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Abstract

The so-called diversity-multiplexing tradeoff characterizes the fundamental interac-
tion between the robustness and capacity gains obtainable from multiple-input and
multiple-output (MIMO) systems in fading environments. This thesis develops prac-
tical schemes for approaching the optimal tradeoff in various delay and complexity
regimes. We focus on a two-transmit and two-receive antenna system, in which the
receiver has channel knowledge, but the transmitter does not.

We first investigate uncoded transmission. We propose a class of lattice-reduction-
aided low-complexity detectors that can achieve near maximum likelihood perfor-
mance and the best diversity-multiplexing tradeoff achievable by any length-one code.

We also design a family of structured space-time block codes that we call tilted-
QAM codes. It achieves the optimal infinite-delay tradeoff with the necessary mini-
mum delay of two, answering a previously open question. It uses constellation rotation
ideas to effectively spread information across space and time. We identify rotation
angles that are universally optimal at all rates in terms of a determinant criterion.

We further develop efficient coding schemes using long error correction codes.
In particular, we combine them with tilted-QAM codes using hard and soft deci-
sion decoding to obtain good performance at moderate SNR. These new systems are
compared to orthogonal space-time coded systems, which we show to achieve near op-
timal performance at low SNR. We also examine traditional sequential versions and
develop new block versions of the Bell Labs layered architecture (BLAST). While
some of these can in principle reach the performance limit at all SNRs, we show they
also have various practical problems.

Finally, for the case where no channel knowledge is available, we present a ge-
ometric view of the signal design problem. This view reveals how training based
approaches can achieve the optimal (non-coherent) diversity-multiplexing tradeoff.

Thesis Supervisor: Gregory W. Wornell
Title: Professor
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Chapter 1

Introduction

Over the past few years, it has been shown that using multiple antennas can sig-

nificantly increase the capacity and robustness of communication systems in fading

environments. Capacity grows with the number of antennas used. Approximately

twice the amount of information can be communicated using two transmit antennas

and two receive antennas, without spending any extra time, bandwidth, nor power.

In a fading environment, the channel quality may vary due to, for example, movement

of the transmitter or the receiver. In such an environment, using multiple antennas

makes it less likely for the channel to be in a deep enough fade such that the trans-

mitted information can not go through. This is because the multiple links between

the multiple antennas provide us with multiple opportunities and more protection.

Since the benefits of using multiple antennas have been recognized, much work

have been done toward designing coding and decoding schemes to realize these gains

promised by theoretical studies. However, some of the studies focus only on the

robustness gain but do not capitalize on the capacity gain; while others concentrate

on the capacity gain but have less than optimal robustness.

More recently, there are efforts on realizing both capacity and robustness gains

simultaneously. Zheng and Tse [41] established that there is a tradeoff between these

two types of gains, i.e., how fast error probability can decay and how rapidly data rate

can increases with signal to noise ratio (SNR). Furthermore, they analytically evalu-

ated the efficient frontier of this diversity-multiplexing tradeoff for systems with any
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number of transmit and receive antennas and showed that the frontier is achievable

using sufficiently long Gaussian random codes.

In this thesis, our goal is to design practical multiple antenna systems aiming at

achieving the optimal diversity-multiplexing tradeoff. We design structured linear

signaling and coding schemes at the transmitter with easy implementation, and de-

sign corresponding decoding algorithms at the receiver with moderate computational

complexity. We demonstrate the performance of our designs through both theoretical

analysis and numerical simulations.

1.1 Channel and System Model

hN N
N

h

h

h

hh
11

22

12 21

1N

x

x y

y

2

N

y1

h2N

hN 1

hN 2

2

1

xN

w

w

w

1

2

t r
r

r

t

t

r

t r

Figure 1-1: Multiple antenna channel with Nt transmit and Nr receive antennas.

Let us first describe the channel and system model. Figure 1-1 shows a communi-

cations link with Nt transmit antennas and Nr receive antennas. At each time instant,

Nt signals, (x1, x2, · · · , xNt
), satisfying an average power constraint, are transmitted

using Nt antennas. Each of them reaches all Nr receive antennas.

In this thesis, we model the channel as flat, Rayleigh, and block fading, with

channel knowledge at the receiver, as well as additive white Gaussian noise (AWGN).
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These models are commonly used in the multiple antenna communications literature

and have been proven useful in practice. We also restrict our attention to the case

where there are at least as many receive antennas as transmit antennas, i.e., Nr ≥ Nt.

• Flat Fading: We model each wireless link between each pair of transmit and

receive antennas as a simple scaling by channel gain hij. This is valid when the

signal bandwidth is narrow enough so that the entire spectrum experiences the

same fading coefficient.

• Rayleigh Fading: We model the statistics of the random channel coefficients,

hij, using the Rayleigh fading model. This means that they are independent

and identically distributed (IID) with zero mean, unit variance, circularly sym-

metric, complex Gaussian density, CN(0, 1). It is worth noting that this model

is often used because it leads to more tractable theoretical analysis, but it is not

entirely accurate. In most environments, the channel coefficients are correlated.

The correlation is less when the antennas are well separated and there are a large

number of scatters in the environment. Given a particular environment, only a

certain number of antennas can be used before the channel coefficients become

too correlated and the channel model breaks down. For example, for indoor

environments, only up to three to eight antennas can be used [27]. Therefore,

practically speaking, we can not indefinitely increase the number of antennas

used and hope to obtain arbitrarily large capacity and robustness gains.

• Block Fading: We model the time varying nature of the channel using block

fading, meaning that the channel stays fixed for a certain period, call the co-

herence time of the channel, and then changes to something independent for

the next block. In reality, channel coefficients changes gradually from one time

instant to the next. However, this is hard to analyze. Therefore, block fading

model is often used for its simplicity.

• Channel Knowledge at Receiver: For most of this thesis, we assume that

perfect channel knowledge is available at the receiver but not at the transmitter,
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i.e., coherent detection. Practically speaking, the receiver can not know the

channel perfectly. However, if the channel varies slowly, we can assume that the

receiver has sufficient time to get a good estimate of the channel. Again, this

assumption is not entirely accurate but makes our problem easier. In Chapter 6,

we explore the scenario where no channel knowledge is available, which we call

non-coherent detection. This happens when the channel varies too fast and is

difficult to track. We always assume that transmitter does not have knowledge

of the channel, because this requires feedback from the receiver.

• AWGN at Receiver: At each receiver, signals received from all transmit an-

tennas are added together, along with an IID additive white (complex) Gaussian

noise with zero mean and variance per dimension σ2w, i.e., CN(0, 2σ2w).

We also restrict our attention to the case where the code duration, denoted by T ,

is shorter than the coherence time of the channel, so that each codeword experiences

only one channel realization. The system we design can serve as a building block to

build more complex systems where coding happens over multiple channel realizations

through interleaving in either time or frequency or both.

With the above channel models, we can express the multiple antenna channel

(over one channel realization) mathematically as

Y = HX+W, (1.1)

where H is the Nr × Nt, Nr ≥ Nt, multiple antenna channel, X is the Nt × T

transmitted signal matrix,W represents the additive white Gaussian noise, and Y is

the received signal matrix. Written in a matrix form, we have




y11 · · · y1T
y21 · · · y2T
...

. . .
...

yNr1 · · · yNrT



=




h11 · · · h1Nt

h21 · · · h2Nt

...
. . .

...

hNr1 · · · hNrNt







x11 · · · x1T
x21 · · · x2T
...

. . .
...

xNt1 · · · xNtT



+




w11 · · · w1T

w21 · · · w2T

...
. . .

...

wNr1 · · · wNrT



. (1.2)
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Let the energy constraint on the transmitted signal be such that each dimension of

xij has an average energy of Es. The total transmit SNR over all antennas is thus

SNR = Nt
Es

σ2w
. (1.3)

The per-antenna SNR is

ρ =
SNR

Nt

=
Es

σ2w
. (1.4)

Note that each column of the transmitted signal matrix X corresponds to what is

transmitted at one time by multiple antennas; and each row corresponds to what one

antenna transmits over time. When we perform coding across rows of X, we refer to

it as coding across space. Coding across columns is referred to as coding across time.

When the transmission rate is R b/s/Hz, there are 2RT codeword matrices X to be

designed.

1.2 Thesis Outline

We first review some theoretical background on multiple antenna communications

in Chapter 2. We present the channel capacity formula and define the ultimate

performance limit, the outage probability. We then review the diversity-multiplexing

tradeoff definition and the optimal tradeoff result obtained by Zheng and Tse [41],

and provide some of our own interpretations. Next, we look at what determines

the error probabilities of a given coding scheme, and from which we obtain some

code design rules. We then analyze Gaussian random codes as a benchmark and

see that sufficiently long Gaussian random codes can achieve the optimal diversity

multiplexing tradeoff while shorts ones can not due to particularly bad randomly

selected codeword pairs.

In this thesis, our goal is to design practical multiple antenna systems aiming at

achieving the optimal diversity-multiplexing tradeoff. we focus our research on the

two-transmit two-receive antenna system, which arises frequently in practice, and can
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lead to important insights on how to build larger systems with more antennas. We

study the design problem in various delay and complexity regimes.

In Chapter 3, we investigated the case of uncoded transmission with zero delay,

i.e., code duration T = 1. We propose low-complexity detectors that can achieve

near maximum likelihood performance by operating traditional detectors in a reduced

lattice basis. We identify the optimal basis to operate in and describe an iterative

algorithm for finding it. Using these improved detectors, the uncoded system achieves

the best diversity-multiplexing tradeoff achievable by any length-one code.

In Chapter 4, we move on to the case of coding with the minimum delay necessary

for achieving the optimal diversity-multiplexing tradeoff. We construct a family of

short structured space-time block codes for the two-transmit two-receive antenna

system. It achieves the optimal diversity-multiplexing tradeoff and has the minimum

delay of two necessary for optimality. It is a modification of the well-known orthogonal

space-time block codes (OSTBC) [1, 34], which uses a smart repetition to achieve

the maximum diversity gain at the expense of multiplexing gain. We use an idea of

rotation, instead of repetition, of cross-diagonal entries of an uncoded transmission to

achieve spreading of information across space and time to obtain maximum diversity

while preserving multiplexing gain. Rotation angles that are optimal in terms of a

determinant criterion and universal for all rates are identified. We refer to this code

construction as the tilted-QAM code.

In Chapter 5, we experiment with further enhancing system performance using

powerful error correction codes (ECC). The goal is to understand how to build practi-

cal systems with good performance. We study several coding systems. We show that

an system based on OSTBC can achieve near optimal performance in the low SNR

regime. We then describe the Bell labs layered space-time (BLAST) architecture and

show that it has the potential to achieve channel capacity but has practical problems.

We also present and analyze several variations of the BLAST. Finally, we explore

the possibility of combining hard and soft decision error correction coding with the

tilted-QAM code.

In Chapter 6, we explore the case where channel knowledge is available at neither
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the transmitter nor the receiver. We first review some existing theoretical results

on non-coherent multiple antenna communications, and then discuss the problem of

signal design. We present evidence that the channel training approach could lead to

good diversity-multiplexing tradeoff.

In Chapter 7, we summarize the contributions of this thesis and discuss future

research directions.
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Chapter 2

Theoretical Background

In this chapter, we first review the channel capacity formulation and the concept

of outage probability, which sets the ultimate performance limit. In section 2.2,

we illustrate the capacity and robustness gains that can be potentially obtained us-

ing multiple antennas. In section 2.3, we review the diversity-multiplexing tradeoff

framework and provide additional intuition. In section 2.4, we derive error probabil-

ity expressions for evaluating coding schemes and obtain criteria for good codes. In

section 2.5, we use the formulation from section 2.4 to examine the performance of

Gaussian random codes of different lengths. We explain why short Gaussian random

codes can not achieve the optimal diversity-multiplexing tradeoff.

2.1 Channel Capacity and Outage Probability

Given a particular channel realization H, the theoretical limit of the amount of data

we can transmit through the channel reliably, i.e., with arbitrarily low error rate, is

the channel capacity [36],

Cchannel(H, ρ) = log2(det(INr
+ ρHH†)) b/s/Hz, (2.1)

where ρ = SNR/Nt is the average transmit SNR per antenna and det(·) denotes the
determinant function. This data rate is achievable using infinitely long codes with
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unlimited complexity. We note that the input distribution used is CN(0, ρ). Since,

the transmitter has no knowledge of the channel, this distribution is a reasonable

default choice. If the channel were known, it would be possible to choose a better

input distribution.

Another important concept is outage. In our system model, coding is performed

over one channel realization, and since the channel is a random matrix, the realized

channel capacity is a random variable. Since the transmitter has no knowledge of the

channel, it can not adjust the data rate according to the realized channel and must

transmit at a fixed rate R b/s/Hz. Therefore, when the realized channel capacity is

below R, the receiver can not decode even with powerful codes. This is the outage

event, and the outage probability is

Pout(R, ρ) = P [C(H, ρ) < R]. (2.2)

This is the ultimate performance limit when coding is done over only one channel

realization.

Achieving the outage probability requires using infinitely long and complex codes.

In practice, long codes leads to large delay and high complexity requires expensive

hardware. Therefore, they are usually not satisfied in practice, and we must content

with finite delay and moderate complexity coding schemes. The capacity formulas

can be used as performance limits and help us evaluate practical systems.

2.2 Visualizing Rate and Robustness Gains

Next, let us use the capacity and outage probability formulation to gain some insight

into how capacity and robustness gains can be obtained using multiple antennas.

In the single antenna case, which is simply the AWGN channel (y = hx+w), the

well-known channel capacity, originally derived by Shannon, is

Cchannel(H, ρ) = log2
(
ρ|h|2 + 1

)
. (2.3)
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For two-transmit two-receive antenna systems, the channel capacity is

Cchannel(H, ρ) = log2
(
ρ2| det(H)|+ ρ(|h11|2 + |h12|2 + |h21|2 + |h22|2) + 1

)
(2.4)

At high SNR, assuming det(H) 6= 0, the ρ2 term dominates, and the channel

capacity grows like 2 · log2(ρ), compared to the 1 · log2(ρ) in the single antenna case.

This shows the capacity gain due to having multiple antennas.

While the ρ2 term can lead to large channel capacity, the linear term prevents the

capacity from becoming too small. Because it is the sum of the energy of all entries

of H, all four terms has to be small for the total to be small. This makes the channel

more robust toward fading of individual channel coefficients.

Let us visualize the potential rate and robustness gains due to using multiple

antennas by comparing the achievable rates and outage probabilities for systems with

one, two, four, and eight antennas at the transmitter and equal number of antennas

at the receiver.

Figure 2-1 shows a plot of achievable data rate vs. SNR when the target outage

probability is fixed at 1%. Starting from the lowest curve for the single antenna

case, every time the number of antennas is doubled, the achievable data rate is also

approximately doubled. The slopes of the curves approach N bits per 3 dB increase

in SNR, where N is the number of antennas. This demonstrates the capacity gain.

Figure 2-2 shows a plot of the outage probability vs. SNR when the target data

rate is set at 1 bit per dimension, or 2 bits per antenna. Starting from the top curve

for the single antenna case, every time the number of antennas is doubled, the slope

of the curve increases. The limiting slope is 1 for the top curve and 4 for the second

one. In fact, the limiting slope approaches N 2. However, this is difficult to see for

the lowest two curves. As a result of the increased slope, lower outage probability is

achieved at the same SNR, or equivalently, lower SNR is needed to achieve the same

outage probability. This demonstrates the robustness gain.
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2.3 Diversity-Multiplexing Tradeoff

Using multiple antennas can provide us both data rate gain as well as robustness gain

toward channel fading, as we demonstrated in the last section. However, a tradeoff

exists between these two types of gains; getting more of one kind requires sacrifice of

the other. This tradeoff was defined and studied by Zheng and Tse in [41].

In this section, we first introduce the definition of diversity and multiplexing gains,

and then review the main results on the optimal tradeoff achievable. Next, we focus on

the two-transmit two-receive antenna case, examine the tradeoff analytically, as well

as visualize it by plotting families of outage probability curves. Finally, we comment

on local diversity-multiplexing tradeoff.

2.3.1 Definitions

For a given SNR, let R(SNR) be the transmission rate and Pe(SNR) be the error

probability at that rate and SNR. Diversity gain (d) and multiplexing gain (r) are

defined as

d = − lim sup
SNR→∞

logPe(SNR)

log SNR
, (2.5)

and

r = lim
SNR→∞

R(SNR)

log2 SNR
. (2.6)

Intuitively, multiplexing gain is about how fast rate increases with SNR, and

diversity gain describes how fast error probability decays with SNR. If we let rate grow

rapidly with SNR, error probability would not decay very fast. This is a fundamental

tradeoff. This diversity-multiplexing tradeoff can be used to evaluate and compare

coding schemes.

For simplicity, we use some special notations defined in [41]. We use
·
= to denote
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exponential equality, i.e., f(x)
·
= xb denotes

lim sup
x→∞

log f(x)

log x
= b.

With this notation, diversity gain can also be written as

Pe(SNR)
·
= SNR−d. (2.7)

The notations
·
≥ and

·
≤ are defined similarly.

2.3.2 Optimal Tradeoff Results

Before looking at any particular system, let us consider the diversity-multiplexing

tradeoff associated with the outage probability, i.e., replacing the error probability

Pe(SNR) in (2.5) with the outage probability Pout(SNR). When the channel is in

outage, there would be a high error probability no matter what coding scheme is used.

Therefore, the diversity-multiplexing tradeoff associated with the outage probability,

denoted by dout(r), is an upper bound of the optimal tradeoff achievable by any

system. It was shown in [41] that the tradeoff dout(r) is in fact achievable using

sufficiently long Gaussian random codes.

For a system with Nt transmit antennas and Nr receive antennas, Zheng and Tse

evaluated dout(r) in [41] and their main result is stated in the following lemma :

Lemma 2.1 The optimal tradeoff curve dout(r) is given by the piece-wise linear func-

tion connecting the points (k, dout(k)), k = 0, · · · , K where K = min(Nt, Nr), and

dout(k) = (Nt − k)(Nr − k). (2.8)

The function dout(r) is plotted in Figure 2-3 for general values of Nt and Nr.

The tradeoff curve dout(r) can be evaluated from the outage probability Pout(R, SNR),
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which is

Pout(R, SNR)
·
= P

[
log det

(
I + SNRHH†

)
< R

]
. (2.9)

From the statistics of H, whose entries are modeled using Rayleigh fading as inde-

pendent and identically distributed CN(0, 1) random variables, the outage probability

in (2.9) can be evaluated analytically. While the exact expression is difficult to obtain,

the exponential growth rate is solved in [41]. Let λi be the ordered singular values of

H, let SNR−αi = |λi|2, and let (x)+ denote max(0, x). The outage probability can be

rewritten as

Pout(R, SNR)
·
= P

[
K∏

i=1

(1 + SNR|λi|2) < R

]
(2.10)

·
= P

[
K∑

i=1

(1− αi)
+ < r

]
. (2.11)
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By evaluating the probability density of α and taking the limit SNR → ∞, they

obtained the following result :

Lemma 2.2 Let the data rate be R = r log SNR, with 0 ≤ r ≤ K = min(Nt, Nr).

