samples of the input when the time-skews are known.
Using this reconstruction, we develop a least-squares method
for estimating the unknown time-skews. We finish by general-
izing to systems where nonuniform gains also exist.

The TIADC input z(t) is modeled as a deterministic ban-
dlimited signal with cutoff frequency (2., i.e., the continuous
time Fourier transform X (jQ) = 0 for Q. < || < x. The
overall sampling period T of the system is chosen to ensure
that the sampling rate strictly exceeds the Nyquist frequency,
ie., Ts < /8., thus creating some amount of excess band-
width.

We model the output of the sth constituent ADC as

yiln] = x(nMTs +iTs + ;) + w;[n] (1)

where the 7; model the unknown skews. We also make the as-
sumption that the timing skews are relatively small, e.g., not
more than 20% of the overall sampling period. The w;[n] rep-
resents the aggregate noise, modeled as white Gaussian whose
variance primarily depends on the number of bits to which the
input is quantized. For ease of analysis, we assume the input is
quantized with high-resolution, w;[n] ~ 0; however the effects
of quantization noise are considered within the subsequent sim-
ulations. Without loss of generality, we can choose an arbitrary
time reference, thus we let 79 = 0.

We use the following notation to represent the signal obtained
by multiplexing the ADC outputs:

yln] = v; [ i ] n(mod M) = i. ?2)
This received signal is also referred to as the uncalibrated signal.
We can rewrite y[n] in terms of the uniform samples z[n| as
follows. First we note that since x(t) is bandlimited to 2. and
the sampling frequency is higher than the Nyquist frequency, it
can be written as

o(t) = afmlsinc(t — m1y). 3)

m

Second, for n(mod M) = 1,

y[n] ==(Ts + i) + wn] @
= Zx[m]sinc ((n—m)Ts + 7;) + wln]. 5)

where the sinc terms are defined with period 7. The goal of the
signal recovery problem is to estimate z[n] = z(nTs), which is
bandlimited to w, = 2.7 < 7, as accurately as possible from
the ADC outputs y[n]. To do this, we develop an algorithm for
estimating the unknown timing skews ;.
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A. Input Class Restrictions

Although we specify that 2[n] must be bandlimited, it is nec-
essary to add additional requirements on the input class in order
to ensure that accurate reconstruction can be obtained in a time-
interleaved system. In particular, we restrict ourselves to the
class of nontrivial input signals for which nonuniform periodic
sampling (with nonzero skew) yields aliased content in the fre-
quency band w, < w < T, i.e.,

Y(ej“) #0 forsomew, <w < . (6)

Without this requirement, the problem becomes ill-posed as the
input signal z(t) that generates output y[n] may not be unique.

The calibration methods presented can also be extended to
work for a larger class of signals where the aliased content due
to nonuniform sampling appears in other bands of the spectrum;
in this case, the algorithms can be redefined with small modifi-
cations made to the filters.

Some example subclasses of bandlimited input signals that
can be accommodated include the following.

* Inputs z(t) that are spectrally “full”

X (e7) { 70 Jwl < we

7

=0 w<|w| <. @
Aliasing occurs in the band w, < |w| < 7 and the sub-
sequent algorithm can be used to accurately estimate the
unknown timing skews.

» Passband signals with aliasing in other bands, e.g.,

jw 0, Z<|wl < 2m
X(e&d 70, 3w =3
(™) { =0, otherwise. ®

For M = 2 converters, the aliasing in y[n] appears in the
band 7/3 < |w| < w/2. The calibration algorithms we
describe can be modified to handle such signals as long as
the input signal band /2 < |w| < 27/3 is known to the
system.

An example subclass of bandlimited signals that cannot be

calibrated is as follows.
» Passband signals whose aliasing occurs in the passband,

e.g.,

; 0, T<|w<E
X(eiyd 70 g5
(e™) { =0, otherwise.

For M = 2 converters, the aliasing also appears in the band
/3 < |w| < 27/3. Any estimate of the timing skews will
yield an input reconstruction Z[n] that lies in this passband;
thus, the signal cannot be accurately reconstructed.
In the case of M > 2 ADCs, spectral content is aliased to
M — 1 locations, thus yielding a larger amount of spectrum from
which the aliasing in y[n] can be detectable.

&)

B. Small Error Resampling

To motivate our estimation algorithm, we first present
methods for recovering the input signal from the converter
outputs when the timing skews are known. The equation for
signal reconstruction from periodic nonuniform samples in the

A1 HME T M
He' A 2 HimH 2 H
yln] hin] H =ox[n]

U, -M+1l ] ‘M | {7m—1| | fM | m-1

Fig. 2. Signal reconstruction filterbank for a TIADC system from time-skew
estimates 7 for the small mismatch regime.

absence of noise is derived in [23]. The reconstruction for the
M-ADC system is given by

co M-1

£) = (t Mo+ i ai(=1)*"
x()_,}/()a;w;y[ a+L]7r(t—OéTA—T,L-/)/TA
(10)
where
1
a; = — . , (11
TThso eei sin (m (! = 74) /T)
M-1
(12)

()= [T sin(r(t = 77) /Ta)
k=0

with Ty = MTs denoting the period of a single converter and
7. = kT, + 7 is the absolute timing difference from the first
converter.

Equation (10) performs perfect reconstruction when no noise
is present in the system and sample timings are known precisely.
We develop our parameter estimation algorithm for the high
signal-to-noise ratio (SNR) regime where o2, — 0, and later
introduce the effects of noise on our signal estimation.