The outage probability

Pout(R, SNR)
·
= SNR−dout(r), (2.12)

where

dout(r) = inf
α∈A′

K∑

i=1

(2i− 1 + |Nt −Nr|) · αi,

and

A
′ =

{
α | α1 ≥ α2 ≥ · · · ≥ αK ≥ 0 and

∑

i

(1− αi)
+ < r

}
.

The resulting dout(r) matches with the result of Lemma 2.1 for all r.

2.3.3 Two-Transmit Two-Receive Antenna Case

In most of this thesis, we focus on the two-transmit two-receive antenna case, i.e.,

Nt = Nr = 2. In this case, the optimal diversity-multiplexing tradeoff curve is a

piece-wise linear function connecting the points (0, 4), (1, 1), and (2, 0), as shown in

Figure 2-4. Note that this curve has two linear segments.

In this section, we show a technique that allows us to quickly obtain the diversity-

multiplexing tradeoff curve from the capacity expression in this 2× 2 case.

The capacity of a 2× 2 multiple antenna system is

Cchannel(H, ρ) = log2(det(INr
+ ρHH†))

= log2
(
ρ2| det(H)|2 + ρ‖H‖2 + 1

)
.
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Performing a QR factorization of H = QR, where R =


r11 r12

0 r22


, the above expres-

sion can be rewritten as

Cchannel(H, ρ) = log2
(
ρ2r211r

2
22 + ρ(r211 + |r12|2 + r222) + 1

)
. (2.13)

The term r211 is the energy of the first column of H, so it is the sum of the squares

of four independent Gaussian random variables. Thus, it is a chi-squared random

variable of order 4. Similarly, |r12|2 and r222 are the energy of the second column of

H that are along and perpendicular to the direction of the first column. Therefore,

they are chi-squared random variables of order 2. Note that for a chi-squared random

variable χ of order k, P [χ < α]
·
= αk/2, for α < 1.

Using 2R
·
= ρr, the outage probability can be written as

Pout
·
= P [ρ2r211r

2
22 + ρ(r211 + |r12|2 + r222) + 1 < ρr]. (2.14)

For 1 ≤ r ≤ 2, the first order and the constant terms are insignificant compared
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to ρr. Therefore,

Pout
·
= P [ρ2r211r

2
22 < ρr]

·
= P [r211 < 1 and r222 < ρr−2]

·
= 1 · ρr−2

⇒ d(r) = 2− r for 1 ≤ r ≤ 2.

The second equality uses the fact that r222 is more likely to be small than r211 is,

because r222 is a lower order chi-squared random variable. Thus, most of the time,

r211r
2
22 is small because r222 is small. Therefore, the event (r211 < 1) ∪ (r222 < ρr−2) is

the dominant event of ρ2r211r
2
22 < ρr, resulting in the second equality.

For 0 ≤ r ≤ 1, only the constant term in (2.14) is insignificant compared to ρr.

Therefore,

Pout
·
= P [ρ2r211r

2
22 + ρ1(r211 + |r12|2 + r222) < ρr]

·
= P [r211 < ρr−1 and |r12|2 < ρr−1 and r222 < ρ−1]

·
= ρ2(r−1)ρr−1ρ−1

= ρ3r−4

⇒ d(r) = 4− 3r for 0 ≤ r ≤ 1.

To obtain the second equality in this case, we use the fact that all r211, |r12|2, and r222
have to be less than ρr−1 for the first order term to be sufficiently small. In addition,

the second order term also needs to be small. To make it so, we need to have r222 to

be even smaller, less than ρ−1. Therefore, r211 < ρr−1, |r12|2 < ρr−1, and r222 < ρ−1

is the dominant event of ρ2r211r
2
22 + ρ1(r211 + |r12|2 + r222) < ρr, leading to the second

equality.

By looking at the outage condition (2.14) in two different regimes, the diversity-

multiplexing tradeoff is obtained directly from the capacity expression. However,

it becomes increasingly more difficult to apply this technique in higher dimensional

cases due to the greater number of variables.
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2.3.4 Visualizing The Tradeoff

We first visualize the relationship between SNR, rate, and outage probability by

plotting Pout as functions of SNR for various rates R in Figure 2-5. Each curve

represents how outage probability decays with SNR for a fixed rate R. As R increases,

the curves move out.

Next, to see the diversity-multiplexing tradeoff for each value of r, we evaluate

Pout as a function of SNR and R = r log2(SNR) for a sequence of increasing SNR

values, and plot a Pout(r log2(SNR), SNR) curve for that r. In Figure 2-6, several

such curves are plotted for various values of r; each is labeled with the corresponding

r and dout(r) values. Figure 2-5 is overlaid as gray lines. For comparison purpose,

dashed lines with slopes dout(r) are drawn. According to Lemma 2.1, the solid and

dashed curves should have matching slopes at high SNR. We see that they match

quite well. From Figure 2-6, we see that when R increases faster with SNR, the

corresponding outage probability decays slower. This is the fundamental diversity-

multiplexing tradeoff.

To obtain further intuition, we perform the following approximation. Instead of

Pout(R, SNR)
·
= SNR−dout(r), we replace the asymptotic exponential equality

·
= with

an exact =. This approximation turns the smooth Pout(R, SNR) curves into piece-

wise linear lines, which would help shed more light on limiting behaviors. With the

approximation, Figure 2-5 and 2-6 are re-plotted as Figure 2-7 and 2-8.

In Figure 2-8, we see that the Pout(r log2(SNR), SNR) curves are now straight lines

with slope dout(r) exactly, which is a direct result of the approximation. In Figure 2-7,

we now see a feature that is not prominent in Figure 2-5: the SNR-Pout plane has two

distinct regions, each having a set of parallel lines. The upper-right half has denser

lines, while the lower-left half has more sparse and steeper lines. These two regions

correspond to the two linear piece of the diversity-multiplexing tradeoff curve, as we

elaborate in the next section. The boundary is the line Pout = SNR−1, which is the

line labeled r = 1, d = 1 in Figure 2-8, and corresponds to the (1, 1) point (the knee)

on the tradeoff.
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Figure 2-5: Family of outage probability curves as functions of SNR for various target
rates R in the Nt = Nr = 2 case.
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Figure 2-6: As rate grows with SNR, i.e., R = r log2(SNR), outage probability
Pout(R, SNR) decays with SNR with slope d(r).
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Figure 2-7: Linearized approximation of Figure 2-5, which clearly shows two regions
of the Pout-SNR space with different slopes of curves and horizontal spacings between
curves.
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Figure 2-8: Linearized approximation of Figure 2-6.
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2.3.5 Local Diversity-Multiplexing Tradeoff

The slopes and gaps between the curves in Figure 2-7 lead to a concept called local

diversity-multiplexing tradeoff, which is different from the global scale tradeoff we

have defined. Let us suppose that we are operating at a certain (R, SNR, Pout) point.

If we were given an increment of SNR (in dB), the local tradeoff characterizes the

relationship between the incremental increase in rate and the reduction of Pout.

Let us now visualize this local tradeoff by looking at Figure 2-7. When the oper-

ating point has Pout > SNR−1, we are in the upper-right region, which has a set of

parallel lines with slopes 2 and horizontal spacings of 1.5 dB between lines with rate

differential 1 b/s/Hz. This means that if we spend all the extra SNR on increasing

rate and keep Pout constant, we can get 2 extra b/s/Hz for every additional 3 dB in

SNR. If we spend all the extra SNR on the reduction of Pout and keep rate constant,

we can get 2 orders of magnitude reduction for every additional 10 dB in SNR. We

can also get any linear combination of the two extremes because the lines are paral-

lel. Therefore, the local tradeoff is a straight line connecting (r, d) = (0, 2) and (2, 0),

which is the lower piece of the global tradeoff dout(r) in Figure 2-4 extended to r = 0.

Note that the maximum diversity gain of 4 is not achieved.

Similarly, when we operate in the lower-left region, Pout < SNR−1, the local

tradeoff is a straight line connecting (0, 4) and (4/3, 0). Note that the maximum

multiplexing gain of 2 is not achieved.

One key feature in Figure 2-7 is that the “bending point” moves down. As rate

increases, the outage probability curves do not simply shift right-ward, which is the

case for the scalar channel. The larger slopes are achieved at lower Pout levels.

For system designers, one lesson learned from this local diversity-multiplexing

tradeoff study is that depending on the operating point of the system, different seg-

ments of the diversity-multiplexing tradeoff curve are important. For two-transmit

two-receive antenna systems and target error rate around 10−3, when the operating

point is below 30 dB, the 0 ≤ r ≤ 1 segment of the tradeoff is important; above 30

dB, the 1 ≤ r ≤ 2 segment is.
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2.4 Error Probability and Design Criteria

In this section, we re-derive some pair-wise error probability (PEP) expressions for

the multiple antenna channels, and from which, some existing design criteria for good

codes are extracted. We also relate the PEP expressions directly to the diversity-

multiplexing tradeoff.

The pair-wise error probability can provide a performance lower bound on the

overall error probability of a system. When a codeword X1 is transmitted, the event

of making an error is the union of the events of confusing X1 with any of the other

codewords, X2,X3, · · · . Therefore, by considering the pair with the worst error prob-

ability, we obtain a lower bound. 1

We now evaluate the pair-wise error probability of confusing two codewords X1

and X2 by first computing the PEP conditioned on a particular channel realization,

and then average over all channels according to the Rayleigh distribution.

Let us suppose that there are only two codewords X1 and X2, X1 is transmitted,

and the realized channel is H. In the case of additive white Gaussian noise and

maximum likelihood or minimum distance decoding, error happens if the received

signal Y = HX +W is closer to HX2 than to HX1. This happens if the noise

magnitude is greater than half of the separation between HX1 and HX2. Using the

well-known approximation of the Gaussian tail function, Q(x) ≤ exp(−x2/2), the

conditional PEP can be approximated by

P [X1 → X2|H] ≤ exp

{
(‖HX1 −HX2‖/2)2

2σ2w

}
= exp

{−‖H∆‖2
8σ2w

}
, (2.15)

where, ∆ = X1 −X2, σ
2
w is the noise variance per dimension, and ‖ · ‖2 for a matrix

is the total energy of all its entries, also know as the Frobenius norm.

Next, we average (2.15) over all channel realizations. Recall that H has IID

CN(0, 1) entries according to the Rayleigh fading assumption. This averaging can

be done by moving to the singular value basis of the Nt × T matrix ∆. We write

1This lower bound is usually good in the high SNR regime when codewords are sufficiently far
apart compared to noise levels, so that the nearest neighbor error dominants.
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∆ = UΛV†, where U and V are unitary matrices, and Λ is a diagonal matrix with

the ordered singular values λ1 ≥ λ2 ≥ · · · ≥ λK′ ≥ 0 on its diagonal, where

K ′ def= min(Nt, T ). Now we have,

‖H∆‖2 = ‖HUΛV†‖2 = ‖(HU)Λ‖2. (2.16)

Since U is unitary, the entries of Φ
def
= HU are also IID CN(0, 1),

‖H∆‖2 = ‖ΦΛ‖2 =
K′∑

i=1

λ2i ·
Nr∑

j=1

|φji|2. (2.17)

Therefore,

P [X1→X2]≤EH

[
exp

{−‖H∆‖2
8σ2w

}]
=Eφ

[
exp

{
−∑K′

i=1 λ
2
i ·
∑Nr

j=1 |φji|2
8σ2w

}]
. (2.18)

Since φij’s are independent, we can break up the expectation of products into products

of expectations,

P [X1 → X2] ≤
(

K′∏

i=1

Eφ

[
exp

{−λ2i |φ1i|2
8σ2w

}])Nr

. (2.19)

Each |φij|2 is a chi-squared random variable with unit variance, averaging over which,

we have

Eφ

[
exp

{−λ2i |φ1i|2
8σ2w

}]
=

1

1 +
λ2i
8σ2w

. (2.20)

At the end, we obtain the average PEP

P [X1 → X2] ≤




K′∏

i=1

1

1 +
λ2i
8σ2w




Nr

=

(
K′∏

i=1

(
1 +

λ2i
8σ2w

))−Nr

. (2.21)

Let us scale the codewords so that the energy per symbol is unity, then SNR
Nt

= 1
σ2w

,
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and we have

P [X1 → X2] ≤
(

K′∏

i=1

(
1 +

1

8Nt

λ2iSNR

))−Nr

·
=

(
K′∏

i=1

(
1 + λ2iSNR

)
)−Nr

. (2.22)

We can ignore the constant 1
8Nt

and still keep the exponential growth rate.

From the above average PEP expression, we now derive design criteria that would

lead to good codes.

In order to have a good overall performance, we must make sure that there is

no particularly bad pair of codewords. Otherwise, a single bad pair could dominate

the overall error probability and prevent us from getting good overall performance.

Therefore, we want to minimize the quantity

max
X2 6=X1

P [X1 → X2]
·
=

(
min
∆6=0

K′∏

i=1

(
1 + λ2iSNR

)
)−Nr

. (2.23)

We see that for each λi = 0, 1+λ2iSNR = 1 for all SNR, and contributes noting to

the total product. When λi > 0, 1 + λ2iSNR behaves like λ2iSNR at sufficiently high

SNR and P [X1 → X2] decays with SNR. Therefore, the number of effective terms is

the number of λi’s that are non-zero, i.e., the rank of ∆. At sufficiently high SNR,

max
X2 6=X1

P [X1 → X2]
·
=

(
min
∆6=0

K′∏

i=1,λi 6=0
λ2iSNR

)−Nr

(2.24)

=

(
K′∏

i=1,λi 6=0
λ2i

)−Nr

SNR−Nr·min∆ 6=0 rank (∆). (2.25)

From the above expression, we obtain three design criteria.

First, the number of terms in the product is K ′ = min(Nt, T ). This suggests that,

to have as many effective terms as possible, we want the block code length to be at

least T ≥ Nt.

Secondly, the exponent of SNR in (2.25) leads to the rank criterion proved by

Tarokh in [35].

43



Lemma 2.3 The Rank Criterion : Let X1 and X2 be two distinct codewords, and let

∆ = X1 −X2 be their difference matrix. If ∆ has minimum rank κ over the set of

any two distinct codewords, then a diversity of Nrκ is achieved.

Therefore, to design a good codebook that achieves high diversity, we should make

sure all difference matrices are full rank. When the first two criteria are met, the

maximum diversity of NtNr can be achieved.

The coefficient of SNR in (2.25) gives us the third criterion. When ∆ is full

rank, (
∏
λi) = | det(∆)|. Therefore, we want to maximize the worst case (smallest)

determinant of the difference matrices between all possible pairs of codewords.

The three criteria are summarized here,

1. T ≥ Nt,

2. all ∆ should be full rank,

3. maximize the worst case determinant.

Next, we relate the pair-wise error probability expression to diversity-multiplexing

tradeoff by writing it as an exponential of SNR.

Let us define SNR−αi = λ2i , and use (x)+ to denote max(0, x), as Zheng and Tse

did in [41]. We have :

1 + λ2iSNR
·
= SNR(1−αi)

+

, (2.26)

P [X1 → X2]
·
= SNR−Nr

∑Nt
i=1(1−αi)

+

, (2.27)

max
X2 6=X1

P [X1 → X2]
·
= SNR−Nr min∆6=0

∑Nt
i=1(1−αi)

+

. (2.28)

Since the worst-case PEP is a lower bound of the overall error probability, the

diversity achieved can be upper bounded by d ≤ Nr min∆6=0
∑Nt

i=1(1− αi)
+. Later in

this thesis, we will use this bound as a means of evaluating diversity-multiplexing

tradeoffs achieved by systems. The quantity
∑Nt

i=1(1−αi)+ is implicitly a function of

the multiplexing gain r. As the rate R increases with SNR, the codebook and the ∆

matrices change, which in turn affects the α’s.
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The quantity
∑Nt

i=1(1 − αi)
+ is related to det(∆), in the sense that maximizing

det(∆) would lead to large
∏
(1 + λ2iSNR), and then to large

∑Nt

i=1(1− αi)
+ values.

We note that while (2.28) upper bounds the entire diversity-multiplexing tradeoff

curve, (2.25) is related to the diversity gain achieved at r = 0. When the rate (and

the code) is fixed, the coefficient
(∏

λi 6=0 λ
2
i

)−Nr

in (2.25) is also fixed, so it grows

like SNR0. In this case, the exponent of SNR (negated), Nr min∆6=0 rank (∆), is the

diversity gain achieved. 2

In this section, pair-wise error probability expressions for the multiple antenna

channels are derived and related to diversity-multiplexing tradeoff. We can use these

formulations to evaluate the performance of a given code. We first identify one

bad pair of codewords, use its PEP to lower bound the overall error probability

and use the associated
∑Nt

i=1(1 − αi)
+ to upper bound the diversity-multiplexing

tradeoff achievable by the system. In the next section, we will apply this technique

to evaluate the performance of Gaussian random codes for two-transmit two-receive

antenna systems.

2.5 Performance of Gaussian Random Codes

Gaussian random codes have often been used by information theorists to study the

performance limits of communication systems. In this section, we examine Gaussian

random codes of various lengths, and see what diversity-multiplexing tradeoffs can

be achieved. To explain why the optimal tradeoff can not be achieved at times, we

also look at the tradeoff upper bounds associate with the worst codeword pairs.

It is known that infinitely long Gaussian random codes can achieve the optimal

diversity-multiplexing tradeoff. The question of interest here is what tradeoff can

be achieved by finite length Gaussian random codes. This would provide valuable

benchmarks for more practical finite length codes.

2This is the diversity gain most people referred to before the diversity-multiplexing tradeoff
framework was established.
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2.5.1 Tradeoff Achieved

We now review the diversity-multiplexing tradeoffs achieved by finite length Gaussian

random codes evaluated by Zheng and Tse in [41]. They showed that for a system

with Nt transmit and Nr receive antennas, it is sufficient to have Gaussian random

codes with length T ≥ Nt + Nr − 1 to achieve the optimal diversity-multiplexing

tradeoff in Figure 2-4. Note that it is not necessary to have infinitely long codes if the

goal is to achieve only the optimal diversity-multiplexing tradeoff and not the outage

probabilities.

However, for shorter Gaussian random codes with T < Nt +Nr − 1, they showed

that the lower bounds on the tradeoffs achieved do not match the optimal tradeoff.

They suggested that this could be due to the probability that some codewords getting

too close to each other becoming significant for shorter codes.

In the case of two-transmit two-receive antenna systems, Figure 2-9 shows the

diversity-multiplexing tradeoff achieved using various Gaussian random codes. When

T ≥ Nt + Nr = 1 = 3, optimal tradeoff can be achieved, indicated by the thin solid

line.