In the small mismatch regime, we can approximate (10) by
computing the first order Taylor series of the function around
the point 7 = 0, where vector T represents the unknown timing
skews

T = [Tl T2 ... Tjufl]T. (13)
The reconstruction equation reduces at times t = nT" to
Z[n] =~ y[n] — %(h xy)[n] n(mod M)=1i (14)
where * represents the convolution operation and
h o n=0 15
[n] = %, otherwise (a5)

is a discrete-time filter implementing bandlimited differentia-
tion. A derivation of (14) is provided in Appendix I. A filterbank
implementation of the reconstruction approximation is shown in
Fig. 2.
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Similar to (14), we can also compute the first order expansion
of the sinc terms in (5). This yields the received signal equation

y[n] = x[n] + ;—i(h xx)[n] +wn] n(mod M)=1 (16)

where h[n] is given in (15). This approximation is useful in sub-
sequent analysis.
C. Matrix Formulation

For convenience, we rewrite our sampling and reconstruction

equations in matrix form. Specifically, we write (5) as

y=Fz+w. 17

with vectors representing the received TIADC output, the ideal
uniform input signal, and the noise signal, i.e.,

y=[ylo] [l y[N —1]]" (18)
z=[z[0] z[1] ... z[N-1]" (19)
w = [w[0] w[1] w[N —1]]" (20)
and with the matrix
Fi;=sinc((k — )T+ 7) i=k(mod M) (21)

where 0 < k,I < N — 1. Note that (17) is a further approx-
imation as we have treated the filter (15) as finite length and
neglected edge effects, as is appropriate for larger N. We treat
these effects more carefully during simulation.

Next we write (16) as

M-1

y=12+ Z %Din‘—l—w (22)
i=1 7%

with N x N Toeplitz matrix H representing the filter (15),
where Hy, ; = h[k —{]. The D; are N x N matrices that select
the entries from the 7th ADC channel,

1, k=1 i=k(mod M)
[Dile = {07 otherwise (23)

where 0 < k,l < N — 1. Simplifying (22) further
y=I+TH)z+w (24)

where T is a diagonal matrix containing the unknown skews

_ Ti/Tsy
Ty, = { 0,

k=1, .k—l(mod M) =i 25)
otherwise
and 79 = 0 as stated previously. Egs. (17) and (24) yield
the actual and approximate relationship between z and y,
respectively.

Similarly, we can rewrite (10) as

z =Gy (26)

where for | = ¢{(mod M)

_ ag(—1)(1-OM
G = ’y(kTs)ﬂ_ (kTs — (1 — )T — 7)) JTa’

Note that in the absence of noise and neglecting edge effects,
(26) performs perfect reconstruction so G ~ F~1.
The corresponding small mismatch approximation (14) is

27)

M-1
Ti
z=y- ) - DHy (28)
i=1 ¢
= (I-TH)y. (29)

In turn, combining the sampling and reconstruction approxi-
mations (24) and (29), we obtain

z~ (I-THTH)z + (I - TH)w (30)

As expected, in the absence of noise, the reconstruction approx-
imation is accurate up to the second order in 7.

D. Least-Squares Estimation

We estimate the timing skews and input signal using the
method of maximum likelihood, modeling the time-skews as
nonrandom and unknown parameters. Because the noise w is
modeled as white and Gaussian, the maximum-likelihood esti-
mate of the nonrandom unknown parameters & and 7 reduces
to the least-squares problem

[& 7] = arg min ||y — F(r)z|” (31)
z€Sp,T
where signal estimate
& =[2[0] Z[1] N —1]". (32)
and where Sp captures the bandlimiting constraint, i.e.,
Sp = {z|z ¢ RN, Lz =z} (33)

with L implementing a low-pass filter with cutoff w.. We ex-
plicitly indicate the dependence of F on 7 in our notation.

We first focus on the estimation of the time-skew parameters
then later use these estimates to estimate z. It is clear to see
that for accurate reconstruction, the estimated signal must be
bandlimited, i.e.,

z = Lz. (34)
Given the basic least-squares estimator
z=F(r) 'y (35)

the bandlimited condition implies that for an accurate of choice
of timing skews 7 = T
(L-T)F(7) 'y =0. (36)

All other choices of 7 # T produce estimates & that are not
bandlimited (as shown in Appendix II).
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In the absence of noise, the timing skews in (36) can be com-
puted from the linear equations attained by using the approxima-
tion F(7) ! = (I- TH) from (29). In practice, no solution ex-
ists due to modeling error in (14) and quantization error; there-
fore, the optimization is formulated as a least-squares problem
that computes the timing skews 7 minimizing the out-of-band
energy in &

# = argmin || (L — I)(I - TH)y|*. (37)
T
Thus, we have reduced the parameter space of the minimization
(31) by removing the need to estimate & directly. Rewriting this
minimization directly in terms of T, we get

7 = argmin ||y — R7|| (38)
where
R=[rn r rv-1], rn=(L-I)D,Hy (39)
and
v=(L-Dy. (40)

The solution to the over-constrained least-squares estimation

problem is given by

7= (RTR)™'R7y. 41)
where the inversion of RT R is possible because for N > M
and nontrivial ¢, the matrix R has full column rank. Thus, with
O(M?N) complexity, the optimal solution 7 can be computed.
Uniform samples of the input signal can then be recovered from
the timing skew estimates by methods such as (14).

As discussed previously, the least-squares algorithm is mo-
tivated by a desire to calibrate large numbers of converters. It
accomplishes this task by requiring a small amount of oversam-
pling in the system and exploiting the extra bandwidth. Because
the skews are treated individually (Appendix I), the calibration
filters can be fixed and independent of the number of converters,
allowing for easy implementation and scaling. The algorithm
has many additional benefits. It performs accurate estimation in
systems where skews are small in magnitude. The least squares
structure allows for a sequential implementation that adapts to
changes in the skews (presented subsequently). Also, a large
amount of flexibility is available to the system designer in terms
of complexity and performance tradeoffs.

A geometric interpretation of the algorithm is that the least-
squares method computes the signal in the convex set of signals
#[n; 7] spanned by 7 that is closest to the convex set of signals
bandlimited to w.. When we introduce back the noise in the
system, the estimate deviates from the true value but the estimate
error changes in a stable manner with respect to the noise power.

Finally, we discuss two extensions to basic least-squares
procedure:

1) Relinearization: For values of 7;/Ts that are not suf-
ficiently close to zero, the approximation given by (14) may
only provide a coarse reconstruction of the original signal
because it relies on a Taylor series expansion of (10) around

7 = 0. An iterative method for improving the accuracy of the
initial least-squares estimate can be derived based on Newton’s
method. Specifically we perform successive approximations by
first computing the least-squares estimate 7 and then computing
the first order Taylor series approximation of x[n] around the
point 7 = T

M—-1

#[n] = x[n]|r—s + Z 9z[n]

Ti-
Bn —7

T

(42)

The explicit computation of (42) is omitted due to its length
but is routine. From this updated reconstruction formula, it is
possible to formulate a new least-squares problem whose solu-
tion is another estimate of 7. With increasingly accurate esti-
mates 7, the local approximation of z[n] can improve and allow
for better estimation. An alternate approach to achieving in-
creasingly accurate estimates is to incorporate a higher order
Taylor series expansion [20].

2) Gains: In the general calibration of time-interleaved
analog-to-digital converters, nonuniform gains can also exist
among the constituent converters. In this setup, the output of
the sth ADC is modeled as

yi[n] = giz(nMTs +iTs + 7)) + wi[n]. (43)
where the g; are unknown gains. Although the gains vary among
the converters, we assume that each gain is within 10% of unity.
For high resolution converters, one can conveniently compen-
sate for the system gains without excessive noise enhancement
by multiplying each ADC output y;[n] by 1/g;. Without loss of
generality, we set go = 1.

By folding the gain recovery into the reconstruction equation
(10), we can compute the Taylor series approximation around
the point 7 = 0, g = 1, where
(44)

g=[n ¢ ng1]T

and 0, 1 are vectors of zeros and ones, respectively. From the
first-order approximation, we can setup a similar least-squares
problem that includes gains in the vector of unknown parameters

A

6 = arg min ||y — RA|| (45)
0

where
9= [gf,} (46)
R=[n ryv-1 S1 Sh—1] 47)
r,=(L-I)D,Hy, s,=—(L-I)D;y (48)
v=(L-I)Doy (49)

and
T
g=|1 L ! (50)
g1 92 gnm—1

The least-squares estimate of the unknown gains and timing
skews is

#=(RTR) 'R7y. (51)

Authorized licensed use limited to: MIT Libraries. Downloaded on June 18, 2009 at 14:14 from IEEE Xplore. Restrictions apply.



514 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 3, NO. 3, JUNE 2009

Again, in this case further relinearization techniques can allow
for an increase in performance.

E. Adaptive Filter Implementation

In the development of the least-squares calibration algo-
rithms, it was convenient to use vectors to represent time-do-
main signals and matrices to represent filtering operations. This
notation allows for greater insight into the methods developed
for parameter estimation and signal reconstruction.

In practice, the block implementation of such a system may
be cumbersome for efficient implementation as it requires the
multiplication of large matrices. As mentioned earlier, FIR fil-
ters may be used to replace the matrix operations, such as those
discussed in [13], [14], [20], [21]. For example, reconstruction
(29) can be simplified through the FIR derivative filter presented
in (14). Also, the time skew estimation can be implemented in
a sequential manner via an adaptive filter structure, which we
now develop.

The block implementation of the timing skew estimate (41)
takes O(M?N) complexity and a large amount of memory.
We develop arecursive least-squares (RLS) implementation that
distributes the computation over time and adapts to shifts in pa-
rameters. To start, we rewrite the matrix R in terms of its rows
u, where each row now represents signal values at a certain time
step

(52)
(53)

u[N — 1]T]T

rar—1[n]]

R = [u[0]" u[1]"

u[n] = [r1[n]  ro[n]

where 7;[n] is the nth element of r;. The values can also be
computed by the filtering operations

>

m(mod M)=1

ri[n] = p[n — m]s[m)] (54)

where p implements the high-pass filter (I — L) and s[n] =
(h+y)[n]. Also, the vector v in (40) can be written as individual
elements y[n], where y[n] = (p * y)[n].

In the recursive setup [24], at time step n, we use u[n] and
4[n] in order to update our filter taps (timing skews). We define
a forgetting factor A such that the weight of the (n —)th sample
is A\~%, where A = 1 yields the traditional least squares estimate.
We also define a regularization constant ¢ to stabilize the solu-
tion. The recursive solution to the least-squares estimation (51)
is given by

RLS Initialization

#[0] =0 (55)
P[0] = 61 (56)
RLS Update
w[n] =P[n — 1]u[n] (57)
_ mn]

k] = o) (58)
&[n] =[n] — ‘i’T[n — 1]u[n] (59)
T[n] =T[n — 1] + k[n]¢[n] (60)
Pln] =A"'P[n — 1] = A 'knul[n)P[n —1] (61)

yln] 2]

N
p

L

=
| 7

Fig. 3. System implementation of the LMS adaptive filter for timing skew
estimation.

where P represents an estimate of the input u auto-correlation,
which aids in whitening.

The adaptive filter both spreads the computational complexity
across time and handles time skews that vary with time. In-
stead of O(M?N) complexity every N samples, we now have
O(M?) complexity every sample. Using § = 0.01 and \ = 1,
we find that the performance of the block algorithm is matched
after the steady state is reached.