When T = 1, we see that the optimal tradeoff is met for 1 ≤ r ≤ 2, but not

for 0 ≤ r < 1. Zheng and Tse showed in [41] that this is actually the best tradeoff

achievable by any length one code. We can also justify that the optimal tradeoff can

not be achieved at r = 0 using the rank criterion stated in Lemma 2.3. It tells us that

the maximum diversity achievable by any length one code is Nr = 2. It is necessary

to have T ≥ Nt = 2 to achieve the diversity of four.

When T = 2, a technique called expurgation is used to take away codewords that

are unnecessarily close. The expurgated Gaussian random codes achieve the tradeoff

curve indicated by the dashed line. It achieves the end points, but is sub-optimal for

0 < r < 1. An open question left at the end of their study is whether it is at all

possible to achieve the entire optimal tradeoff using length-two codes. We will answer

this question later in Chapter 4 by constructing a deterministic length-two code that

achieves the optimal diversity-multiplexing tradeoff.
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Figure 2-9: Diversity-multiplexing tradeoff achieved using Gaussian random codes
of various lengths. Optimal tradeoff is achieved with T ≥ 3. T = 2 codes (with
expurgation) can achieve the end points, but is sub-optimal for 0 < r < 1. T = 1
codes only achieve a maximum diversity of d = 2 when r = 0, which is the most any
length one code can do.

2.5.2 Worst-Pair Bound

In this section, we illustrate why short Gaussian random codes can not be optimal

while the longer ones can. We first identify particularly bad codeword pairs that

Gaussian random codebooks are likely to have by using some of the ideas Zheng and

Tse developed. We then evaluate the error probabilities associated with these pairs

to demonstrate why short Gaussian random codes can not possibly be optimal, and

how longer codes avoid this problem.

Gaussian random code matrices have IID CN(0, 1) entries. Without loss of gener-

ality, let us suppose the first codeword drawn isX1 = 0. If we were to randomly select

another codeword X2, their difference is ∆ = X2, with IID CN(0, 1) entries 3. Let us

look at the statistics of
∑Nt

i=1(1 − αi)
+ associated with ∆, a quantity we introduced

in section 2.4. This statistic can help us identify how bad the worst codeword pair is

3If X1 is also random, then ∆ would have IID CN(0, 2) entries. However, the constant factor is
not important for diversity-multiplexing tradeoff analysis.
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likely to be.

Recall that in the Rayleigh fading model, the channel matrix H also has IID

CN(0, 1) entries, and when we reviewed the outage probability result in Section 2.3,

we also looked at the quantity
∑Nt

i=1(1−αi)+. Although the matrix of interest was H

instead of ∆, the statistics is the same. The only difference is that H has size Nr×Nt

and ∆ has size Nt × T .

The outage probability result states that

Pout(R, SNR)
·
= P



min(Nr,Nt)∑

i=1

(1− αi)
+ < r


 ·

= SNR−dout(r), (2.29)

where the optimal tradeoff dout(r) is defined in Lemma 2.2 and plotted in Figure 2-4.

To obtain the statistics of ∆, we replace r with d−1out(rT ) and obtain

P



min(Nt,T )∑

i=1

(1− αi)
+ < d−1out(rT )


 ·

= SNR−rT , (2.30)

i.e., if we were to choose a codeword X2 randomly, the probability of the resulting

quantity
∑

(1 − αi)
+ being less than d−1out(rT ) would be about SNR−rT . There are

SNRrT codewords in a codebook. Therefore, the probability that one of them having
∑

(1− αi)
+ < d−1out(rT ) is order 1. This means that for a Gaussian random codebook,

there is a very high probability that there are codeword pairs with

min(Nt,T )∑

i=1

(1− αi)
+ < d−1out(rT ). (2.31)

These would be the particularly bad codeword pairs that could dominate the overall

error probability. Even if we were willing to re-select codewords when the realized

codewords are particularly bad, i.e., expurgate bad codewords, we would still only be

able to guarantee the worst
∑

(1− αi)
+ to be about the same as d−1out(rT ). Anything

better would be impossible to get selected randomly.

Next, we evaluate the error probability associated with this bad codeword pair
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with
∑Nt

i=1(1− αi)
+ ≈ d−1out(rT ) . From (2.27), we have

P [X1 → X2]
·
= SNR−Nr

∑Nt
i=1(1−αi)

+ ·
= SNR−Nrd

−1
out(rT ). (2.32)

The overall error probability is lower bounded by this worst-pair error probability, so

the diversity multiplexing tradeoff achieved is at most

d(r) < Nrd
−1
out(rT ). (2.33)

For the particular case of two-transmit two-receive antenna systems with code

length T, this upper bound becomes d(r) < 2d−1out(rT ), where dout(r) is a piece-wise

linear curve connecting the points (0, 2T ), (1, T − 1), and (2, 0), computed from

Lemma 2.1 with the parameters Nr = 2 and Nt = T . With simple manipula-

tion, we determine that the upper bound d(r) < 2d−1out(rT ) is a piece-wise linear

curve connecting the points (0, 4), (T−1
T
, 2), and (2, 0). These curves evaluated for

T = 1, 2, 3, 4 and ∞ are plotted as thin solid lines in Figure 2-10, together with the

optimal tradeoff curve shown as a thicker dashed line.
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Figure 2-10: The upper bound on the diversity-multiplexing tradeoff achievable using
Gaussian random codes based on the worst-pair error probability, d(r) < 2d−1out(rT ).
Short codes with T ≤ 2 are sub-optimal due to the worst-pair being particularly bad.
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We can see that for T = 1 and T = 2, the upper bound curves are below the

optimal tradeoff curve. This is because by choosing codebooks randomly, we are

unable to avoid getting particularly bad codeword pairs, which in turn prevents us

from reaching the optimal tradeoff. As T increases, it becomes less likely for us to

get bad codeword pairs and the upper bound rises.

Let us compare Figure 2-10 and Figure 2-9. When the corresponding curves agree,

it means that the performance of the Gaussian random code is fully justifiable using

the single worst codeword pairs. An example is the 0 ≤ r ≤ 0.5 segment of T = 2.

When they do not agree, it means there are multiple bad codeword pairs. An example

is the entire T =∞ curve.

In summary, we saw in this section that for a two-transmit two-receive antenna

system, Gaussian random codes with T ≥ 3 can reach optimal diversity-multiplexing

tradeoff and shorter codes with T ≤ 2 are sub-optimal due to particularly bad code-

word pairs. While we can not do better in the T = 1 case, there is still room for

improvement in the T = 2 case.

In the next three chapters, we will study coding and decoding strategies for the

two-transmit two-receive antenna channel, at three different code lengths, T = 1,

T = 2, and large T . We will design and analyze practical deterministic codes instead

of using random ones.
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Chapter 3

Uncoded Systems and Efficient

Detection

3.1 Introduction

In this chapter, we study the case of communication using multiple antennas with no

coding involved. This is the simplest system and incurs no delay. We will study more

complex systems with various degrees of coding and delay in the later chapters.

More specifically, we restrict the transmitted signal to be a vector x with entries

drawn independently from some QAM-like constellation. We look at the problem of

detecting x from the received signal y = Hx+w, where the Nr ×Nt channel matrix

H is known at the receiver but not at the transmitter, and w is the additive white

Gaussian noise vector.

The key problem here is the interference between the entries of x. When x is mul-

tiplied by H, its entries are linearly combined. This interference makes the detection

problem at the receiver difficult.

For a system designer, the goal is to handle the interference with good complexity-

performance tradeoff. At one end of the spectrum, maximum likelihood detection

(MLD) is optimal, but its complexity generally makes it impractical. A variety of

other detectors, both linear and nonlinear, require substantially less complexity, but

sacrifice significant amount of performance.
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In this chapter, we present lattice reduction (LR) techniques and use them in con-

junction with traditional low-complexity linear and nonlinear detectors to substan-

tially close their gaps to the fundamental performance limits with little additional

system complexity.

For most of this chapter, we focus on the two-transmit two-receive antenna case.

The technique introduced can be extended to higher dimensions. However, the com-

plexity increases. We comment on this at the end of the chapter.

For the LR based detection techniques proposed, we evaluate the complexity and

performance for both Gaussian channel (fixed H) and Rayleigh fading channel (ran-

dom H) cases. We show that, relative to the maximum likelihood bound, LR tech-

niques get us to within 3 dB for any Gaussian channel, and allow us to achieve the

same diversity on the Rayleigh fading channel when sufficiently large constellations

are used. We also show that, in the fading case, systems with uncoded transmis-

sion together with LR based detection can effectively achieve the optimal diversity-

multiplexing tradeoff achievable by any length-one code.

This chapter is outlined as follows. We first review some traditional detectors and

discuss their respective problems. We then look at the various detectors graphically,

which leads to the idea of operating in a reduced lattice basis. We identify the

optimal basis and present an iterative algorithm for obtaining it. We then evaluate

the complexity and performance for Gaussian and Rayleigh fading channel cases.

Finally, we discuss the dual problem of applying lattice reduction to pre-coding at

the transmitter, as well as how the LR idea can be extended to higher dimensions.

3.2 Traditional Detectors

In this section, we briefly review three traditional detectors and compare them graph-

ically, which will lead to the lattice reduction idea.

An important performance bound corresponds to the maximum likelihood detec-

tion, which minimizes the probability of block error. In the case where the noise is
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AWGN, the minimum distance rule is used,

x̂MLD = argmin
x

‖y −Hx‖2. (3.1)

In the absence of special structure, MLD requires computing distances to every code-

word to find the closest one. Therefore, it has exponential complexity in transmission

rate.

By contrast, linear detectors have much lower complexity. They take the form of

x̂ = f(Ay), where A is some matrix and f(·) is a slicer, which quantizes each entry

of Ay to the nearest constellation symbol to obtain x̂. For familiar constellations

such as 4-QAM or 16-QAM, this quantization can be implemented with very little

complexity.

The choice A = H−1 corresponds to what is sometimes referred to as inverse

channel detection (ICD) [29], or in the case of the multiuser detection problem, the

decorrelator.1 As is well-known, the performance of ICD can suffer dramatically due

to noise enhancement if H is near singular. Indeed, since H−1y = x + H−1w, the

effective noise at the slicer input isH−1w. Other linear detectors include the minimum

mean square error (MMSE) detector, which offers slightly better performance by

mitigating noise enhancement, but is still far from the performance of MLD.

A class of nonlinear detectors that offer better performance with only a modest

increase in complexity is that based on successive cancellation. An example is the

Bell Labs Layered Space-Time (BLAST) receiver [9]. The basic steps of the simplest

version of BLAST detection are nulling and cancellation.

Nulling : First, the channel matrix is factored as H = QR, where Q is uni-

tary and R is upper triangular. Next, the received signal is pre-processed to obtain

y′ = Q†y = Rx+w′, where w′ = Q†w, with † denoting the conjugate transpose

1H−1 is replaced by the pseudo-inverse of H if it is not square.
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operation, so that




y′1

y′2
...

y′Nt



=




r11 · · · · · · r1Nt

0 r22 · · · r2Nt

...
. . . . . .

...

0 · · · 0 rNtNt







x1

x2
...

xNt



+




w′1

w′2
...

w′Nt



. (3.2)

Cancellation : Using the pre-processed data (3.2), the entries of x are detected one

by one in decreasing order. Specifically, after detecting xk, · · · , xNt
, we can subtract

their interference out of y′k−1 to detect xk−1.

If each x̂k were not quantized to the nearest constellation symbol as we proceeded,

this form of detection would specialize to ICD. Thus, this quantization serves an

important noise-cancellation role.

A major problem with BLAST detection is error propagation. The entry detected

first usually has the smallest signal to noise ratio and the most error. Unfortunately,

detecting later entries correctly vitally depends on having correctly decoded previous

entries. For this reason, in an uncoded system, where error correction is not used,

the error rate for BLAST detection is typically dominated by that of the first entry,

and therefore, far from optimal.

To develop a framework within which to introduce lattice reduction, we consider

MLD, ICD, and BLAST detection in the 2 × 2 (real) example shown in Figure 3-1.

The transmitted symbols x1 and x2 are each integers within a large range, and the

channel matrix is, for purpose of illustration, H =


2 3

0 1


.

The received constellation Hx is shown in (a). It can be viewed as a lattice with

basis vectors being the two columns of H, which are drawn to show the distortion

of the lattice. The decision boundaries for ICD, BLAST detection, and MLD are

shown in (b), (c), and (d), respectively. For ICD, the decision regions are undesirably

elongated and narrow parallelograms; points far away are undesirably included and

the minimum amount of noise needed for an error to occur, which is the size of the

inscribed circle drawn, is small. This is due to the two basis vectors being highly
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Figure 3-1: Comparison of decision boundaries for various detection methods.

correlated. For BLAST, the decision regions are rectangular, because one entry of x

is detected at a time. While better than ICD, it is still inferior to the optimal decision

boundary drawn in (d), whose optimality is apparent by inspection.

In this particular example, if we were to consider the lattice basis vectors to be[
1 1

]T
and

[
1 −1

]T
instead of

[
2 0

]T
and

[
3 1

]T
, where T denotes the transpose

operator, then the decision boundaries for ICD and BLAST detection would coincide

with those of MLD, and therefore be optimal.

While a basis change cannot always lead to optimum performance, it can in general

improve performance. In particular, changing the lattice basis to be more orthogonal

and shorter, the sense of which we will make precise later, we can generally obtain

better decision boundaries. The more correlated the columns of H, the more signifi-

cant the improvements. Note that changing lattice basis does not change the lattice,
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so the underlying detection problem remains the same. The problem of finding the

optimal lattice basis is called the lattice reduction (LR) problem.

Our goal is to use lattice reduction to help us find the lattice point nearest to the

received signal point. This problem is more generally known as the lattice decoding

problem. It has been studied for the case of AWGN channel. In that case, there is no

channel distortion. The lattice is freely designed instead of imposed by the channel,

so very efficient algorithms can be designed for decoding a highly structured lattice,

for example, the Leech lattice [6]. In our case, we must consider decoding for general

lattices, and complexity is of great concern.

3.3 Lattice Reduction

A lattice in n complex dimensions can be described by

L = {s | s = Bλ} , (3.3)

where B =
[
b1 b2 · · · bn

]
is a matrix whose columns are basis vectors for the

lattice and λ =
[
λ1 λ2 · · · λn

]T
is a vector of complex integer weights, i.e.,

λi ∈ Z + Zj with Z denoting the set of integers.

For any lattice L there are many possible bases. Indeed, if B is a basis, so is

B′ = BP for any matrixP such that bothP andP−1 have integer entries. Specifically,

a point s represented by x in the basis B is represented by z = P−1x in the basis B′,

i.e., s = Bx = (BP)(P−1x) = B′z.

The basic idea behind using lattice reduction in conjunction with traditional low-

complexity detectors is to operate in a chosen lattice basis that is optimized for those

detectors, as shown in Figure 3-2.

In the traditional system, the detector compensates for the original channel H to

produce x̂. In the new system, we perform a basis change via a matrix P, specifically

y = Hx+w = (HP)(P−1x) +w = H′z+w. (3.4)
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Figure 3-2: Using lattice reduction in conjunction with traditional detectors.

With this basis change, the traditional detector is first used to compensate for the

new channel H′ = HP to produce ẑ, then produce x̂ via x̂ = Pẑ. For example, if

ICD is employed, then (H′)−1y is quantized to produce ẑ, from which we obtain x̂

via x̂ = Pẑ.

3.3.1 Choice of optimal basis

Let us now discuss what new basis is optimal to operate in. First, we note that ICD

and BLAST detection are more effective when the channel matrix is further from

being singular. Geometrically, this corresponds to wanting the columns of the new

H′, which are the new basis vectors of the received constellation lattice, to be less

correlated and shorter. Thus, the problem of improving the condition of H′ is one of

reducing the lattice basis corresponding to H.

In the 2×2 case,H = [b1 b2]. Let us use “˜” to denote the component of one basis

vector that is orthogonal to the other one. In particular, b̃1 denotes the component

of b1 that is orthogonal to b2, and b̃2 is similarly defined. For BLAST detection,

the effective SNR at the point of detecting x1 and x2 are r11 = ‖b1‖ and r22 = ‖b̃2‖,
respectively. Therefore, the best basis is the one with the largest min(‖b1‖, ‖b̃2‖). For
ICD, the corresponding measure is min(‖b̃1‖, ‖b̃2‖), which evaluates to ‖b̃1‖ when
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‖b1‖ ≤ ‖b2‖. With these criteria, we show that the optimal basis for both detection

methods is (u,v), where u is the shortest (non-zero) vector in the lattice and v is the

shortest vector that is not a multiple of u. This is done in the next two lemmas, for

BLAST detection and ICD, respectively.

Lemma 3.1 (Optimality for BLAST) Given a two dimensional lattice with basis

(u,v). If u is the shortest (non-zero) vector in the lattice and v is the shortest vector

that is not a multiple of u, then for any other basis of the lattice (b1,b2),

min(‖u‖, ‖ṽ‖) ≥ min(‖b1‖, ‖b̃2‖). (3.5)

Proof:

This proof can be done in two parts:

1) ‖u‖ ≥ min(‖b1‖, ‖b̃2‖) and 2) ‖ṽ‖ ≥ min(‖b1‖, ‖b̃2‖).

1) Since (b1,b2) is a lattice basis, u can be written as u = c1b1 + c2b2, where c1 and
c2 are not both zero and c1, c2 ∈ Z+ Zj.
If c2 6= 0, then |c2| ≥ 1. The component of u orthogonal to b1 is c2b̃2. Therefore,

‖u‖ ≥ ‖c2b̃2‖ ≥ ‖b̃2‖ ≥ min(‖b1‖, ‖b̃2‖).

If c2 = 0, then u = c1b1, where c1 6= 0 and |c1| ≥ 1. Therefore,

‖u‖ = |c1| · ‖b1‖ ≥ 1 · ‖b1‖
u shortest⇒ ‖u‖ ≤ ‖b1‖

}
=⇒ ‖u‖ = ‖b1‖ ≥ min(‖b1‖, ‖b̃2‖).

2) Since (u,v) and (b1,b2) are both bases of the same lattice, ‖u‖ · ‖ṽ‖ = ‖b1‖ · ‖b̃2‖,
both being volume of a unit cell of the lattice. Therefore,

u shortest⇒ ‖u‖ ≤ ‖b1‖ =⇒ ‖ṽ‖ ≥ ‖b̃2‖ ≥ min(‖b1‖, ‖b̃2‖).

Lemma 3.2 (Optimality for ICD) Given a two dimensional lattice with basis (u,v).

If u is the shortest (non-zero) vector in the lattice and v is the shortest vector that is

not a multiple of u, then for any other basis of the lattice (b1,b2) with ‖b1‖ ≤ ‖b2‖,

‖ũ‖ ≥ ‖b̃1‖. (3.6)
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Proof:

This proof is done by contradiction. Suppose ‖ũ‖ < ‖b̃1‖. Since (u,v) and (b1,b2) are
both bases of the same lattice, ‖ũ‖ · ‖v‖ = ‖b̃1‖ · ‖b2‖, again, both being volume of a unit
cell of the lattice.