In practice, the RLS algorithm above is often replaced by
the lower complexity least mean-squares (LMS) algorithm. In
LMS, no estimation of the covariance matrix P is made. Instead
the 7 estimates are updated by the gradient direction that mini-
mizes the £[n] error

LMS Update
&[n] =[n] — 7 [n — 1]uln] (62)
7ln] =7[n — 1] + pu[nl¢[n] (63)

where . denotes the step-size parameter of the update. Fig. 3
shows a system implementation of the reconstruction algorithm.

While the convergence rate of LMS is generally slower than
RLS, the LMS algorithm only requires O(M) complexity per
sample, making it more attractive for system implementations.
In simulations performed with a sufficiently small step-size, the
algorithm converged to the same skew estimates as the LS and
RLS methods.

III. SIGNAL RECONSTRUCTION

We have developed methods for estimating the unknown
timing skew parameters. In this section, we present multiple
methods for recovering the input £ when the timing skews are
known (or have been estimated).

In the setup, input z is treated as a nonrandom parameter in

y=F(T)z+w (64)

where we assume 7 is known to the system. We focus on max-
imum-likelihood estimates of &, corresponding to least-square
solutions.

A. Naive Least-Squares Estimation

The least-squares (LS) estimate for the input signal is

. . 2

Tps = argmin ||y — F(7)z|| (65)
T

where 2 is bandlimited, a constraint we ignore for the moment.

Because the noise w is modeled as white Gaussian, the LS esti-

mate is equivalent to the ML estimate. This formulation is sim-
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ilar to the LS setup (31) used to derive the small mismatch esti-
mation algorithm in Section II. In this case, we focus on signal
estimation rather than parameter estimation.

The LS solution is equal to

(66)
(67)

Zps = (FTF)"'Fly
= F_ly

since F is invertible when the 7; are sufficiently small.

This estimation method is equivalent to the reconstruction
(10). The estimate performs well in high SNR situations. How-
ever, as noise power increases, it is clear to see that this estimate
is suboptimal. A more accurate estimate of & can be produced
by enforcing the bandlimited constraint on the estimator . Be-
cause the passband and out-of-band frequencies are orthogonal,
this will not affect any signal content in the passband. The final
estimate is computed by low-pass filtering the LS estimate. We
label this as the filtered least-squares (FLS) estimator

ZpLs = LF 'y (68)
where L is a matrix implementing a low-pass filter bandlimited
to w.. This naive estimation technique uses a standard nonuni-
form reconstruction filter to estimate & from y and then low-
pass filters the output to remove any noise in the out-of-band
spectrum.

By plugging in for y in the estimator, we find

#rLs = LF H(Fz 4+ w)
=z + LF 'w.

(69)
(70)

Thus the error term equals epr.s = LF 'w.

B. Constrained Least-Squares Estimation

We now develop a more accurate estimator by imposing the
bandlimited requirement directly into the least-squares estima-
tion. The constrained least-squares (CLS) optimization problem
is given by

Zcops = argmin ||y — F("')fl'Hz
z€Sp

(71)

where S = {z|z € RN, Lz = z}.

By introducing a secondary variable z, where £ = Lz, we
can remove the constraint in the LS formulation
(72)
(73)

Zc1s = arg min ||y — FLz|?
z
Zors =L2crs.

First, we must compute 2cps. Because the matrix L is singular
(high frequency vectors lie in the nullspace), the product matrix
FL is also singular. Thus, it is not possible to take the inverse
of this matrix in order to compute the maximum-likelihood es-
timate Zcrs. Instead, we use the pseudoinverse

zcrs = (FL)Ty (74)

where (-) denotes the Moore—Penrose pseudoinverse [25]. The
overall solution is given as

#crs = L(FL)Ty. (75)
We now analyze this estimator. The low-pass filter matrix can
be implemented by a frequency sampling filter matrix, i.e.,
L=D'¥;D (76)
where D is the N x N DFT matrix, and ¥, is the frequency
response of the filter. Since L represents a low-pass filter with
cutoff frequency w,, this is equivalent to having the (N — k)
eigenvalues that correspond to the low frequency eigenvectors
equal to one and the k eigenvalues that correspond to high fre-
quency eigenvectors equal to zero, where k = N(m — w.)/m.
The N x N eigenvalue matrix is given by

Y = [IN—’“ 0} . (77)

0 0

The nullspace of L corresponds to linear combinations of high
frequency vectors.

The pseudoinverse of L is equivalent to inverting all the
nonzero eigenvalues. Because each of these eigenvalues is
equal to one, their inverses are equal to one (and the zero
eigenvalues remain zero). Thus, we find that LT = L. Note
that without the frequency sampling approximation (76), the
matrix L may have very small nonzero eigenvalues. When the
matrix is inverted, these eigenvalues become very large but can
be negated with a power constraint on &.

To analyze the properties of the product FL, we compute the
singular value decomposition

FL = Uy V" (78)
where U and V are N x N orthonormal matrices. It is easy to
see that because F is full rank, the nullspace V/(FL) = N(L)
and has rank k. Thus, ¥, can be decomposed as

DI 0}

0 O (79

Ypr = [

where g is an (N — k) x (N — k) diagonal matrix.
The bottom k rows of V7 span the high-frequency nullspace
of L, and the top rows span the low-frequency space. Again,
since (FL)T inverts only the nonzero eigenvalues, we find that

(FL)'FL =VE, V7
=L

(80)
(81

where the second equality holds because the nullspaces of FL
and L are equal and the low frequency subspace has unity eigen-
values. This simplification does not imply anything about the
product FL(FL)'. For similar reasons, it is easy to see that
L(FL)" = (FL)".