‖ũ‖ < ‖b̃1‖ =⇒ ‖v‖ > ‖b2‖ ≥ ‖b1‖
=⇒ Both b1 and b2 are multiples of u.

=⇒ (b1,b2) can not be a basis.

=⇒ contradiction

This utilizes the condition that v is the shortest vector that is not a multiple of u. Therefore,
b1 and b2 can not both be shorter than v and form a basis.

3.3.2 Reduction Algorithm

Given an original set of basis vectors (b1,b2) for a lattice with ‖b1‖ ≤ ‖b2‖, we

develop an iterative algorithm to progressively reduce their correlation and converge

to the desired basis vectors (u,v).

One intuitive way to reduce the correlation between two lattice basis vectors is to

subtract integer copies of the shorter vector out of the longer one. Let b′2 = (b2−nb1)
be the replacement for b2. The parameter n should be chosen so as to minimize the

correlation between b1 and b′2, i.e.,

n∗ = argmin
n∈Z+Zj

|〈b1,b2 − nb1〉| = argmin
n∈Z+Zj

|〈b1,b2〉 − n‖b1‖2| =
⌊〈b1,b2〉
‖b1‖2

⌉
, (3.7)

where the function b·e rounds its argument to the nearest integer. For complex

arguments, real and imaginary parts are rounded separately. And to avoid ambiguity,

half integers are rounded to even integers. Note that this choice of n given by (3.7)
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also minimizes the norm of b′2.

argmin
n∈Z+Zj

‖b2 − nb1‖2

= argmin
n∈Z+Zj

|n|2‖b1‖2 − 2Re{n〈b2,b1〉}+ ‖b2‖2

= argmin
n=nr+nij

(n2r + n2i )‖b1‖2 − 2nr Re{〈b1,b2〉} − 2ni Im{〈b1,b2〉}+ ‖b2‖2

=

⌊〈b1,b2〉
‖b1‖2

⌉
.

The resulting correlation after replacing b2 with b′2 is

〈b1,b′2〉 =

〈
b1,

(
b2 −

⌊〈b1,b2〉
‖b1‖2

⌉
b1

)〉

=

(〈b1,b2〉
‖b1‖2

−
⌊〈b1,b2〉
‖b1‖2

⌉)
· ‖b1‖2.

Since the rounding errors for real and imaginary parts are each no more than 1/2, we

have

|Re{〈b1,b′2〉}| ≤
1

2
‖b1‖2 and | Im{〈b1,b′2〉}| ≤

1

2
‖b1‖2. (3.8)

After replacing b2 with the optimal b′2, if this new b2 is shorter than b1, we swap

them and then check whether further subtraction is possible.

Summarizing, the algorithm is as follows:

1. Check the correlation. If |Re{〈b1,b2〉}| ≤ 1
2
‖b1‖2 and | Im{〈b1,b2〉}| ≤ 1

2
‖b1‖2,

stop. Otherwise, replace b2 with b2 −
⌊
〈b1,b2〉
‖b1‖2

⌉
b1 and go to step 2.

2. Check their lengths. If ‖b2‖ > ‖b1‖, stop. Otherwise, swap them and go to

step 1.

When this iterative procedure stops, the resulting basis has the properties ‖b1‖ ≤
‖b2‖, |Re{〈b1,b2〉}| ≤ 1

2
‖b1‖2 and | Im{〈b1,b2〉}| ≤ 1

2
‖b1‖2. It follows that basis

vectors with these properties are the ones we desire, as we show next.
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Lemma 3.3 Given a two dimensional lattice with basis vectors u and v. If ‖u‖ ≤ ‖v‖,
|Re{〈u,v〉}| ≤ 1

2
‖u‖2, and |Im{〈u,v〉}| ≤ 1

2
‖u‖2, then

1) u is the shortest (non-zero) vector in the lattice.

2) v is the shortest vector that is not a multiple of u.

Proof:

1) Since (u,v) is a lattice basis, any vector s in the lattice can be written as s = au+ bv,
with a, b ∈ Z+ Zj. Let ar = Re{a}, ai = Im{a}, br = Re{b}, bi = Im{b}. We have,

‖s‖2 = ‖au+ bv‖2

= |a|2‖u‖2 + |b|2‖v‖2 + 2Re{a†b〈u,v〉}
≥ (a2r + a2i + b2r + b2i −|arbr + aibi|−|aibr − arbi|)‖u‖2

≥ ‖u‖2 when ar, ai, br, bi are not all 0,

The last step uses the identities, for a, b, c, d ∈ Z,

• a2 + b2 + c2 + d2 ≥ |ac|+ |bd|+ |bc|+ |ad| with equality iff |a| = |b| = |c| = |d|.

• |ac|+ |bd| ≥ |ac+ bd| with equality iff abcd ≥ 0.

• |bc|+ |ad| ≥ |bc− ad| with equality iff abcd ≤ 0.

2) Any vector s in the lattice that is not a multiple of u can be written as s = au+ bv,
a, b ∈ Z+ Zj, and b 6= 0.

‖s‖2 = ‖au+ bv‖2

= |b|2
(
‖v‖2 − ‖u‖2

)
+ |a|2‖u‖2 + |b|2‖u‖2 + 2Re{a†b〈u,v〉}︸ ︷︷ ︸

≥ |b|2
(
‖v‖2 − ‖u‖2

)
+ ‖u‖2 +

(
‖v‖2 − ‖v‖2

)

= (|b|2 − 1) · (‖v‖2 − ‖u‖2) + ‖v‖2

≥ ‖v‖2 because b 6= 0

3.3.3 Convergence and Complexity

In this section, let us discuss the convergence of the iterative algorithm proposed

as well as its complexity. In other words, does this procedure end and how many

iterations does it take?

It is clear that the procedure does end. In particular, after each iteration, the

lengths of both basis vectors decrease (at least one decreases strictly); otherwise,
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the procedure ends. Since lattices are discrete, there can be only a finite number of

vectors shorter than the original ones. Thus, the procedure must end.

Showing that the algorithm converges is not enough. Even if it converges, it could

still take many iterations to finish. To get some intuition on the number of iterations

needed, let us look at the 2 × 2 real case instead of the complex case. There are

relatively fewer parameters which makes it easier to study.

For the two dimensional real case, b1 and b2 are each described by 2 real numbers.

However, the number of iterations needed is only a function of the relative angle

between b1 and b2 and the ratio of their lengths. Rotating and scaling the vectors

together do not matter. Therefore, without loss of generality, we can fix b1 to be[
1 0

]T
.

To help us gain an overall understanding of all the possibilities, Figure 3-3 shows

the number of iterations needed for values of b2(1) and b2(2) ranging from 0 to 1 in

0.01 increments. 2

From Figure 3-3, we see that in most cases, the procedure finishes within two

iterations. In order to have a large number of iterations, b2 has to take on very

special values. We notice that there is a fractal look to this figure. This motivates

us to look for special examples that requires large numbers of iterations to reduce. A

special example related to the Fibonacci numbers is found.

The Fibonacci number series is defined by, F1 = 1, F2 = 1, and Fn = Fn−1+Fn−2.

If we continue expending the terms, we get

Fn = Fn−1 + Fn−2 = 2Fn−2 + Fn−3 = 3Fn−2 − Fn−4 =⇒
⌊
Fn
Fn−2

⌉
= 3. (3.9)

The special example we construct is b1 =
[
Fn−2 0

]T
and b2 =

[
Fn εn

]T
, where

n is arbitrarily large and εn is sufficiently small so that the second entry does not

affect the iterations. We need εn 6= 0 so that b1 and b2 are linearly independent.

2This region is chosen because the four quadrants of (b2(1),b2(2)) have symmetry, so focusing
on the first quadrant is sufficient. Also, if b2 starts outside of this region, it will come into it after
one iteration (when |b2(2)| ≤ 1), or stop within one iteration (when |b2(2)| > 1).
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Figure 3-3: Number of iterations needed to find the optimal reduced basis. b1 is fixed
at [1 0]T, each entry of b2 ranges from 0 to 1 in 0.01 increments.

(Note that in Figure 3-3, all cases that require large numbers of iterations occur near

the horizontal axis.) The reduction procedure happen as follows.

b′2 = b2 − 3b1 =


 −Fn−4

∼


 , SWAP, −→ b1 =


 −Fn−4

∼


 ,b2 =


 Fn−2

∼


 ,

b′2 = b2 + 3b1 =


 −Fn−6

∼


 , SWAP, −→ b1 =


 −Fn−6

∼


 ,b2 =


 −Fn−4

∼


 ,

b′2 = b2 − 3b1 =


 Fn−8

∼


 , SWAP, −→ b1 =


 Fn−8

∼


 ,b2 =


 −Fn−6

∼


 ,

b′2 = b2 + 3b1 =


 Fn−10

∼


 , SWAP, −→ b1 =


 Fn−10

∼


 ,b2 =


 Fn−8

∼


 ,
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and so on. By choosing n to be arbitrarily large, we have constructed an example

that requires arbitrarily many iterations to finish.

In conclusion, the number of iterations needed is fixed but arbitrarily large. Given

any initial basis, it takes a fixed number of iterations to finish. However, given any

number n, there exist bases that require more then n steps to reduce. In most cases,

it takes very few iterations to finish; needing more is increasingly unlikely.

In the next two sections we examine the effects of using lattice reduction with

traditional detectors. Let us use LR-ICD and LR-BLAST to refer to the detection

schemes that combine lattice reduction with ICD and BLAST detection respectively.

3.4 Gaussian Channels

In this section we develop results for a fixed channel matrix H.

3.4.1 Complexity

The incremental complexity inherent in the use of lattice reduction is determined by

the number of iterations required to reduce the basis. As we saw in section 3.3.3,

for 2 × 2 channels, the number of iterations needed is small, less than two, for most

channels. However, it is possible to construct examples that take arbitrarily many

iterations to finish. The worst case is unbounded, but highly unlikely. Therefore,

practically speaking, if we were to perform low complexity detection in this new basis

as we proposed, the overhead associated with looking for the optimal basis would be

very low. Thus, the overall algorithm has low complexity.

3.4.2 Performance

These new detection methods lead to decision regions (and thus performance) much

closer to that of MLD, as we now develop.

Figure 3-4 shows a comparison of the decision regions for MLD and LR-ICD. It is

drawn for a 2× 2 real example for illustration purpose. The MLD decision region is
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a hexagon, and that of LR-ICD is a parallelogram. These regions also coincide with

what are referred to as the Voronoi cell and unit cell of the lattice, respectively.

u

v

u

MLD

d
LR−ICD

mind min

MLD

LR−ICD

Figure 3-4: Comparison of the decision regions for MLD and LR-ICD. Minimum
distances to the decision boundaries are also compared.

The minimum distances dmin from a received constellation point to its decision

boundaries are drawn. The length of dmin is the minimum amount of noise needed

for an error to occur, and determines the error probability at high SNR in white

Gaussian noise, which is, 2Q(dmin/σw), where σ
2
w is the noise variance per dimension

and Q(x) =
∫∞
x
(1/
√
2π) exp{−x2/2}. We see that for LR-ICD, dmin is shorter, so the

performance is slightly worse. This is a result of the basis vectors not being exactly

orthogonal. We now develop a precise bound on the ratio of dMLD
min to dLR−ICDmin to

quantify the worst SNR gap to the MLD bound.

Generalizing Figure 3-4 to the complex case, we see that

dMLD
min =

1

2
‖u‖ and dLR−ICDmin =

1

2
‖ũ‖. (3.10)
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where

‖ũ‖2 = ‖u‖2 −
∥∥∥∥
〈u,v〉
‖v‖2 v

∥∥∥∥
2

= ‖u‖2 − Re{〈u,v〉}2
‖v‖2 − Im{〈u,v〉}2

‖v‖2

≥ ‖u‖2
(
1− 1

4
− 1

4

)
=

1

2
‖u‖2. (3.11)

Therefore,

dLR−ICDmin ≥ 1√
2
dMLD
min , (3.12)

which corresponds to a maximum SNR loss of 3 dB. This bound is tight; the worst

case is achieved by, for example, u =
[
1 0

]T
, and v = (1

2
+ 1

2
j)
[
1 1

]T
. However,

for many channel matrices the ratio is much closer to one.

For LR-BLAST, dLR−BLASTmin = 1
2
min(‖u‖, ‖ṽ‖) ≥ 1

2
‖ũ‖, so it is never worse than

LR-ICD. Comparing to MLD, dLR−BLASTmin = dMLD
min , when ‖ṽ‖ ≥ ‖u‖, which happens

quite often in the 2 × 2 case. However, the worst-case ratio is still the same as the

LR-ICD case.

In summary, LR can improve the performance of detection to within 3 dB from

optimal in terms of dmin. The actual gap depends on how well the particular channel

can be reduced.

Another property of lattice reduction is that it monotonically improves detection

performance. For both LR-ICD and LR-BLAST, each iteration of the reduction

algorithm improves the decision region and increases dmin. The more correlated the

original basis vectors are, the greater the ultimate improvement. This behavior is

illustrated by the following example channel matrices

H1 =


6 7

8 −9


 and H2 =


6 7

8 9


,

whose resulting SNR gaps are listed in Table 3.1. Comparing the first two columns
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to the last two, we see that little improvement is obtained for H1, which has nearly

orthogonal columns, while a large improvement in dB is obtained for H2, which has

highly correlated columns.

Table 3.1: SNR gaps to MLD performance for various detectors

ICD BLAST LR-ICD LR-BLAST

H1 0.31 dB 0.00 dB 0.31 dB 0.00 dB
H2 18.1 dB 17.0 dB 0.00 dB 0.00 dB

3.5 Rayleigh Fading Channels

In this section we develop results for ensembles of channels, i.e., for a random channel

matrix H. We focus on the Rayleigh fading case in which the entries of H are

independent and identically distributed CN(0, 1) random variables, independent of

the Gaussian noise.

3.5.1 Complexity

Since the incremental complexity is dependent on the realized channel, we plot in

Figure 3-5 on both linear and logarithmic scales the empirical distribution of the

number of iterations needed in the Rayleigh fading environment. Note that over 99%

of the bases are reduced in two iterations or less, and that it becomes increasingly

unlikely to need more iterations.

3.5.2 Performance

In Rayleigh fading, the average error probability Pe decays according to Pe ∼ 1/SNRν

at high SNR, where ν is the diversity order and reflects the system’s tolerance of and

robustness toward channel fading.

In the 2× 2 case, lattice reduction improves the diversity ν achieved by ICD and

BLAST detection to that of MLD. To see this, the average symbol error rate (SER)
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Figure 3-5: Distribution of number of iterations needed for 2×2 lattice reduction.

curves for the various detection methods are plotted in Figure 3-6 for 16-QAM. The

top two curves are for ICD and BLAST detection. In the high SNR regime, they

both have diversity 1. Note that for BLAST, if there were no error propagation,

the diversity for the entry detected second would have been 2. However, its actual

diversity is only 1 due to error propagation from the entry detected first, which itself

experiences only diversity 1.

The lowest curve is for MLD. The two curves immediately above it and parallel to

it correspond to LR-ICD and LR-BLAST. In the high SNR regime, all three evidently

have diversity two. This shows the improvement in diversity provided by using lattice

reduction. Notice that with lattice reduction, the relative benefits of BLAST detection

over ICD is smaller; this is a result of the basis vectors becoming more orthogonal.

It is also insightful to examine the empirical distribution of d2min for these detectors,

which is depicted in Figure 3-7. Relative to the original ICD and BLAST detection

(dashed curves), it is evident that with lattice reduction (solid curves), the probability

of having small d2min is substantially reduced. Furthermore, comparing the LR curves

to the MLD curve (dotted), we see that the performance gap is much less than the

worst case 3 dB SNR loss. This is because channels yielding these larger losses are

rare.

Figure 3-7 reflects the diversity behavior seen in Figure 3-6 from a different angle.

The SER is related to a kind of “outage” probability, the probability of d2min being
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Figure 3-6: Symbol error rate curves for various detection methods in the 2 × 2
complex case. The constellation used is 16-QAM.

less than a threshold, which is inversely related to SNR.

One feature in Figure 3-6 that is not captured by Figure 3-7 is the gap between

the LR curves and the MLD curve. This is because the detection performance is also

affected by the number of nearest neighbors and, indirectly, the size of the constella-

tion. In a finite constellation, some points have fewer nearest neighbors, for example,

the edge points. In some extreme cases, it is even possible for a point to have all its

nearest neighbors distance dmin away to be outside the constellation, in which case,

the effective dmin is actually greater. For these reasons, LR based detection, which

treats the constellation as an infinite lattice, is slightly further sub-optimal compared

to MLD, which takes advantage of the finite size of the constellation. However, as

the constellation gets larger, these difference diminish. This finite constellation ef-

fect can be seen by extending the constellation to 64-QAM and 256-QAM from the

original 16-QAM, at the 25dB noise level. The corresponding SER curves for MLD

are plotted in Figure 3-8 together with the corresponding SER of LR-BLAST. We

can see that as the constellation gets larger, the gap between MLD and LR-BLAST
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Figure 3-7: Comparisons of the cumulative density of d2min.

becomes smaller.

3.5.3 Diversity-Multiplexing Tradeoff

In this section, we numerically evaluate the diversity-multiplexing tradeoff achieved

using the proposed lattice-reduction-aided detectors in an uncoded system. We show

that the best tradeoff achievable by any length-one code is effectively achieved.

To numerically evaluate the diversity-multiplexing tradeoff, we perform simula-

tions with the LR-BLAST detector for rates R = 4, 8, 12, · · · , 32 b/s/Hz using con-

stellations with sizes per dimension M = 2, 4, 8, · · · , 256. The resulting family of

2 × 2 block error rate curves for the various rates are plotted in Figure. 3-9. The

outage probability curves for those rates shown earlier in Figure 2-5 of section 2.3.4

are re-plotted here as light gray lines for comparison.

The diversity and multiplexing gains achieved can be numerically measured from

the slopes of the error rate curves and the horizontal spacings between these curves,

as discussed earlier in section 2.3. We see that the limiting slope of each curve
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Figure 3-8: As constellation size grows, the gap between the symbol error rates of
MLD and LR-BLAST diminishes. The noise level is such that the SNR is 25 dB for
the 16-QAM constellation.

is 2. This is the maximum diversity gain achieved. The horizontal gaps between the

curves with rate differential 4 b/s/Hz is approximately 6 dB. This implies a maximum

multiplexing gain of 2 b/s/Hz per 3 dB. The family of curves appears parallel, so

we can get any linear combination of the maximum diversity and multiplexing gains.

Therefore, the diversity-multiplexing tradeoff achieved is a straight line between (0, 2)

and (2, 0), i.e., d(r) = 2− r.

Zheng and Tse showed in [41] that the best diversity-multiplexing tradeoff achiev-

able by any length-one code, which they refer to as space-only code, is a straight

line between (0, Nr) and (min(Nt, Nt), 0). Substituting in Nt = Nr = 2, we have

d(r) = 2 − r. Therefore, a system with uncoded transmission and lattice-reduction-

aided detector can effectively achieve the best tradeoff achievable by any space-only

code.

One implication of the above result is that an uncoded system (with near optimal

decoding) is just as good as any other space-only coded system. The intuition for

this is that a linear space-only code can be represented as x = Gs, where G is

some code generating matrix and s is a vector of uncoded symbols. By writing

Hx = HGs = (HG)s, the code matrix G can be absorbed by the channel matrix H.
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Therefore, G has little effect except possibly changing the statistics of the effective

channel in some way.

We note that if longer codes are allowed, then better diversity-multiplexing trade-

offs can be achieved. We see that the set of unmarked light gray curves in Figure. 3-9,

which represent the ultimate performance achievable by infinitely long codes, have

better slopes.

3.6 Lattice Reduction at Transmitter

Another use of lattice reduction techniques in addition to the detection problem we

just discussed is to apply them at the transmitter for power reduction when trans-

mitter has knowledge of the channel and pre-compensate for it. In this section, we

briefly discuss this problem from a geometric perspective. We first describe a naive

way of pre-compensating for the channel, then present an idea of using a lattice to

represent messages, which leads to the application of lattice reduction techniques. We
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only illustrate the basic ideas, the details are left for future development.

When the transmitter has knowledge of the channel, it can pre-compensate for

the distortion by transmitting H−1x instead of x. The resulting received signal is

then y = H(H−1x) + w = x + w. This means that the receiver effectively sees an

AWGN channel, and can detect each entry of x independently without knowing the

channel. This idea is illustrated in Figure 3-10.

Channel

=

Pre−compensate

x
−1

H(H x)      x
−1H  x

Figure 3-10: When the transmitter knows the channel, it can pre-compensate for the
distortion by transmittingH−1x, so that the received constellation is the original one.

One problem with pre-multiplying with H−1 is that the resulting constellation

region becomes very elongated, as seen in Figure 3-10. (This effect is similar to the

noise enhancement problem of the inverse channel detector in section 3.2.) Having

an elongated constellation region is inefficient in terms of power usage because it

takes more power to transmit points further from the origin. This suggests that the

constellation region need to be made more circular.

Next, we review an idea of using a set of congruent points, or a lattice, to signal

a message. Later, this will allow us to use lattice reduction techniques to make the

constellation region more circular and reduce the transmit power.

This idea was introduced by Tomlinson and Harishima as part of their transmitter

pre-coding algorithm [19]. A set of points that are congruent modulo the constellation

region are used to represent the same message. as illustrated in Figure 3-11. All points

marked by “◦” are congruent to the point marked by “+” modulo the constellation

region drawn with solid lines. To transmit the message originally represented only

by “+”, we can now use any of the “◦”s. Note that the set of “◦”s together with the

“+” form a lattice. Among all the lattice points, we would pick the one closest to
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the origin to minimize transmit power. At the receive, if we receive any “◦”, which is

outside the constellation region, we find its congruent image inside the constellation

region, which is the “+”, and treat it as if the “+” is actually received.

Channel

−1H x
o

oo

+

o

o

ooo

+

o

o

oo

o

x

Figure 3-11: At the transmitter, all points that are congruent modulo the constellation
region, which form a lattice, are use to represent the same message. Points labeled
“◦” represent the same message as the point labeled “+”. At the receiver, any “◦”
can be mapped back to “+” via modulo operations.

With this idea of using a lattice to represent the same message, the problem of

minimizing transmit power becomes the problem of finding the nearest point of a

shifted lattice to the origin. This allows us to use lattice reduction techniques.

In Tomlinson-Harishima pre-coding, modulo operations at the transmitter are

performed one dimension at a time, similar to the successive cancellation technique

used in BLAST detection. We will not review it here. It suffice to say that the

resulting constellation region has the same shape as the decision region achieved by

BLAST detection for the same channels shown in Figure 3-1. It improves the power

efficiency but is not optimal.

Let us now look at what constellation region is the most desirable. We can consider

the original transmitted constellation region and its periodically extended copies,

which are drawn in Figure 3-11 with dotted lines, as unit cells of a lattice. The set

of “◦”s is a shifted version of this lattice. We see that there is exactly one “◦” in

each unit cell. In fact, if we were to consider other unit cells of this lattice, there

would still be exactly one “o” in each cell, no matter what the unit cell is. Therefore,

by choosing different unit cells as the constellation region, we choose which “◦” to

transmit. The best constellation region to use is the unit cell with the least second
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moment, or energy, which is the Voronoi cell of the lattice.

Finding the Voronoi cell is difficult, instead, lattice reduction techniques can be

applied to obtain constellation regions close to the Voronoi cell. In particular, a set

of basis vectors that are shorter and more orthogonal would lead to an unit cell that

is more square.

An example of using a constellation region with lattice-reduced basis is illustrated

in Figure 3-12. If we want to transmit a point in the region labeled 1 in the original

constellation region associated with transmitting H−1x, we should instead transmit

its congruent image in the region labeled 1′ to reduce power. At the receiver, if a

point in region 1’ is received, it is mapped back to region 1 using modulo operations.

Similar procedures take place for regions labeled 2, 3, and 4. Comparing the elongated

parallelogram and the square, we see that transmission power is much reduced.
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Figure 3-12: Treat the original transmitted constellation region, H−1x, as a unit
cell of a lattice. Power reduction can be achieved by using a more square unit cell
corresponding to a different basis as the transmitted constellation region. Regions
shaded in the same way and labeled using the same number are congruent to each
other and represent the same set of messages.

This illustrates the basic idea behind using lattice reduction techniques for trans-

mitter pre-coding power reduction. The details of this algorithm are left for future

development.
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3.7 Higher Dimensional Lattice Reduction

In the previous sections, we have demonstrated how using lattice reduction can im-

prove the performance of traditional low complexity detectors to be close to that of

the maximum likelihood detector. We also illustrated how LR can be used at trans-

mitter for pre-coding as well. LR may also potentially be applied to other problems

such as source coding, when the quantization points form a lattice.

The lattice reduction techniques we presented are for the case of two (complex)

dimensions only. We now investigate how feasible and how useful LR might be in

higher dimensional cases. We address issues including what basis should be considered

optimal, what lattice reduction algorithms can be used, what their complexity levels

are, and how well they work when combined with traditional detectors. The main

goal is to point out existing work on lattice reduction theory and discuss them.

Generally speaking, the lattice reduction problem is NP-hard in the dimension

of the lattice. Conway and Sloane [6] expressed their feeling toward this type of

problems as, anything associated with high dimensional lattice is hard except finding

its determinant (the volume of a unit cell). For example, finding the covering radius

has proven to be NP-hard, while finding the packing radius or the shortest vector is

conjectured to be NP-hard.

In this section, we discuss several lattice reduction algorithms including the sub-

optimal polynomial time LLL algorithm, for which, we also use numerical simula-

tion to demonstrate the complexity and performance when combined with ICD and

BLAST detectors.

3.7.1 Existing Algorithms

We discuss three different notions of lattice reduction, Minkowski reduced form,

Korkin-Zolotarev (K-Z) reduction, and Lenstra, Lenstra, and Lovász (LLL) reduction

algorithm. There are many other reduction algorithms. An extensive list of references

can be found on page 41 of the well-known textbook by Conway and Sloane [6].
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Minkowski Reduced Form

In the two dimensional case we studied, we identified the optimal basis to be (u,v),

where u is the shortest (non-zero) vector in the lattice and v is the shortest vector

that is not a multiple of u. This description of optimal basis can be extended to

higher dimensions and is know as the Minkowski reduced form [6].

More formally, a basis B =
[
b1 b2 · · · bn

]
is Minkowski reduced if each basis

vector bi is the shortest vector that is not a linear combination of b1, · · · ,bi−1.

There are no polynomial time algorithms for finding the Minkowski reduced basis

since even finding the shortest vector is believed to be NP-hard. What is known

about the Minkowski reduced form is a set of conditions to check whether a given

basis is reduced, similar to the conditions we obtained for the two-dimensional case in

Lemma 3.3. These conditions exist for dimensions up to 8, and can be found in [6] and

the references there-in. The conditions are expressed as sets of inequalities between

the lengths and the correlations of the basis vectors. As the number of dimensions

grows, the number of conditions increases with it, and the functional form of the

conditions also becomes more complex.

Korkin-Zolotarev Reduction

The Korkin-Zolotarev, or K-Z, reduction form [15] is similar to the Minkowski reduced

form in the sense that the basis is defined to be a series of short basis vectors. The

first basis vector b1 is also the shortest vector of the lattice. The difference is at after

the basis vectors b1, · · · ,bi−1 are chosen, the next one, bi is chosen not to minimize

its length, but to minimize the length of its component orthogonal to b1, · · · ,bi−1.
That is, ‖b̃i‖ is minimized instead of ‖bi‖.

Just as for Minkowski reduction, there is no polynomial time algorithm for K-Z

reduction. The fastest known algorithm for K-Z reduction algorithm for a basis with

integer entries is due to Schnorr [32].

In [2] and some references there-in, K-Z reduction is used for the purpose of lattice

decoding, i.e., finding the nearest lattice point to a given point. However, in their
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study, the lattice is fixed. They did not focus on the complexity of finding the K-Z

reduced basis, but only on how to use the already reduced basis for lattice decoding.

LLL Reduction

The LLL lattice reduction algorithm by Lenstra, Lenstra, and Lovász [22] is a poly-

nomial time algorithm that provides a set of basis vectors that are generally short.

In particular, the shortest vector it finds is shorter than a certain multiple of the true

shortest vector. The algorithm was originally developed for integer programming [21]

and factoring polynomials with rational coefficients [20].

A detailed description of the LLL algorithm can be found in [22]. We now briefly

summarize the procedure and the bounds on the lengths of the resulting basis vectors.

The LLL algorithm is a more general version of the iterative reduction algorithm

we proposed in section 3.3.2. It also iterates between two steps, subtracting integer

copies of some vectors out of others to reduce correlation and swapping vectors so that

the shorter ones tend to have smaller indexes. These two steps take place iteratively

until no changes are made.

More specifically, given a basis, B =
[
b1 b2 · · · bn

]
, let bi(j) be the compo-

nent of bi orthogonal to b1, · · · ,bj−1. Using Gram-Schmidt orthogonalization, we

can write

bi =
i∑

j=1

µijbi(i), i = 1, · · · , n, (3.13)

The coefficients µij, 1 ≤ j < i ≤ n, are related to the correlation between the basis

vectors. We also have
∏n

i=1 ‖bi(i)‖ = det(B).

The goal of the first step of each iteration is to make all |µij| ≤ 1
2
. Bases with

this property are called weakly reduced. We can reduce each |µij| ≥ 1
2
by subtracting

bµije (nearest integer to µij) copies of bj out of bi. To maximize efficiency, we should

perform this subtraction from i = 2 to n and from j = i− 1 to 1.

Once the basis is weakly reduced, the second step of each iteration involves looking
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for the index i violating

‖bi(i)‖2 ≤
4

3
‖bi+1(i)‖2, for 1 ≤ i < n (3.14)

and swapping bi and bi+1. This helps bringing the shorter vectors forward, so that

they can be used to further reduce other vectors during the next iteration. The

coefficient 4/3 is there to ensure faster convergence. It can be replaced by any number

larger than 1 but less than 3/2.

It can be shown that the algorithm that iterates between the two steps described

above is polynomial time and that the resulting reduced basis has the following prop-

erties, (assuming the factor of 4/3 is used,)

1. ‖b1‖ ≤ 2(n−1)/2ξ, where ξ is the length of the shortest vector of the lattice;

2. ‖b1‖ ≤ 2(n−1)/4 n
√

det(B);

3. ‖b1‖ · · · ‖bn‖ ≤ 2n(n−1)/4 det(B).

3.7.2 Complexity and Performance of LLL

In this section, we use numerical simulations to study the complexity of the LLL

algorithm and see how well it would work when combined with the traditional ICD

and BLAST detectors. We show that the complexity measured by the number of

iterations needed increases rather rapidly with the number of dimensions, and the

performance gap to the ML detector increases as well.

The original LLL algorithm is developed for real matrices instead of complex. We

can always choose to treat one complex dimension as two real dimensions, unless we

want to take advantage of the special orthogonality relationship between each pair of

real and imaginary components. In this section, we simply work with the real case to

obtain some intuitions.

Also, when the number of dimensions is large, it is difficult to discuss the number

of iterations needed for specific matrices, like in Figure 3-3. Instead, we look at how

many iterations are needed for most channels, more specifically, the distribution of
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the number of iterations needed for the case where the basis matrix has IID Gaussian

entries.

For dimensions, n = 2, 4, 6, and 8, we perform LLL lattice reduction as described

earlier for n×n real matrices, B =
[
b1 b2 · · · bn

]
, randomly generated with IID

zero-mean, unit variance, Gaussian distributions. We record the number of iterations

taken and the lengths of the resulting basis vectors. The empirical probability distri-

bution, as well as the cumulative distribution, of the number of iterations taken are

plotted on log-scales in Figure 3-13 and Figure 3-14, respectively. Note that these

are the actual numbers of iterations taken, not an upper bound, as complexity theory

provides.

We see from the figures that for higher dimensions, the number of iterations needed

increases rapidly. To get a better sense of the increase in complexity, let us look at

some specific numbers. In the 2 × 2 (real) case, over 99% of the time, it takes two

iterations or less to reduce the basis. For n = 4, 6, and 8 dimensions, the 99 percentile

point becomes 11, 25, and 43 iterations, which can be read from Figure 3-14. The

probability of needing more iterations decreases exponentially with the number of

iterations, but slower for higher dimensions. The average number of iterations taken

is 0.7, 4.4, 10.7, and 19.1 respectively.

Another thing to note is that the amount of computation associated with each

iteration also increases with the number of dimensions. In particular, during the

first step of making the basis weakly reduced, there are up to order n2 many µij’s to

reduce. Reducing each one also requires scaling and addition of length n vectors.

Next, let us look at how well the LLL reduced basis work with the traditional ICD

and BLAST detectors, compared to the maximum likelihood detector. The perfor-

mance measure we use is the magnitude of the minimum amount of noise necessary

for an error to occur, i.e., the radius of the largest sphere inside the decision region

of each detector, similar to the ones drawn in Figure 3-4. Let us denote these radii

with dLR−ICDmin , dLR−BLASTmin , and dML
min, for the three detection methods, respectively.

If we use the BLAST detector, i.e., employ the successive cancellation method in

(3.2), then the decision region is rectangular, as shown in Figure 3-1 (c). The lengths
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of the sides are ‖bi(i)‖, the component of bi orthogonal to b1, · · · ,bi−1. Instead, we
have dLR−BLASTmin = 1

2
mini ‖bi(i)‖. For the ICD detector, we need to look at ‖b̃i‖, the

component of bi orthogonal to all other vectors, not just the previous ones. Therefore,

dLR−ICDmin = 1
2
mini ‖b̃i‖. In the case of ML detector, the corresponding measure is the

length of the true shortest vector of the lattice, ξ. We have dML
min = 1

2
ξ. When the

number of dimensions is not too large, the shortest vector of a lattice can be found

using either brute force search or a more efficient technique called sphere decoding

[26, 38].

For dimensions n = 2, 4, 6, and 8, we plot the empirical distribution of the ratio

dLR−BLASTmin /dML
min and dLR−ICDmin /dML

min for LLL reduced bases in figure Figure 3-15 and

Figure 3-16, respectively.

We see that as the number of dimensions increases, the distribution of the ratio

moves down from 1, meaning that LR-BLAST and LR-ICD become further away from

optimal. The worst case ratio also moves down. After 105 trials, the empirical worst

case found for LR-BLAST is 1.7, 3.3, 4.0, and 6.1 dB from optimal for n = 2, 4, 6, 8

dimensions. For LR-ICD, the gaps are 1.7, 4.3, 6.4, and 8.8 dB. Compared to LR-

ICD, LR-BLAST not only performs better on average, but also seems to have better

worst case bound.

One technical detail to note is the 4/3 factor in (3.14). If we were to use other

values between 4/3 and 1, then we would get better reduced basis at the expense of

increased complexity.

3.8 Summary

In this chapter, we studied uncoded MIMO communication systems and proposed

new coherent detection methods. By incorporating lattice reduction, these methods

significantly improve the performance of traditionally employed low-complexity de-

tectors, in particular, ICD and BLAST detectors. We investigated the case of the

two-transmit two-receive antenna systems in detail. We presented an iterative lattice

reduction algorithm for finding the optimal basis and studied its complexity. We
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Figure 3-15: Performance of LR-BLAST detectors using the LLL algorithm, com-
pared to that of the ML detector, for n = 2, 4, 6, 8 dimensional cases. The ratio
dLR−BLASTmin /dML

min indicates how far LR-BLAST is away from optimal.
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Figure 3-16: Performance of LR-ICD detectors using the LLL algorithm, compared
to that of the ML detector, for n = 2, 4, 6, 8 dimensional cases.
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showed that the number of iterations needed is typically small and it is increasingly

unlikely to need more. We also showed that, relative to optimal MLD, LR techniques

is sub-optimal by no more than 3 dB in terms of SNR for any Gaussian channel,

and allows us to achieve the same diversity on the Rayleigh fading channel, assuming

sufficiently large constellations are used.

While the proofs and simulations in this study are mostly limited to the 2×2 case,

for higher dimensional cases, lattice reduction ideas can still be applied. However, the

complexity increases, as well as the average and worst-case gap to MLD. So generally

speaking, this lattice reduction idea is mainly meant for applying to low dimensional

cases.

One shortcoming of lattice decoding is that the constellation is treated as an

infinite lattice, so there is a boundary issue. When the received signal falls outside

of the valid constellation region, the nearest lattice point found may not be a valid

codeword. This would lead to errors that could be avoided by MLD.

Extending lattice reduction techniques to transmitter pre-coding can lead to ad-

ditional benefits. In this work, we briefly illustrated the basic ideas graphically; the

details are left for future development. If we were also allowed to transmit at different

rates for each entry of x and the objective were to maximize the total rate, we might

also want to employing water-filling techniques.
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Chapter 4

Structured Codes with Minimum

Delay

4.1 Introduction

In this chapter, we investigate the problem of using short structured space-time block

codes to achieve the optimal diversity-multiplexing tradeoff in the case of two-transmit

two-receive antenna systems, and try to understand what is fundamentally possible.

For this case, the optimal tradeoff was examined in section 2.3.3 and plotted in

Figure 2-4.

The primary question of interest here is whether the optimal tradeoff can be

achieved using length-two codes. From the rank criterion in Lemma 2.3 in section 2.4,

we see that it is necessary to have T ≥ Nt = 2 to achieve full diversity. In section 2.5,

we see that Gaussian random codes with code length T ≥ 3 can achieve the optimal

tradeoff, while those with T = 2 can not. In this chapter, we answer this previously

open question by presenting a length-two code which we call tilted-QAM code that

can in fact achieve the optimal tradeoff.