From the analysis above, we can better interpret the CLS es-
timator. First, the received signal is projected into the space of
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Fig. 4. Graphical representation of the estimator operations. Set S represents
the convex set of bandlimited signals. Set S, represents the convex set of signals
that can be written as (Fs), where s € Sp.

T-spaced periodic nonuniform samples of any possible bandlim-
ited signal, i.e., the space spanned by FL. This produces the
intermediate estimate FL(FL)"y. The nonuniform sampling is
then inverted by applying F~!. Thus, the noise reduction oc-
curs on the nonuniform samples before the signal reconstruc-
tion. Fig. 4 shows a graphical representation of the operations
of the estimators.

This approach provides a more efficient method for noise re-
duction than the equivalent frequency-domain techniques for
signal estimation, which are not as easily realizable in hardware.
It also provides insight into optimal methods for treating noise
when developing practical reconstruction filters.

To compute the CLS estimator error, we substitute for y in
(75) and find

Zcrg = L(FL)T(FZ‘ + w)
=z + (FL)'w.

(82)
(83)

The error term equals ecrs = (FL)Tw.

C. Analysis of Estimators

In this section, we analyze the bias, variance, and efficiency of
the estimators. From (70) and (83), itis clear that estimators FLS
and CLS are unbiased, i.e., E[Z] = @, because the expectation
of any linear combination of w[n] is zero.

In order to determine which estimator has lower error vari-
ance, we must compare the average error from the covariance
matrices

1
olig = N02tr (L(FTF)~'LT) (84)

o2 = %02‘51“ ((FL)T(FL)TT) . (85)
Because comparing the errors is not analytically tractable, we
numerically calculate them in Section IV and verify that 02, g <
021 as expected.

An estimator is efficient if its error variance achieves the
Cramer—Rao bound (CRB). In [26], the CRB is redefined for

constrained parameter estimation problems. For the problem of

Zy1, = arg max py|.(y|x) (86)

z,g(x)=0

where the g(-) function may contain multiple nonlinear equa-
tions, the constrained CRB bound is given by

Ay >J P J'G(GTIG)IGTI ! (87)
where
J=—F [Valnpy(yle) - Vz Inpy=(ylz)] (88
is the Fisher information matrix and
G = Vag' (2) (89)

isthe N x N gradient matrix of the constraints. In the time inter-
leaved converter setup, the constraints enforce that the estimate
is bandlimited, g(z) = (I — L)z. We find

J=FTF
G=(I-L)"

(90)
€2y

yielding the bound on A; given in (87). Thus, we have the indi-
vidual variance bound as

var [.'i‘l (y)] Z [Aﬁ:]zz (92)
It is clear that the CLS estimate will achieve the CRB for the
constrained ML problem because the constraints are linear.
Therefore, by incorporating the bandlimited constraint into
the LS estimation, we create an unbiased estimator Zcy,g that
performs better than the naive “reconstruct-and-filter” estimator
ZTprs.

D. Full LS Estimation

The construction of the signal estimate when 7 is known leads
us to revisit the timing skew estimation problem. The overall LS
estimation (31) of signal and skews can be split into two separate
minimizations

[# 7] = argmin|jy — F(r)z| (93)
z€Sp,T
= arg min arg min ||ly — F(1)z|” 94)
T xESE
— arg min ||(I - FL(FL)") y||”. (95)

Using the Taylor approximation (29), the estimation of the
timing skews becomes

# = argmin H (I —(I- TH)L ((I- TH)L)T) yH2 . (96)

Because this minimization is the ML solution, it is guaranteed to
have better performance than the method for estimating timing
skews in Section II-D. However, the nonlinear characteristics
of the pseudoinverse make this estimation method difficult to
implement in practice; thus we use it only to provide insight
into estimation process.

Fig. 4, which represented the operations of the FLS and CLS
estimators, can also help illustrate the timing skew estimation
techniques (37) and (96). The ML estimate provided above
seeks to find skews 7 that minimizes the distance between the
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signals y and its projection into S, i.e. F(7)L(F(7)L)"y,
where F(7) explicitly depends on 7. Because this is difficult to
compute, we instead find skews 7 that minimize the distance
between F (7)™ 'y and #prs = LF(7)"ly.

IV. RESULTS

In this section, we numerically evaluate the performance
characteristics of the blind calibration methods. We compare
the effective number of bits for the reconstruction without
calibration y[n], to the reconstruction with calibration, i.e.,

To measure effective bits, we first compute the SNR of the
recovered signal £[n]

San?
% (eln] - )’

The uncalibrated signal SNR can be calculated in a similar
fashion. The effective SNR of a signal is then related to the
number of effective bits via B = (SNR — 1.76)/6.02. In
the tests below, the converter quantizes the input at 12-bit
resolution, which generates the noise w;[n]; the performance
is measured through the increase in effective bits between the
uncalibrated and calibrated signals. We now discuss the trade-
offs in performance between the amount of excess bandwidth,
block size, number of converters, and input SNR.

A. Time Skew Calibration

For our simulations, we randomly select the M — 1 converter
timing skews independently using a uniform distribution. In-
creasing the range of this distribution yields a lower number
of effective bits in the uncalibrated signal y[n]. Performance is
measured for both small and large magnitude skews. The tests
are performed using bandlimited Gaussian noise as input, with
block sizes of 2!% samples and a factor of 33% oversampling.
The gains are uniform among all converters. For additional pre-
cision, the final estimate #[n] is produced using the time-skew
estimates in the ideal reconstruction formula (10) rather than
the estimated reconstruction formula. Due to the high SNR of
the 12-bit ADCs, the improvement of the CLS reconstruction
method described in Section III will be postponed until later.

Fig. 5 shows the relationship between the timing skew size
and effective number of uncalibrated bits for M = 2 converter
system. The horizontal axis shows the total amount of skew
(|7]/T) and the vertical axis represents the resulting number of
effective bits in the uncalibrated signal y[n]. As expected, for
increasing amounts of timing skew, the error in the uncalibrated
signal increases, thus decreasing the effective number of bits.

We can also calculate these curves analytically by computing

. 1 a?
Output Bits = ——101log 5 (98)
6.02 L\ 2.
M Z (T_Z) 04 + o
L |7i
~k = 5oz 108 <Z T, ©9)

where o2 is the power of the input signal and o3 is the power of
the derivative signal (0/0t)x(t)|t=nT, -
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Fig. 5. Effective number of uncalibrated bits versus timing skew value for a

12-bit 2-ADC system. Each “x” on the curve represents a unique test where the
timing skew and input signal are chosen at random.
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Fig. 6. Effective number of calibrated bits versus uncalibrated bits for a 12-bit
2-ADC system with unknown timing skews. Performance is measured using
the least-squares (LS) estimate and the relinearization (ReLin) estimate for a
bandlimited Gaussian input oversampled by 33%.

In Figs. 6 and 7, we plot the performance of the small
mismatch calibration method by showing the effective bits of
the calibrated signal relative to those of the uncalibrated signal
for systems with 2 ADCs and 16 ADCs, respectively. For each
trial, a random bandlimited Gaussian signal is generated along
with a random set of timing skews. The trial signal is calibrated
and performance is plotted with a point on each of the curves.
Recovery performance is shown for the least-squares “LS”
estimate (o); and for the 2-ADC system, performance is also
shown after multiple relinearization “ReLin” iterations (X).
The number of iterations is approximately equal to 1007y /Ts.

The full calibration upper bound (squares) shows recovery
performance in each trial when the true timing skew values are
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Fig. 7. Effective number of calibrated bits versus uncalibrated bits for a 12-bit
16-ADC system with unknown timing skews. Performance is measured using
the least-squares (LS) estimate and the relinearization (ReLin) estimate for a
bandlimited Gaussian input oversampled by 33%.

used in the ideal reconstruction formula; note that filter approx-
imations limit the accuracy below 12 effective bits when the
skews are large in magnitude (low number of uncalibrated bits).
The lower bound (dashed line) plots the performance when no
recovery is performed, i.e., effective output bits equals effective
input bits.

As the timing skew increases (decreased uncalibrated bits),
the recovery algorithm yields a higher number of effective
output bits. In the 2-ADC plot, both calibration curves demon-
strate a linear behavior until they intersect the upper bound,
at which point performance is capped. As the number of
calibration iterations increases, the slope of the calibration
curve increases. Using the single least-squares calibration,
any uncalibrated signal above four effective bits achieves the
upper bound. With iterations of the relinearization method,
larger timing skews producing signals as low as 1.8 effective
bits achieve the same bound. Simulations show the LS perfor-
mance is limited by how well the reconstruction approximation
(I — TH) performs in comparison to F~!. Thus, the calibra-
tion only produces an estimate as good as the reconstruction
approximation can yield.

In the 16-ADC system, the performance of the single least-
squares calibration matches the full calibration curve for input
signals with greater than 5.5 effective bits. Although the relin-
earization performance is withheld to allow for clarity in the
graph, tests show that for uncalibrated signals with more than
4.5 effective bits relinearization achieves the upper bound in
performance.

In the time-interleaved setup, sampling generally occurs after
the use of an anti-aliasing filter in the analog domain. This filter
ensures that high frequencies are not aliased during sampling.
Although we model the perfectly sampled signal z[n] to have
cutoff frequency w., we cannot guarantee that the signal has
nonzero spectral content for w < w, or that the spectral content
goes to zero for w > w., which may lead to degraded perfor-

mance. If the spectrum is known, this issue can often be resolved
by changing the cutoff frequency of the low-pass filter used in
skew estimation. However, the spectrum of the input is not al-
ways known a priori.

We first tested the effects of zero content in a range wy < w <
w. by using low-pass filters whose cutoff frequencies were (5%,
10%, 20%) larger than the maximum frequency of the signal. In
each of the cases, the LS performance remained the same as the
base case, while the ReLin performance decreased with larger
filter cutoff frequencies. The ReLin degradation was clear for
fewer than four uncalibrated bits. For two uncalibrated bits, the
(5%, 10%, 20%) cases yielded a ReLin calibration decrease of
(0.4, 1.8, 4.0) bits from the base case.

We also tested the effects of nonzero signal in w > w, by
using inputs that have varying amounts of out-of-band signal
content. As a general model for the out-of-band content, we
added a white Gaussian signal into this spectrum (w, < w) with
a power (20, 40, 60)dB lower than the main band (v < w.).
At —60 dB, the out-of-band energy did not affect calibration
performance and at —40 dB, performance only degraded
slightly. A —20 dB out-of-band signal yielded a significant
drop: for (3,5,7) uncalibrated bits, LS calibration dropped by
approximately (2,6,5) bits, respectively. The results of both sets
of filtering tests are as expected. Out-of-band signal content
can decrease performance by obscuring the aliased content in
this band. Also, large filter cutoffs allow for a smaller region
for aliasing to be detected, which is only noticeable during
relinearization.

Tradeoffs in performance were also measured for varying
input block sizes and amounts of oversampling. After a base-
line amount of oversampling (15%) and block size (2!* sam-
ples/ADC), varying these parameters had marginal effects on
the LS and ReLin performance, implying that the reconstruction
approximation error dominated any out-of-band energy error.
However, the convergence speed of the algorithm was highly
dependent on the oversampling factor; with more oversampling,
fewer relinearization iterations were necessary to achieve the
same performance. For 2-ADC systems with 4-bit and 8-bit
quantization, the performance curves match the 12-bit curves
with upper bound limits performance at 4 bits and 8 bits, respec-
tively. Calibration was also performed using single tone inputs.
The trials showed similar performance to the wideband signals;
however, tests required that the out-of-band spectrum be speci-
fied precisely based on the tone frequency.