The system model we use in this chapter is Y = HX+W, where X is the 2× 2

transmitted signal matrix, H is the 2 × 2 channel matrix, W is the additive white

Gaussian noise and Y is the received signal. Under the Rayleigh fading model, the

entries of H are independent and identically distributed CN(0, 1) random variables,
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and are assumed to be known by the receiver, but not the transmitter.

We first review a well-known length-two code called the orthogonal space time

block code in section 4.2. OSTBC is a well structured code and is highly attractive

for its low decoding complexity. It uses a smart repetition to ensure all its difference

matrices are full rank, thus achieving the maximum diversity gain. However, this

repetition causes a loss of multiplexing gain. The tradeoff it achieves is below that of

the length-two Gaussian random code.

In the rest of this chapter, we develop the tilted-QAM coding scheme. In sec-

tion 4.3, we introduce the design of the tilted-QAM code, which improves upon

OSTBC by replacing the repetition with a suitably chosen rotation. 1 Using the

criterion of maximizing the worst case determinant, we identify a set of rotation an-

gles that is universally optimal and leads to the same worst case determinant for

all rates. In section 4.4, we analyze the performance of the tilted-QAM code from

two perspectives, and show that our design can indeed achieve the optimal diversity-

multiplexing tradeoff. We believe that having the worst case determinant maintaining

a non-vanishing distance away from zero as rate increases is important for obtaining

the optimal tradeoff. In section 4.5, we numerically simulate the performance of the

tilted-QAM code to demonstrate that the optimal tradeoff is effectively achieved. In

section 4.6, we discuss applying the tilted-QAM code design idea to a single antenna

fading problem.

4.2 OSTBC

An existing well-known space-time code is OSTBC, first introduced by Alamouti in

[1] for the two transmit and any number of receive antennas case, and then extended

by Tarokh in [34] for more general cases. In this section, we first describe the smart

repetition structure of OSTBC and then evaluate the diversity-multiplexing tradeoff

achieved. We also present numerical simulation results at the end.

1Interestingly, such rotation ideas are also used by Boutros and Viterbo [3] in their design of
codes for single antenna fading channels.
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4.2.1 The Smart Repetition

OSTBC encodes two information symbols, s1 and s2, into one 2×2 transmitted signal

matrix X in the following fashion,

X =


 s1 −s∗2
s2 s∗1


 , (4.1)

where, (·)∗ indicates conjugation. We see that it effectively transmits each of the two

symbols twice, using two antennas in two time slots.

The resulting received signal is


 y11 y12

y21 y22


 =


 h11 h12

h21 h22




 s1 −s∗2
s2 s∗1


+


 w11 w12

w21 w22


 . (4.2)

We can rearrange terms and conjugate y12 and y22 to obtain the effective channel




y11

y21

y∗12

y∗22



=




h11 h12

h21 h22

h∗12 −h∗11
h∗22 −h∗21





 s1

s2


+




w11

w21

w∗12

w∗22



. (4.3)

The effective channel vectors,
[
h11 h21 h∗12 h∗22

]T
and

[
h12 h22 −h∗11 −h∗21

]T
, are

orthogonal to each other. Therefore, there is no interference between s1 and s2.

Component-wise decoding can be easily done. Low complexity is one of the major

advantages of OSTBC.

4.2.2 Theoretical Performance Analysis

In this section, we examine the diversity-multiplexing tradeoff achieved by OSTBC.

By using repetition to spread each symbol across space and time, OSTBC can

achieve the maximum diversity. This can be shown using Lemma 2.3, according to

which, we need to verify that all difference matrices are full rank, i.e., have non-zero
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determinant.

Without loss of generality, let us fix one of the code matrices to be 0, so we can

look at the non-zero codeword matrices instead. We have

det(X) = |s1|2 + |s2|2 6= 0 when X 6= 0. (4.4)

Therefore, OSTBC achieves the maximum diversity of NtNr = 4 when r = 0, i.e.,

error probability decays like SNR−4 when rate is kept constant.

However, due to the repetition, only one new symbol is transmitted at a time,

so it can only achieve r = 1 when d = 0, i.e., for a fixed target error probability, R

increases by one for every 3 dB increase in SNR. Zheng and Tse [41] showed that

the diversity-multiplexing tradeoff achievable by an OSTBC system is a straight line

between (r, d) = (0, 4) and (1, 0) as shown in Figure 4-1. The optimal tradeoff curve

and that achieved by the length-two Gaussian random codes are also plotted.

0 1 2
0

2

4

Multiplexing Gain r=R/log
2
(SNR)

D
iv

er
si

ty
 d

(r
)

optimal tradeoff
OSTBC
expurgated G.r.c

Figure 4-1: Diversity-multiplexing tradeoff achieved by orthogonal space-time block
code, compared with the optimal tradeoff and that of the expurgated Gaussian ran-
dom code, for the case Nt = Nr = T = 2.

We see that OSTBC does not achieve the optimal diversity-multiplexing tradeoff
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curve. For r > 0.5, it is also inferior than the length-two Gaussian random code. Most

importantly, the maximum multiplexing gain achievable by OSTBC is only r = 1.

This implies that to transmit at a reasonably high rate, unnecessarily high SNR is

needed.

4.2.3 Simulation Results

In this section, we demonstrate the performance of OSTBC using numerical simu-

lations, which is set up as follows. Two uncoded information symbols s1, s2 chosen

out of QAM-like constellations are encoded into a 2× 2 transmitted signal matrix X

according to (4.1). The matrix X is then transmitted over a 2× 2 multiple antenna

channel, Y = HX+W. Random channels with IID CN(0, 1) entries are generated for

each trial. At the receiver, ML decoding is easily implemented, because the effective

channels are orthogonal.

We perform simulations at rates R = 4, 8, 12, 16 b/s/Hz using constellations with

sizes per dimension, M = 4, 16, 64, 256. We note that R = 1 · log2(M2), because only

one new symbol is transmitted at a time due to the repetition. The resulting family

of 2 × 2 block error rate curves for the various rates are plotted in Figure 4-2. The

outage probability curves for those rates are also plotted for comparison.

For OSTBC, we see that the slope of each curve approaches 4, which is the max-

imum diversity gain. The horizontal gaps between the curves with rate differential

4 b/s/Hz is approximately 12 dB. This implies a maximum multiplexing gain of

1 b/s/Hz per 3 dB. Compared to the underlying outage probability curves, OSTBC

becomes further from optimal as rate increases. This is the result of the loss of

multiplexing gain.

OSTBC is sub-optimal mainly because it is fundamentally a repetition code. Al-

though the repetition is what allows OSTBC to achieve the maximum diversity gain,

it reduced the maximum multiplexing gain to 1. Next, we propose an alternative

scheme that overcomes this shortcoming by replacing the repetition with a suitable

chosen rotation.
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Figure 4-2: Error rate curves of OSTBC (dark) and outage probability curves (light)
for various rates. We see that the maximum diversity of four is achieved, but there
is a loss of multiplexing gain.

4.3 Tilted-QAM Code

4.3.1 The Rotation Design

In the OSTBC design we studied in the last section, the key feature allowing it to

achieve full diversity is that both information symbols s1 and s2 appear in both rows

and columns of the codeword matrix X via repetition. However, the simple repetition

causes a loss of multiplexing gain. In a 2×2 codeword matrix, which has four entries,

there are effectively only two information symbols.

We propose a new design named tilted-QAM, which replaces the repetition in OS-

TBC with a suitably chosen rotation. For a given transmission rate R = r log2(SNR),

we use a M 2-QAM constellation carved from Z + Zj with size M 2 = 2R/2 = SNRr/2.

Then, four information symbols, sij, instead of two, are encoded into a codeword
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matrix X =


 x11 x12

x21 x22


 via two rotations,


 x11

x22


 =


 cos(θ1) − sin(θ1)

sin(θ1) cos(θ1)




 s11

s22


 ,


 x21

x12


 =


 cos(θ2) − sin(θ2)

sin(θ2) cos(θ2)




 s21

s12


 .

(4.5)

To get some intuition of this rotation idea, let us focus on the rotation of s11

and s22 to obtain x11 and x22 as shown in Figure 4-3. The key criterion is that all

points except the origin stay off the x11 and x22 axes. In this way, each non-zero

information symbol pair (s11, s22) leads to both non-zero x11 and non-zero x22 and

effectively appear in both rows and columns of the codeword matrixX. With rotation

instead of repetition, two sij symbols become two xij symbols, so there is no sacrifice

of multiplexing gain.

x
11

x
22

s
11

s
22

Figure 4-3: Rotate (s11, s22) to obtain (x11, x22), so that each non-zero information
symbol pair (s11, s22) leads to both non-zero x11 and non-zero x22 and effectively
appear in both rows and columns of the codeword matrix X.
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One thing to note is that although it is possible to choose the rotation angle θ1

so that all points except the origin stay off the axes as shown in Figure 4-3, it is not

possible to keep them a constant distance away from the axes as the constellation

grows. This is because if we project such a two-dimensional lattice on to the x11-

axis, it can be shown that the resulting set of points must be dense on the axis.

Therefore, there must be points with x11 (and similarly x22) arbitrarily close to zero.

Interestingly, it turns out that the product x11x22 can be kept a constant distance

away from zero, which eventually leads to a certain minimum determinant. In the

case of OSTBC, there is essentially a one dimensional lattice along the x11 = ±x22
direction, and x11 and x22 are both kept away from zero by a fixed amount. This is

sufficient for having a certain minimum determinant but not necessary.

4.3.2 Choice of rotation angles

In this section, using the criterion of maximizing the worst case determinant, we

identify a set of rotation angles that is universally optimal and leads to the same

worst case determinant for all rates.

While the rotation avoids the multiplexing gain penalty, to ensure maximum di-

versity (when r = 0), we must make all non-zero codeword matrices (equivalent to

all difference matrices) full rank. A slightly stronger condition is to maximize the

worst case determinant, as discussed in section 2.4. Let the worst case determinant

be γ
def
= minX6=0 | det(X)|. We need to choose the two rotation angles to maximize γ.

Let us first look at det(X) as a function of (θ1, θ2).

2 det(X) = sin(2θ1)(s
2
11−s222) + 2 cos(2θ1)s11s22 (4.6)

− sin(2θ2)(s
2
21−s212)− 2 cos(2θ2)s12s21.

In the case of binary constellation, sij each take the value of 0 and 1, so there are

only 24 − 1 = 15 non-trivial 4-tuples. Since sin and cos are both smooth functions,

we can easily analytically solve for or search for the best pairs of (2θ1, 2θ2) that

maximize γ. To demonstrate this visually, we sweep 2θ1 and 2θ2 each from 0 to π
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at 0.02 increment, and plot the resulting minimum determinant as a two-dimensional

contour plot in Figure 4-4.
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Figure 4-4: Maximize the minimum |2 det (X)| as a function of 2θ1 and 2θ2 for the
case where sij each takes the value of 0 and 1.

By solving for the points where the peaks occur, we obtain that one of the op-

timal choices of (2θ1, 2θ2) is (arctan(1/2), arctan(2)). The others are its symmetric

variations. With this pair of angles, we evaluate the worst case determinant to be

γ = 1/(2
√
5), and is obtained at, for example, (s11, s12, s21, s22) = (1, 0, 0, 0).

In the high rate, high SNR limit, in order to study the diversity-multiplexing

tradeoff we need to know explicitly how the optimal angles depend on rate at arbi-

trarily high rates. This precludes a brute force search for the optimal angles for each

rate, which is a method used in many existing literatures [8, 31].

Interestingly, we find that the pair of rotation angles optimal in the binary con-

stellation case is also optimal QAM-like constellations of all sizes. Thus, we have

a universal design that maximizes γ for all rates. This result is summarized in the

following theorem.
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Theorem 1 For codeword matrix X defined in (4.5), the maximum worst case de-

terminant of difference matrices is

max
(θ1,θ2)

min
X1 6=X2

| det(X1 −X2)| =
1

2
√
5
, (4.7)

and achieved by (θ̂1, θ̂2)=
(
1
2
arctan(1

2
), 1

2
arctan(2)

)
for QAM-like constellations of all

sizes.

Proof:

For binary constellation, by listing all det(X) expressions for all sij 4-tuples, we showed

that (θ̂1, θ̂2) and its symmetric variations are optimal, with which γ = 1/(2
√
5) and is

obtained at, for example, (s11, s12, s21, s22) = (1, 0, 0, 0). As constellation grows, γ can only
decrease or remain constant, since there are additional codewords to minimize over. So
to prove Theorem 1, it suffices to show that γ = 1/(2

√
5) is actually achievable for larger

constellations using (θ̂1, θ̂2), i.e., | det(X)|≥1/(2
√
5) for all non-zero 4-tuples of sij ∈ Z+Zj.

Substituting (θ̂1, θ̂2) into (4.6), we have,

J
def
= 2
√
5 det(X) = s211 − s222 + 4s11s22 + 2s

2
12 − 2s221 − 2s21s12. (4.8)

Since sij ∈ Z+ Zj, so is J . Now we need to prove the following.

Lemma 4.1 For sij ∈ Z + Zj, J = s211 − s222 + 4s11s22 + 2s
2
12 − 2s221 − 2s21s12 = 0 if and

only if s11 = s12 = s21 = s22 = 0.

Let us perform completion of squares and change of variables. Let a
def
= s11 + 2s22, b

def
= s22,

c
def
= 2s12 − s21, and d

def
= s21, then 2J = 2a

2 − 10b2 + c2 − 5d2. Now we need to prove
2a2 + c2 = 5(2b2 + d2) only when a = b = c = d = 0, which requires the following lemma.

Lemma 4.2 For x, y ∈ Z+ Zj, if 5|2x2 + y2, then 5|x, 5|y, and 25|2x2 + y2. 2

Proof:
Let x = 5qx + rx and y = 5qy + ry, such that, rx, ry ∈ {0, 1, 2, 3, 4}+ {0, 1, 2, 3, 4}j and
qx, qy ∈ Z+ Zj. 5|2x2 + y2 implies 5|2r2x + r2y. It is straight forward to verify that the only
case where 5|2r2x + r2y is rx = ry = 0. Therefore, 5|x, 5|y, and 25|2x2 + y2.
Now using Lemma 4.2, we can show that

2a2 + c2 = 5
(
2b2 + d2

)
(4.9)

⇒ 5|2a2 + c2 ⇒ 5|a, 5|c, 25|2a2 + c2

⇒ 5|2b2 + d2 ⇒ 5|b, 5|d, 25|2b2 + d2

2For complex integers, divisibility by a real integer (denoted by |) is defined as both real and
imaginary parts being divisible.
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Since all a, b, c, and d are divisible by 5, we can divide both sides of (4.9) by 52 and obtain

an essentially identical equation, 2a′2+ c′2 = 5
(
2b′2 + d′2

)
, where a′, b′, c′, d′ ∈ Z+ Zj. We

can repeat the above argument and divide both sides by 52 indefinitely. Thus, the only
possible solution is a = b = c = d = 0, i.e., s11 = s12 = s21 = s22 = 0. This concludes the
proof of Lemma 4.1 and Theorem 1.

One follow-up question is how sensitive the worst case determinant is to the values

of θ1 and θ2. From Figure 4-4, we can see the sensitivity in the case of binary

constellation. For larger constellations, the sensitivity in θ1 and θ2 increases. This

is because for larger constellations, a small change in rotation angle can cause the

points at the edge of the constellation to move by a larger amount.

We numerically demonstrate this effect. To simplify the computation, θ1 is swept

from 0 to π/8, while θ2 = π/4− θ1. We plot the worst case determinant as a function

of θ1 for 2-PAM, 3-PAM, 4-PAM, and 5-PAM constellations in Figure 4-5. We can

clearly see that the sensitivity of the worst case determinant in terms of θ1 increases as

constellation gets larger. While the peak is always at θ1 = arctan(1/2)/2 = 0.23182,

it gets sharper and sharper. Although the sensitivity increases with constellation size,

for practical constellation sizes like 16-QAM or 64-QAM, the numerical accuracy of

the current computers should be sufficient.

4.4 Theoretical Performance Analysis

In this section, we analyze the performance of the tilted-QAM code we proposed

in the last section. The key property of the tilted-QAM code is that the worst case

determinant remains constant as constellation size and rate grows. We show that this

determinant property built into the code allows it to achieve the optimal diversity-

multiplexing tradeoff for two-transmit two-receive antenna systems.

To evaluate the average error probability of the system, we need to average over

both the random channel and the ensemble of codewords. In the next two sections, we

present two perspectives. The first one focuses on the error probability of a particular

channel averaged over all codewords. We show that when the channel is not in outage,

our system tends to have large distances between the received codewords, and thus,
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Figure 4-5: Worst-case determinant as a function of θ1, while θ2 = π/4 − θ1. As
constellation size increases, although the optimal value of θ1 remains at arctan(1/2)/2,
the sensitivity increases. Slight deviation of θ1 from its optimal value significantly
reduces the resulting worst-case determinant.

good performance. The second one first looks at the error probability associated with

a particular pair of codewords averaged over all channels, and then sums over the

codewords. This perspective allows us to see that the codeword pairs whose differences

have small determinants are bad and dominate the overall error probability. Thus,

having good determinant property is essential for good performance. We also extend

the second perspective to higher dimensional cases in section 4.4.3.

Before the detailed error probability evaluation, let us first express several key

parameters as functions of SNR in exponential forms. We need to know how they

grow or decay with SNR as SNR grows, because we want to evaluate diversity and

multiplexing gains, which are how fast error probability decays and rate grows with

SNR.

First of all, we chosen to restrict sij ∈ Z+Zj. This means that as SNR increases

and the constellation size grows, the separation between the QAM constellation points

remains at unity.
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WithM denoting the constellation size per dimension, the average transmit energy

per dimension Es grows with M ,

Es
·
= M2 = 2R/2 = SNRr/2. (4.10)

The noise level can be expressed as 3

σ2w
·
=

Es

SNR
·
= SNRr/2−1. (4.11)

Let λ1 ≥ λ2 denote the singular values of ∆. Using the determinant property

build into the tilted-QAM code that the worst case determinant is always bounded

away from zero by 1/(2
√
5), we have the lower bound

λ21λ
2
2 = | det(∆)|2 ≥

(
1

2
√
5

)2
·
= SNR0. (4.12)

The entries of ∆ are at most order M . Therefore, we also have an upper bound

λ21 + λ22 = ‖∆‖2
·
≤ M2 ·

= SNRr/2. (4.13)

Combining the upper and lower bounds, and using λ1 ≥ λ2, we have:

SNR0
·
≤ λ21

·
≤ SNRr/2 (4.14)

SNR−r/2
·
≤ λ22

·
≤ SNRr/2. (4.15)

These describe how the singular values of ∆ change with SNR.

4.4.1 Minimum Distance Property

In this section, we evaluate the performance of the tilted-QAM design by studying the

minimum distance between received constellation points given a particular channel

3When at the maximum multiplexing gain (r = 2), noise variance is fixed. Since the separation
between the constellation points is also fixed, the performance remains approximately constant, i.e.,
d = 0.
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realization. For a given H, the distance between a pair of codewords with difference

matrix ∆ is ‖H∆‖, where the norm ‖ · ‖ is defined as ‖A‖2 =∑i,j ‖aij‖2. If ‖H∆‖
is at least a certain value, δ(H), for all ∆ 6= 0, then all the received constellation

points are at least distance δ apart. For a given δ, a minimum distance decoder can

guarantee to decode correctly when the magnitude of the noise is less than δ/2.