The RLS and LMS methods are two possible sequential im-
plementations of the least-squares calibration algorithm. Sim-
ulations of the methods were performed using the system pa-
rameters of 6 = 0.001, A = 0.95 for the RLS algorithm and
u = 0.05 for the LMS algorithm. Performance is compared
against the block calibration performance with block size N =
215 = 32768. For one instance of skews producing block perfor-
mance of ~7.5 effective bits, tests shows convergence of RLS
after 2000 samples and LMS after 15000 samples. By dynami-
cally changing the (A, ;1) parameters over time, we can increase
the convergence speed by first using a large stepsize and then
using a smaller stepsize. The longer convergence time of the
LMS algorithm may be acceptable for high-speed systems due
to reduction in complexity.
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Fig. 8. Effective bits increased by using estimator CLS over FLS in a 2-ADC
system for varying amounts of skew. Average performance is plotted for dif-
ferent cutoff frequencies (amounts of oversampling).

To test the tradeoff between complexity and performance,
simulations were also conducted with truncated filters. Using
the recursive least-squares (RLS) implementation, the filtering
processes of p[n] and h[n] were limited to (175,75,30) and
(5,10,30) taps respectively. Shortening the high-pass filter p did
not significantly change the performance of the LS calibration;
however, the ReLin performance decreased with shorter filters.
For three uncalibrated bits and the 175 tap p[n], ReLin in-
creased LS performance from 8 to 11 bits, but the 30 tap ReLin
remained at 8 bits. The h[n] derivative filter had the opposite
effect: LS performance decreased with fewer taps but ReLin
performance remained the same. For five uncalibrated bits
and the five tap h[n], LS provided six calibrated bits whereas
the 30-tap filter yielded 11 calibrated bits. Thus, different
system implementations will require a different set of filter
lengths based upon the computational power and performance
requirements.

Additional tests were performed for signal calibration in
time-interleaved systems that contain both unknown timing
skews and unknown gains. The M — 1 gains were chosen
independently using a uniform distribution. Although the initial
least-squares estimate was often of poor quality, the relineariza-
tion technique achieved ~ 10 bit performance when M < 8 and
the starting number of uncalibrated effective bits is greater than
five. This performance is similar to the tests when only timing
skews were unknown. For systems with M = 16 converters,
the gain and skew parameter estimation converged to a local
minimum, often not close to the true parameters.

B. Reconstruction Performance

In this section, we present the reconstruction performance of
the FLS and CLS estimators developed in Section III by com-
puting the traces of the error covariance matrices of the esti-
mators. As expected, in all cases, the noise power is lower for
estimator CLS. The results are given in terms of the increase
in effective bits of the CLS estimator over the FLS estimator.
We present the performance for varying oversampling ratios and
timing skew size in a 12-bit 2-ADC system with block lengths
of 512 samples in Fig. 8.

0.45r A

Effective bits increase

0 05 1 15 2 25 3 35 4
Sum timing error: Xl 7, I/T

Fig. 9. Effective bits increased by using estimator CLS over FLS ina 16-ADC
system with 33% oversampling (w. = 0.757). System timing skew is mea-
sured by Y |7:|/T. Each x on the plot represents performance in a single test
with a randomly chosen set of skews.

The plot shows that for small amounts of timing skew, the
CLS estimate only provides marginal improvements in effective
bits. However, the benefits of the estimator are more visible for
higher levels of timing skew and oversampling. The effective bit
increase is independent of the starting number of effective bits
because the signal power remains the same. Thus, the 0.1 bit
increase obtained for the 2-ADC system with cutoff w, = 0.67
and 30% timing skew holds even for low-resolution converters.

Fig. 9 shows performance in a 16-ADC system for tests
where the set of timing skews is chosen at random. The system
timing error is measured by the sum of the magnitudes of
the timing skews > |7;|/T. In this case, reconstruction for
an average timing skew of ~16% yields a 0.1 bit increase in
resolution. Thus, similar performance increases are achieved
for the same average timing skew.

V. CONCLUSION

We have presented a method for the calibration of time-in-
terleaved analog-to-digital converters. The algorithm produces
accurate estimates of the unknown system parameters using a
least-squares formulation. The estimates are then used to re-
construct samples of the input on a uniform grid. We exploit
the linearity of time-skew parameters in high-resolution con-
verters where skews are small relative to the sampling period.
The algorithm shows promising performance and its ability to
scale easily makes it an attractive solution for large numbers of
converters. With the addition of unknown gains and relineariza-
tion techniques, the method is robust towards handling a broader
class of time-interleaved analog-to-digital converter systems.

For cases of low SNR, the standard method of reconstructing
uniform samples from the timing skews can be improved.
We presented an alternate approach that incorporates the ban-
dlimited constraint into our reconstruction. The new estimator
shows moderate increases in performance for systems with
larger timing skews.

The upper bound on the performance of the calibration al-
gorithms needs further investigation. In particular, it is unclear
whether accurate convergence of the estimates is guaranteed in
the absence of numerical precision errors or algorithmic approx-
imations, especially in the cases of large numbers of converters
M > 32. An analytic expression for the errors may give insight
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into methods for decreasing calibration iterations and increasing
estimation accuracy. Also, it may be possible to achieve higher
performance by jointly estimating the timing-skews and input
signal in the small mismatch least-squares setup.