To show that the optimal tradeoff can be achieved, we first identify δ(H) as a

function of | det(H)| and ‖H‖2. We then relate two expressions, the ratio of δ(H)

to the noise level, δ2(H)/σ2w, and the ratio of the realized channel capacity to rate,

2C(H)/2R. We show that when the channel is not in outage, our system tends to have

large distances between codewords and good performance. Finally, we compare the

conditional error probability P [error|H] achieved by our code to that of the Gaus-

sian random code and conclude that the tilted-QAM code can achieve the optimal

diversity-multiplexing tradeoff.

To lower bound ‖H∆‖2 using | det(H)|, we use the minimum determinant prop-

erty.

‖H∆‖2 ≥ 2| det(H∆)|
·
≥ | det(H)|. (4.16)

To lower bound ‖H∆‖2 using ‖H‖2, we note that when multiplied by ∆, H must be

scaled by at least λ2, the smaller singular value of ∆.

‖H∆‖2 ≥ λ22‖H‖2
·
≥ SNR−r/2‖H‖2. (4.17)

Combine the above two bounds on ‖H∆‖2 and the noise variance expression (4.11),

we can lower bound δ2(H)/σ2w with | det(H)| and ‖H‖2,

τ
def
=

δ2(H)

σ2w

·
≥ max

(
SNR1−r/2| det(H)|, SNR1−r‖H‖2

)
. (4.18)

Let us now relate the channel capacity achieved (2.4) to the quantities | det(H)|
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and ‖H‖2. Using 2R = SNRr, we can rewrite (2.4) as

2C(H)

2R
·
=
(
SNR1−r/2| det(H)|

)2
+ SNR1−r‖H‖2. (4.19)

Comparing (4.18) and (4.19), we see that both right hand sides involve | det(H)|
and ‖H‖2. When C(H) is large compared to R, one of | det(H)| and ‖H‖2 must be

large. Consequently, δ2(H) is large compared to σ2w. So we have

C(H) > R =⇒ τ =
δ2(H)

σ2w

·
≥ 1. (4.20)

Therefore, when the channel is not in outage, all codewords are well separated com-

pared to the noise level, and correct decoding can be done with high probability. In

other words, the error probability achievable by tilted-QAM codes is very close to the

channel outage probability. This indicates that the tilted-QAM code should be able

to achieve the optimal diversity-multiplexing tradeoff.

Let us take this argument further by examining the conditional error probability

P [error|H] achieved as a result of having a large τ = δ2(H)/σ2w. We first manipulate

the lower bound of τ into an exponential form in SNR, and then express P [error|H]

in terms of τ .

Let λH
i be the ordered singular values of H and let SNR−αi = |λH

i |2, as we did in

section 2.3. Then,

| det(H)| = |λH
1 λ

H
2 | and ‖H‖2 = |λH

1 |2 + |λH
2 |2.

When the channel is not in outage, τ
·
≥ 1, we also have τ 2

·
≥ τ . Equation (4.18)

then becomes,

τ 2
·
≥ max

(
SNR2−r|λH

1 |2|λH
2 |2, SNR1−r(|λH

1 |2 + |λH
2 |2)

)

·
≥ SNR2−r|λH

1 |2|λH
2 |2 + SNR1−r(|λH

1 |2 + |λH
2 |2) + SNR−r

= SNR−r(SNR|λH
1 |2 + 1)(SNR|λH

2 |2 + 1)

·
= SNR

∑2
i=1(1−αi)

+−r (4.21)
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Recall that (x)+ denotes max(0, x).

Minimum distance decoders can guarantee to decode correctly as long as the

magnitude of the noise is smaller than half of δ(H), the minimum distance between

codewords. Therefore, from a lower bound on τ = δ2(H)/σ2w, we can derive an upper

bound on the error probability. Using the fact that the noise magnitude ‖W‖2 is a

chi-squared random variable of order 8, we have,

P [error|H] < P

[‖W‖2
σ2w

> τ/2

]

·
=

∫ ∞

u=τ/2

u3e−udu

·
= τ 3e−τ/2, (4.22)

where, τ 2
·
≥ SNR

∑2
i=1(1−αi)

+−r when the channel is not in outage.

Let us compare the P [error|H] achieved to that of the Gaussian random code case.

Zheng and Tse showed in [41] that for a Gaussian random code of length T , when

the channel is not in outage, the conditional error probability is

P (error|H)
·
≤ SNR−T (

∑
(1−αi)

+−r). (4.23)

For T ≥ 3, this bound is exponentially tight.

Let η denote SNR(
∑
(1−αi)

+−r) for short. Comparing (4.22) and (4.23), in the latter,

P (error|H) decays with η like η−T ; in the former, P (error|H) decays like η3/2e−
√
η/2.

Exponential decays faster than any polynomial, which means that (4.22) behaves like

(4.23) with T → ∞. Therefore, the tilted-QAM code has similar performance as a

Gaussian random code with infinite code length. Since the latter achieves the optimal

diversity-multiplexing tradeoff, so does the tilted-QAM code.

In summary, by looking at the minimum distance properties of the tilted-QAM

code, we showed that it can achieve the optimal diversity-multiplexing tradeoff. We

note that in order to have this result, we exploit the fact that the worst case deter-

minant remains a constant distance away from zero as rate increases, which is a key

property built into the design.
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4.4.2 Determinant Counting

We present a different way of evaluating error probability in this section. Earlier,

we looked at the performance associated with particular channels. Here, we first

look at the error probability associated with a particular pair of codewords averaged

over all channels, and then sum over the codewords. While the last method identify

what channels are particularly bad, this method allows us to see what codeword pairs

dominate the overall error probability.

We first upper bound the pair-wise error probability P [X1 → X2] by an exponen-

tial of SNR. This bound is exponentially tight when 0 ≤ r ≤ 1, but is loose when

1 < r ≤ 2, due to dropping of a “1+” term. Specifically, using (2.21), we have

P [X1 → X2]
·
≤
(

Nt∏

i=1

(
1 +

λ2i
σ2w

))−2
·
≤
(

Nt∏

i=1

(
λ2iSNR

1−r/2
))−2

·
=

1

| det (∆)|4SNR
2r−4

(4.24)

The above equation is the pair-wise error probability averaged over channel for a

particular pair of codewords with difference matrix ∆. Notice that the worst kind

of codeword pairs are the ones with the smallest determinant, which is order 1. So

the worst-pair error probability is SNR2r−4. This corresponds to a lower bound on

the overall error probability and an upper bound of d(r) = 4 − 2r on the diversity-

multiplexing tradeoff curve. This is a straight line connecting (0, 4) and (2, 0). Com-

paring to the similar tradeoff curve upper bounds for the Gaussian random codes

plotted in Figure 2-10, our upper bound is above that of the length-two expurgated

Gaussian random code and is the same as the one with T =∞.

In order to obtain the total error probability, we need to use the union bound and

sum over all codeword pairs.

Pe <
∑

∆6=0
P [X1 → X2]

·
= SNR2r−4

∑

∆6=0

1

| det (∆)|4 (4.25)

Recall from (4.8) that 2
√
5 det(∆) = (s211 − s222 + 4s11s22 + 2s212 − 2s221 + 2s21s12),
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which is a (complex) integer. Let us now look at how often 2
√
5 det(∆) takes on

different values. For a constellation of sizeM , the range of the determinant is of order

M2, so there are about M 4 possible complex integer values for 2
√
5 det(∆). There

are order M 8 different ∆ matrices. So if no value of the determinant is particularly

preferred, then the number of ∆ with a particular determinant should be on the order

of M8/M4 = M4. We can then perform the summation

∑

∆6=0

1

| det(∆)|4
·
= M4

∑

−M4≤a,b≤M4

(a,b)6=(0,0)

1

|a+ bj|4 < M4
∑

−∞<a,b<∞

(a,b)6=(0,0)

1

(a2 + b2)2
. (4.26)

It can be shown that
∑

−∞<a,b<∞

(a,b)6=(0,0)
1

(a2+b2)2
is a finite constant by using a continuous

integral as an upper bound. Consider the piece-wise constant function g(x, y) that

takes the value 1
(a2+b2)2

in the unit square [a − 0.5, a + 0.5) × [b − 0.5, b + 0.5),

(a, b) 6= (0, 0). The integral of this function in the domain outside of the unit square

around the origin equals the sum we wish to bound. Upper bounding g(x, y) with

100
(x2+y2)2

and extending the area of integral to
√
x2 + y2 > 0.5, we can upper bound

the sum with
∫∞
0.5

100
r4
2πrdr, which is clearly some constant. The sum can also be

numerically evaluated to be 6.0268.

Having
∑

−∞<a,b<∞

(a,b)6=(0,0)
1

(a2+b2)2
being a constant gives us

∑

∆6=0

1

| det(∆)|4
·
= M4 ·

= SNRr. (4.27)

This implies that we could have just focus on the M 4 difference matrices with the

smallest determinant and ignore the rest.

Combining (4.25) and (4.27), we have

Pe
·
= SNR2r−4SNRr ·

= SNR3r−4 (4.28)

This corresponds to a diversity-multiplexing tradeoff of d(r) = 4 − 3r, which agrees

with the optimal tradeoff for 0 ≤ r ≤ 1. This shows that the proposed tilted-QAM

scheme can achieve the optimal diversity-multiplexing tradeoff for 0 ≤ r ≤ 1.
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We note that the above is not a complete proof because of the step where we argued

that there are about M 4 difference matrices ∆ with a particular determinant. To

argue this tightly, it is necessary and sufficient to prove that for −M ≤ Re(sij) ≤M ,

−M ≤ Im(sij) ≤M , and any J ∈ Z+Zj, (s211−s222+4s11s22+2s212−2s221+2s21s12) = J

has at most order M 4 solutions.

At this point, it is still a conjecture without proof. The argument above simply

seemed reasonable and agrees with our numerical simulations in which the number

of solutions is counted. In our simulation, we count the number of times |J(sij)| = 1,

with sij taking only real values between −M and M instead of complex numbers

to allow ourselves to go to greater M . With real numbers, we expect the number of

solutions to be of orderM 2. We growM exponentially from 4 up to 256 at increments

of around
√
2. The number of solutions as a function of M is plotted in Figure 4-6 on

a log-log scale so that exponent is revealed as slope. We see that the curve approaches

a straight line as M becomes sufficiently large. A linear fit of the curve from M = 16

to M = 256 shows a slope of 1.97 and another linear fit of the curve from M = 64

to M = 256 shows a slope of 1.99. This numerical evidence shows that the number

of solutions seems to grow like M 2 for the real case (and M 4, for complex). Further

work is still needed to formally establish this result.

Although this determinant counting perspective does not provide a proof for the

optimality of the tilted-QAM code as the minimum-distance perspective did in the

last section, it nevertheless provides an intuition for what contributes the most to

error events and how worst case determinant plays a role. It is interesting to note

that in the tilted-QAM code, there are many worst-case codeword pairs. This could

be interpreted as that the codewords are so carefully placed that they are equally

close to many other codewords in many directions.

4.4.3 Determinant Counting: Higher Dimensional Cases

In the previous sections, we have focused on a multiple antenna system with two-

transmit two-receive antennas. The optimal diversity multiplexing tradeoff curve has

two piece-wise linear segments, between 0 ≤ r ≤ 1 and 1 ≤ r ≤ 2. Generally speaking,
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Figure 4-6: Growth rate of the number of matrices with a particular determinant as
a function of the constellation size M .

for a multiple antenna system with Nt transmit antennas and Nr receive antennas,

the optimal diversity multiplexing tradeoff curve has K = min(Nt, Nr) pieces, as

shown in Figure. 2-3. In this section, based on our experience in the 2× 2 case, let us

speculate how performance evaluation may be done for higher dimensional cases, in

particular, for the segment with 0 ≤ r ≤ 1, using the determinant counting method

described in section 4.4.2.

Using this technique, we can show that for the T = Nt case, if a design could

guarantee a worst-case determinant of order 1 and does not involve repetition, then

it would achieve the optimal diversity-multiplexing tradeoff for 0 ≤ r ≤ 1. We briefly

walk through the reasoning next.

First we have

M2 ·
= SNRr/Nt and σ2w

·
= SNRr/Nt− 1. (4.29)
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The pair-wise error probability averaged over all channels is

P [X1 → X2]
·
≤
(

Nt∏

i=1

(
1 +

λ2i
σ2w

))−Nr

·
=

1

| det (∆)|2Nr
SNRrNr−NtNr (4.30)

The total error probability can be upper bounded using the union bound :

Pe <
∑

∆6=0
P [X1 → X2]

·
= SNRrNr−NtNr

∑

∆6=0

1

| det (∆)|2Nr
(4.31)

Again, we need to count the number of times each det(∆) value occurs. There are

M2N2t codewords, and the range of det(∆) is of order MNt . So each determinant

occurs about M 2N2t −2Nt = M2Nt(Nt−1) = SNRr(Nt−1) times. Focusing only on those

with the smallest determinant, the overall error probability is

Pe
·
= SNRrNr−NtNrSNRr(Nt−1) = SNR−(NtNr−rNr−rNt+1).

Therefore, the diversity-multiplexing tradeoff achieved is d(r) = NtNr−rNr−rNt+1.

Evaluating it at r = 0 and 1, we have d(0) = NtNr and d(1) = (Nt − 1)(Nr − 1).

Therefore, the tradeoff achieved agrees with the optimal tradeoff in Lemma 2.1 for

0 ≤ r ≤ 1.

This tells us that for the T = Nt case, if we could design a codebook without using

repetition and guarantee that the smallest determinant is of order 1, then it would

achieve the optimal diversity-multiplexing tradeoff curve for 0 ≤ r ≤ 1. Also, since

the code takes in N 2
t information symbols, like the tilted-QAM design instead of the

OSTBC design, we expect the code to achieve the (Nt, 0) points. (Assume Nr ≥ Nt,

so we are not losing any dimensions.) At this point, it is unclear whether these two

properties are sufficient for achieving all the intermediate tradeoff points. We suspect

that other criteria such as maximizing the minimum of some other functions of ∆,

not just the determinant, might be needed.
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4.5 Simulation Results

In this section, we use numerical simulations to verify that the tilted-QAM code we

proposed in section 4.3 can indeed achieve the optimal diversity-multiplexing tradeoff

as our theoretical analysis in section 4.4 suggests.

We generate a family of block error rate curves for various rates and compare

them to outage probability curves shown in Figure 2-5. We demonstrate that our

block error rate curves exhibit similar characteristics as the outage probability curves,

which indicates that they have similar diversity-multiplexing tradeoffs. We also show

that tilted-QAM code significantly out-performs OSTBC in the high SNR regime.

Finally, we explore the possibility of using the lower complexity lattice-reduction

based decoding introduced in chapter 3, instead of using the more-complex maximum

likelihood decoding. We show that, with tilted-QAM code, lattice decoding is sub-

optimal and results in similar performance as an uncoded system.

For the tilted-QAM coding scheme, four information symbols sij chosen out of

QAM-like constellations are encoded into a 2×2 transmitted signal matrix X accord-

ing to (4.5). The matrix X is then transmitted over the multiple antenna channel,

Y = HX +W. Random channels with IID CN(0, 1) entries are generated for each

trial. At the receiver, we must deal with the combined effect of the encoder and the

channel. We write the received signal yij directly in terms of the information symbols

sij as




y11

y21

y12

y22



=




h11 h12

h21 h22

h11 h12

h21 h22







1

1

1

1







c1 −s1
s1 c1

c2 −s2
s2 c2







s11

s22

s21

s12



+




w11

w21

w12

w22



,

(4.32)

where ci = cos(θi) and si = sin(θi). We can write (4.32) as Yvec = HeffSvec +Wvec,

where the subscript “vec” indicates vectorized form. Because of this relationship,

the received constellation is a skewed version of the original (uncoded) integer con-
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stellation and is part of a four-complex-dimensional lattice. Therefore, we can use

the sphere decoding technique [26, 38] to reasonably efficiently implement maximum

likelihood (ML) or minimum distance decoding, which is what we assumed in the

analytical performance evaluation.

4.5.1 ML/Sphere Decoding

We perform simulations using the tilted-QAM encoding scheme and ML decoder

at rates R = 4, 8, 12, · · · , 32 b/s/Hz using constellations with sizes per dimension,

M = 2, 4, 8, · · · , 256. We note that R = 2 · log2(M2). The resulting family of 2 × 2

block error rate curves for the various rates are plotted in Figure 4-7. The outage

probability curves for the those rates are also plotted for comparison.
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Figure 4-7: Error rate curves of the proposed titled-QAM code (dark) and the outage
probability curves (light) for various rates. We see that the two sets of curves have
similar slopes and horizontal gaps, which means that they have similar diversity and
multiplexing gains.

We see that the tilted-QAM block error rate curves follow the outage probability

curves closely, especially at higher rates. At lower rates, the curves do not agree as
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well. This is because diversity-multiplexing tradeoff is a high SNR characteristic. It

is possible for two systems with the same tradeoff to have different low SNR behavior.

The diversity and multiplexing gains achieved can be measured from the slopes of

the error rate curves and the horizontal spacings between these curves, as discussed

earlier in section 2.3. Let us compare the slopes and gaps achieved by the tilted-QAM

code to that of the linearized outage probability curves show in Figure 2-7. We see

that above the Pout = SNR−1 line, the gaps between the curves with rate differential

4 b/s/Hz is about 6 dB. This implies the maximum multiplexing gain of 2 b/s/Hz per

3 dB. At this location, the slope of the curves is about 2. Below the Pout = SNR−1

line, the slope of each curve approaches 4, which is the maximum diversity gain. The

gaps between the curves is about 9 dB, which corresponds to 4/3 b/s/Hz per 3 dB.

All these slopes and gaps agrees with the optimal tradeoff curve in Figure 2-4.

These simulation results show that the proposed tilted-QAM encoding scheme,

together with ML decoding, can match the outage probability curves and achieve the

optimal diversity-multiplexing tradeoff.

We also note that the diversity-multiplexing tradeoff does not capture constant

factor differences between systems. One system may be a fixed dB inferior than an-

other, while having the same tradeoff. Our simulation results show that the gap

between the tilted-QAM code and the outage probability is in fact quite small,

even though the tilted-QAM code is only designed to achieve the optimal diversity-

multiplexing tradeoff.

Comparing the tilted-QAM code and the OSTBC performance show in Figure 4-2,

we see that at 4 b/s/Hz, they are similar. For rates below 4 b/s/Hz, OSTBC is

near optimal and is preferred for its lower decoding complexity. As rate increases,

tilted-QAM codes out-perform OSTBC by increasing amounts due to the superior

multiplexing gain. Tilted-QAM codes achieve the same rates at much lower SNR;

and since they reach the same limiting slopes, OSTBC never catches up.
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4.5.2 Lattice Decoding

Earlier in chapter 3, we proposed a lattice-reduction-aided detector that has lower

complexity and achieves near ML performance. One draw back is that this decoder

treats the constellation as an infinite lattice and does not handle constellation bound-

aries.