APPENDIX |
DERIVATION OF THE RECONSTRUCTION EQUATION

We now construct a derivation of the reconstruction approxi-
mation (14). We start by computing the Taylor series of the sinc
terms in (5). The sinc function at times ¢t = nT + 7; is equal to

d
sinc(nTs + ;) =sine(nTs) + 7; —sinc(t)

o o (100)
+ 0 (77) (101)
=4 0(r), n#£0
— Ts n v/
{Fom. ) nZy o

where the function sinc(t) = sin(nt/Ts)/(wt/Ts) is defined
with period T. Thus the expansion of the sampling equation
for n(mod M) = i becomes

yn] = Z x[mlsinc ((n — m)Ts + 7;) (103)
= z[n] + %(h*x)[n] +0(r2). (104)

s

It is easy to see the first order approximation of the inverse
reconstruction equation (10) is equal to

(105)
(106)

The reconstruction can be realized through a time-varying filter
applied to the full TIADC output. In [14], this approximated
reconstruction filter is implemented in the M = 2 case through
a filterbank defined via a Farrow structure. These structures are
often used for implementing fractional sample time-delay filters
[27], [28].

We now present an alternate derivation that gives the intuition
that in our reconstruction formula, we correct each sample by
treating all the other samples around it as being sampled uni-
formly (although this is not actually the case). To show this,
we perform an approximation from the interpolation equation
z(t) = Y x[a]sinc(t — oT%).

In the absence of noise, for n(mod M) = i:

2] = Sincl(n)
x| yln] = > wlolsine (n — a)To +7) | (107)
~ ! ”
sinc(m;)
x| yln] — ; ylafsine (n — a)Ts +7;) | (108)
~yln] = 7 (hx g (109)

where the second approximation is obtained by the first-order
Taylor series expansion of the sinc function. Thus, in the correc-
tion of a single sample, the derived reconstruction method (14)
is equivalent to making the approximation that all the neighbors
of the sample are on a uniform grid.

APPENDIX II
UNIQUENESS OF TIMING SKEWS

In the absence of noise, only the true time-skew parameters
7 = 7 will yield a reconstructed signal with no out-of-band
energy. We start by presenting the reconstruction equation for
M = 2 ADCs. We show that for 7 # T, the output will not
be bandlimited. Although the case of M > 2 can be proven
in a similar manner, we use approximation (14) to simplify the
analysis.

We now look at the 2-ADC system and examine the output of
the reconstruction filterbank generated by plugging the estimate
7 into (10). For simplicity, we assume that the system sampling
period Ts = 1.

Using X (e/) as Fourier transform of the input signal [n],
the ADC outputs are equal to

1
Yo(ei®) = % Y x (ef(w*m)/?)) (110)
k=0

jw 1 - J(w—27k)T/2 j(w—27k)/2
Yi (e )252‘3]( )7/ X(eJ( )/ )) (111)
k=0
for -7 < w < 7.

These signals Yy(e/*) and Y;(e“) are now the inputs to
our reconstruction filterbank that is constructed from (10). We
follow these signals through the filterbank and compute the out-
puts of each component. We shall use the following notation
to represent the two halves (positive/negative frequency) of the
Fourier transform

i A(e?*), for0<w< 7
T(eIW) = ) >
AT(e )_{0, for -1 <w<0 (112)
— 0 for0<w<m
Jwy [ =
AT(er) = {A(ef“’), for -7 <w<0 (113)
A(e?) = AT (eI9) + A~ (e7%) (114)

First, the signals are upsampled by a factor of 2, creating sig-
nals Sy and S,

So(e®) :% (x* (e7+) 4 X ()

+X ()

. 1 . . . .
Si(e7) = 3 (X+ (ej(w-i-ﬂ)) el (wrmT | X(e7%)elem

X (ej(w—fr)) ej(w—fr)f)

(115)

(116)

for -7 < w < 7.
_Next, the signals So(e/*) and S;(e/*) are filtered via
Hy(e?*) and Hy(e?*), respectively, producing outputs Ro(e?)
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and R;(e/*). The filters, which are computed from the estimate
T, are given by

1

o —=agp, for—7<w<O

H, Jwy J 117
o(e’) Lagp™!, for0<w<m am

l -1, —jfw for -1 < 0

N jaop e, for—m S w <

B (eiey — ) 3 y 18
1(e”) —%agpe_]”’, for0<w<m (18)

where aq is calculated via (11) and p = ej’ﬁ/'?. .
The reconstructed signal is the sum of Ry(e?*) and Ry (e?“):

X (&)
:;_;[(p—l_pej(f—m) X+ () (119)
_ (p_ p—16j<<r—+>w+m>) X+ (ej<w+w>) (120)
—(p=p71el ) X (1) (121)
+(p = peiltr=Pemrm) x= ()] 122)

The reconstructed signal will have no “out-of-band” energy
if and only if the aliased terms cancel. This is equivalent to
ensuring

(p _ pflej((Tf‘f')erTﬂ‘)) X+ (ej(erﬂ')) — 0 (123)
Assuming that the aliased signal has content in the out-of-band,
we find that for multiple values of w

(p - p‘lej((f—ﬂ“r”)) =0 (124)
—jr7/24+j (71 — T)w + 77) = j7T /2 (125)
(r—7)(w+m)=0 (126)

which is only true if and only if 7 = 7. Thus, if the timing skew
estimate is incorrect, the signal is guaranteed to have out-of-
band energy.

To generalize to the M > 2 converter system, we define the
error signal e[n] for an arbitrary estimate 7 as follows:

e[n] = &[n; 1] — &[n; 7 (127)
0, n(mod M) =0
- { "'T;T(h xy)[n], n(mod M) =1 (128)

when using approximation formula (14). The reconstruction
Z[n; 7] is bandlimited when e[n] is bandlimited, which is only
true if 7 = 7 for nontrivial input signals.
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