In this section, we investigate the degree to which this low-complexity decoder

can replace the more-complex ML decoder when the transmitter uses the tilted-QAM

scheme. We show that the maximum diversity can not be achieved due to the bound-

ary problem and the resulting performance is similar to an uncoded system. We first

provide intuition and then present numerical simulation results.

Intuitively, we speculate that due to the boundary issue, the lattice decoder can

not perform as well as the ML decoder. When the constellation boundary is not

considered during decoding, there are effectively many more codeword pairs and many

more difference matrices with small determinant. The determinant counting method

in section 4.4.2 suggests that this can lead to significant performance degradation.

From a different perspective, without the boundary, there is no upper bound on

the energy of the difference matrix ‖∆‖2 as in (4.13). Consequently, there is no lower

bound on the smaller singular value of ∆, λ2, as in (4.15). As a result, there can

never be an SNR large enough so that the (1 + λ22/σ
2
w) term in the pair-wise error

probability is in effect. Without the contribution from this λ2 term, the slopes of the

error rate curves can only reach 2.

To verify our speculation, we perform simulations with tilted-QAM encoder and

lattice-reduction-aided BLAST decoder at the same constellation sizes and rates as

before. The results are plotted in Figure 4-8. We see that, as we predicted, the slopes

reach a maximum of only 2 and never reach 4. The gaps between the curves are still

6 dB since we do not lose any multiplexing gain.

We notice that Figure 4-8 looks very similar to Figure 3-9, the performance of an

uncoded system with lattice reduction aided detector. This means that when using

lattice decoding, there is no benefit to using the tilted-QAM code. This is because
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Figure 4-8: Tilted-QAM encoding with lattice-reduction-aided BLAST decoding. The
maximum slope reached is only 2. The gaps between the curves are 6 dB, indicating
full multiplexing gain.

when the boundary is not handled, λ2 can be arbitrarily small. At any given SNR,

a λ2 much smaller than σw is equivalent to zero. So the matrix is effectively singular

and the determinant equals zero.

In summary, the tilted-QAM code with ML decoding achieves the optimal diversity-

multiplexing tradeoff. It out-performs OSTBC due to the superior multiplexing gain.

However, if the ML decoder is replaced with a lattice decoder, then the optimal perfor-

mance is lost. In fact, the tilted-QAM code becomes ineffective, and the performance

achieved is similar to that of an uncoded system.

4.6 Tilted-QAM in Single Antenna Case

In the past three sections, we described a tilted-QAM code design for the two-transmit

two-receive antenna channel. It has a specifically chosen set of universally optimal

rotation angles that maximizes the worst case determinant for all rates, and it achieves
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the optimal diversity-multiplexing tradeoff.

In this section, we apply similar design techniques to the single antenna fading

channel problem. We consider the scenario where we are allowed to code over two

independent channel realizations, which resembles coding over two different antennas.

We see that this coding problem can be viewed as a simpler version of the previous

problem with fewer variables.

We first describe the channel model for this system and present the related ca-

pacity and diversity-multiplexing tradeoff results. Next, we show a modified version

of the tilted-QAM design for this problem. We then use the determinant counting

technique to show that this design achieves its respective optimal tradeoff. 4

We note here that the code design we propose here was also proposed by Boutros

and Viterbo in [3]. The codes are designed using the same determinant criterion.

What is new in this work is that we show the universality of the design for all rates, and

our focus is on diversity-multiplexing tradeoff. We evaluate the tradeoff achievable

by this code and compare it to the optimal tradeoff of the system.

4.6.1 Channel Model and Theoretical Background

The single antenna Rayleigh fading channel with AWGN can be modeled as

y = hx+ w, (4.33)

where h has zero-mean, unit variance, complex Gaussian density, CN(0, 1), x rep-

resents the transmitted signal, w is the AWGN, and y is the received signal. The

average signal to noise ratio is ρ.

We consider the scenario where we are allowed to code over two independent

channel realizations, h1 and h2. In this case, the system model is illustrated in

Figure 4-9. Comparing to the multiple antenna channel model in Figure 1-1, this is

4We present an analytical determinant counting argument for the case where all the variables
are limited to the real field. For the complex case, due to the additional dimensions involved, it is
difficult to handle all the variables.
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essentially a two-transmit two-receive system without the cross interference, which

only makes the problem easier.

h

h 2

x

x y2

y1

2

1

w

w

1

2

1

Figure 4-9: Single antenna fading channel over two channel realizations.

The average capacity per channel use achievable by this system is

C =
1

2

(
log2(1 + ρ|h1|2) + log2(1 + ρ|h2|2)

)
(4.34)

=
1

2
log2

(
ρ2|h1|2|h2|2 + ρ(|h1|2 + |h2|2) + 1

)
(4.35)

From the capacity expression, we can derive the optimal diversity-multiplex trade-

off of this system using the same technique used in section 2.3.3. When the target

transmission rate is R = r log2(ρ), the outage probability is

Pout(R, ρ) = P [C < R]

= P
[
ρ2|h1|2|h2|2 + ρ(|h1|2 + |h2|2) + 1 < ρ2r

]

·
= P

[
|h1|2 < ρr−1 and |h2|2 < ρr−1

]

·
= ρr−1 · ρr−1

= ρ2r−2, (4.36)

where we use the property that |h1|2 and |h2|2 are chi-squared random variables of

order 2. Therefore, the optimal diversity-multiplex tradeoff achievable by this system

is d(r) = 2r − 2, a straight line between (0, 2) and (1, 0).
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4.6.2 Tilted-QAM design

In this study, we are interested in code designs that achieve the optimal diversity-

multiplexing tradeoff. We consider the shortest non-trivial code which consists of two

symbols, one going through each of the channel realizations. We can represent this

system in a matrix form Y = HX+W, more specifically,


 y1 0

0 y2


 =


 h1 0

0 h2




 x1 0

0 x2


+


 w1 0

0 w2


 . (4.37)

Since all the matrices are diagonal, we can modify the tilted-QAM design for this

single antenna fading channel case by simply using the diagonal terms of a tilted-

QAM code.

We propose a design where the codeword matrix X =


 x1 0

0 x2


 is


 x1

x2


 =


 cos(θ) − sin(θ)

sin(θ) cos(θ)




 s1

s2


 . (4.38)

Again, si are uncoded information symbols chosen independently and uniformly out

of a QAM-like constellation carved from Z + Zj.

For any diagonal matrix, its determinant is simply the product of its diagonal

elements. Using the same technique used for finding the rotation angle pair for the

multiple antenna design in section 4.3.2, we find that the optimal angle that maximizes

the worst determinant in this case is

θ =
1

2
arctan(2). (4.39)

With this choice of rotation angle, the resulting determinant is

det(X) = x1x2 =
1√
5
(s21 + s1s2 − s22). (4.40)

This determinant is never zero unless both s1 and s2 are zero. The proof is a special
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case of the proof for Lemma 4.1 with just two of the variables, instead of four.

4.6.3 Error Probability Evaluation

Next, let us follow the earlier analysis done for multiple antenna channels and de-

rive error probability expressions for this single antenna channel with the modified

tilted-QAM code design. We again use the determinant counting technique used in

section 4.4.2.

From the error probability expression derived in section 2.4, we have,

P [X1 → X2] ≤ EH

[
exp

{−‖H∆‖2
8σ2w

}]

= Eh1

[
exp

{−|h1|2|δ1|2
8σ2w

}]
Eh2

[
exp

{−|h2|2|δ2|2
8σ2w

}]

=
1

1 + |δ1|2
8σ2w

· 1

1 + |δ2|2
8σ2w

,

where ∆ is the difference codeword matrix with diagonal elements δ1 and δ2.

Mirroring (4.10) and (4.11), we have here,

Es
·
= M2 = 2R = ρr and σ2w

·
=
Es

ρ
·
= ρr−1. (4.41)

Combining the above, we have, similar to (4.24),

P [X1 → X2]
·
=

1

1 + |δ1|2
8σ2w

· 1

1 + |δ2|2
8σ2w

·
≤ 1

(|δ1|2|δ2|2)
σ4w =

1

| det(∆)|2ρ
2r−2. (4.42)

In order to obtain the total error probability, we need to use the union bound and

sum over all codeword pairs, we have, similar to (4.25),

Pe <
∑

∆6=0
P [X1 → X2]

·
= ρ2r−2

∑

∆6=0

1

| det (∆)|2 (4.43)

Now, in order to prove that the optimal tradeoff of d(r) = 2r − 2 is achieved, we

need to show that
∑

∆6=0
1

| det (∆)|2 grows slower than any polynomial power of ρ as
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rate and constellation size increases.

When all the variables are complex, the summation happens over a four dimen-

sional integer grid, two for each complex diagonal elements of ∆. This summation

is difficult. Instead, let us change the problem and perform this summation for real

variables to develop some intuitions for the complex case.

For the real case, |h1|2 and |h2|2 are chi-squared random variables of order 1,

instead of 2. Because of this, we should sum over 1
| det (∆)| instead of 1

| det (∆)|2 .

From the determinant property of the modified tilted-QAM code in (4.40), we

have

| det(∆)| ·
= |a2 + ab− b2|, (4.44)

where (a, b), a, b ∈ Z, represents the difference between two information symbol pairs.

When the constellation size is M , the range of a and b is within −M and +M .

Now what we need to evaluate is

∑

∆6=0

1

| det (∆)|
·
=

∑

−M<a,b<M

(a,b)6=(0,0)

1

|a2 + ab− b2| . (4.45)

In the following lemma, we show that the right hand side quantity grows no faster

than (logM)2. Since M 2 = ρr, this in turn implies that
∑

∆6=0
1

| det (∆)|2
·
≤
(
r
2
log ρ

)2
,

which grows slower than any polynomial power of ρ.

Lemma 4.3 For a, b ∈ Z,

∑

−M<a,b<M

(a,b)6=(0,0)

1

|a2 + ab− b2|
·
≤ (logM)2. (4.46)

Proof:

Let us first divide all the points (a, b) to be summed over into the standard four quadrants.
To take care of the axis, let each quadrant include the semi-axis on its clockwise side. For
example, the first quadrant include all points a ≥ 1, b ≥ 1 and the positive x-axis. Note
that no quadrant contains the origin.
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Let f(a, b) = |a2 + ab− b2|−1. It has the symmetry property that

f(a, b) = f(−a,−b) = f(b,−a) = f(−b, a). (4.47)

This means that every point in the second, third, and fourth quadrant has a corresponding
image in the first quadrant. Therefore,

∑

−M<a,b<M

(a,b)6=(0,0)

f(a, b) = 4 ·
∑

1≤a<M
0≤b<M

f(a, b). (4.48)

To sum over the first quadrant, we further divide it into two regions, b > a and a ≥ b.
We map points with b > a to points in the a ≥ b region by using the identity

f(a, b) = f(b− a, a). (4.49)

For each point (a, b) with b > a ≥ 1, we map it to (b− a, a). Since b > a to start with,
b− a ≥ 1. Therefore, the new point is still inside the first quadrant. We continue with this
mapping until we get a point with a ≥ b. For example, starting from (11, 17), we first map
it to (6, 11), then (5, 6), (1, 5), and finally (4, 1), 4 > 1.

All these points, eg., (11, 17), · · · (4, 1), have the same f(a, b) value and they all map to
the same point in the a ≥ b region. We need to count how many points in the b > a region
map to the same point in the a ≥ b region. We do so by noticing that this sequence of
coordinates is Fibonacci like, (b− a, a)← (a, (b− a) + a) = (a, b). We know that Fibonacci

number grow exponentially (with limiting rate
√
5+1
2 ). Thus, within a certain range M ,

there are logM many such points. Therefore, each point in the a ≥ b region is mapped to
by at most order logM points in the b > a region.

Now, we can just sum over the a ≥ b region and multiply the result by logM to take
care of all the points in the b > a region as an upper bound to the total sum.

To sum over the a ≥ b region in the first quadrant, we use an upper bound of f(a, b).
When a ≥ b ≥ 0, |a2 + ab− b2| ≥ a2. Thus f(a, b) ≤ 1

a2
. Therefore,

∑

1≤a<M
0≤b≤a

f(a, b) ≤
∑

1≤a<M
0≤b≤a

1

a2
=

∑

1≤a<M

a+ 1

a2
·
=

∑

1≤a<M

1

a

·
= logM. (4.50)

In summary,

∑

−M<a,b<M

(a,b)6=(0,0)

1

|a2 + ab− b2| = 4
∑

1≤a<M
0≤b<M

f(a, b)
·
≤ logM

∑

1≤a<M
0≤b≤a

f(a, b)
·
≤ (logM)2. (4.51)

To numerically verify Lemma 4.3, we plot
∑

−M<a,b<M

(a,b)6=(0,0)
f(a, b) as a function of M

for M up to 1000 in Figure 4-10. We also plot the curve 5(logM)2 on top of it. We

see that the sum seems to grow a little slower than 5(logM)2.

We also plot the number of times where f(a, b) = 1, which is a significant part
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in the total sum. We see that it grows like logM . We can in fact list all of the

solutions. They are the symmetric variations (in the four quadrants) of the point

(1, 0), (1, 1), (1, 2), (2, 3), (3, 5), · · · , the well-known Fibonacci sequence.

4.7 Summary

In this chapter, we studied the problem of designing structured deterministic codes

that achieve the optimal diversity-multiplexing tradeoff. In particular, we focused

on the two-transmit two-receive antennas case, and length two codes, the minimum

needed to achieve the optimal tradeoff. We reviewed the well-known OSTBC code,

which uses a smart repetition to achieve the maximum diversity gain. In doing so, it

sacrifices multiplexing gain.

Realizing the problem of OSTBC, we proposed a tilted-QAM coding design which

replaces the repetition with a suitably chosen rotation while keeping the cross diagonal

structure. Based on the criterion of maximizing the worst case determinant, a set of

rotation angles is identified and proven to be universally optimal for all rate. This
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universal characterization of the code allows us to analyze its performance in the

high SNR regime. It is then shown that the proposed tilted-QAM design achieves

the optimal diversity-multiplexing tradeoff through both theoretical analysis as well

as numerical simulations.

Prior to this work, there is no known scheme that achieves the optimal diversity-

multiplexing tradeoff for the Nt = Nr = T = 2 case. After Zheng and Tse showed

that Gaussian random code is sub-optimal in this case, it was left as an open question

whether the optimal tradeoff is even achievable at this length. This question is now

answered by our work.

The key to our design is the identification of the rotation angles which guarantees

that the worst case determinants remain a constant distance away from zero as rate

increases.

Comparing tilted-QAM code and OSTBC, similar performance is achieved at

4 b/s/Hz. Above that, tilted-QAM out-performs OSTBC by increasing amounts.

At lower rates, OSTBC is preferred for its lower complexity.
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Chapter 5

Error Correction Code Enhanced

Systems

5.1 Introduction

In the previous chapter we studied coding for a two-transmit two-receive antenna

system with a length two code that can effectively achieve the optimal diversity-

multiplexing tradeoff. In this chapter we further investigate the role of using longer,

more powerful, error correction codes. The goal is to understand how to build prac-

tical systems with good performance.

In communication systems, it is a common practice to introduce redundancy into

the transmitted signal via coding to improve performance. Error correction coding

for AWGN channels has long been studied. There are well-known soft-decision codes

like the turbo codes and LDPC codes that can approach capacity to within a small

fraction of a dB. There are also hard-decision codes like Reed-Solomon codes, that

have been used in industry for decades.

These codes typically provide coding gains that are measured in terms of constant

gains in SNR in dB. This is different from coding for diversity-multiplexing tradeoff

for multiple antenna channels, which is about the slopes at which probability of error

decays or data rate increases with SNR, rather than constant offsets. Therefore,

we must use long error correction code in addition to codes specifically designed for
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multiple antenna channels to achieve both good diversity-multiplexing tradeoff and

good constant factor gain, and help us obtain the best performance possible.

Another reason for using error correction coding is that, in practice, data is often

sent in packets of many hundreds of bytes or longer. What users really care about

is the block error rate of such a long block. For example, an executable file must be

received completely correctly; even a few bit errors would make the file useless. If we

only use the short block codes discussed in the last chapter, a packet would consist

of many hundreds of separately coded small blocks. The probability of getting one of

them wrong is very high. Therefore, we must use error correction coding to introduce

redundancy into the entire block to protect it. In addition, error correction coding

provides a mean of error detection, so re-transmission can take place if needed.

In this study, for simplicity, we mainly focus on coding within one channel real-

ization, where the length of the error correction code used is shorter than the channel

coherence time, so that only one channel realization is seen by each codeword. When

the channel is fast varying and we can afford relatively longer delay, we can consider

coding over multiple channel realizations. This would provide additional temporal

diversity, because all the channels have to fade simultaneously for the transmission to

fail. Coding across channel realizations can always be implemented as a higher level

outer code.

The system model we use in this chapter is again Y = HX+W, where X is the

2×T transmitted signal matrix with large T , H is the 2×2 channel matrix,W is the

additive white Gaussian noise andY is the received signal. Under the Rayleigh fading

model, the entries of H are independent and identically distributed CN(0, 1) random

variables, and are assumed to be known by the receiver, but not the transmitter.

We study several existing, as well as newly proposed, coding schemes and obtain

some understanding of their potential and limitation. We look at what performance

they can achieve and discuss their problems.

The outline of this chapter is as follows. First, we briefly look at a system based on

the orthogonal space-time block code and show that it is near optimal when operating

in the low SNR regime but increasingly sub-optimal for higher SNR. Next, we study, in
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more detail, the Bell Labs Layered Space-Time architecture, in particular, the original

diagonal-BLAST (D-BLAST) version. We show that it has the potential to achieve

channel capacity but has practical problems. We also present numerical simulation

results. In section 5.4, we investigate three variations of the D-BLAST architecture

that avoids some of its problems, and provide theoretical analysis using a common

framework based on the multiple access channel. We demonstrate that joint decoding,

if it can be accomplished, has significant advantage over successive cancellation based

decoding. In the two sections that follow, we explore the possibility of combining

hard and soft decision error correction coding with the tilted-QAM code proposed

in section 4.3. We describe the coding scheme, present numerical simulation results,

and compare them with that achieved by D-BLAST. We conclude and summarize in

section 5.7.

5.2 OSTBC

Earlier in section 4.2, we reviewed the orthogonal space-time block codes, which was

first introduced by Alamouti [1], and later extended by Tarokh [34]. We described

the OSTBC as a short and smart repetition code for the two-transmit two-receive

antenna systems.

In this section, we discuss how it can be concatenated with long and powerful

error correction codes and what the overall system can achieve. We show that using

OSTBC around a 2 × 2 multiple antenna channel essentially transforms it to two

independent AWGN channels. As a consequence, we can apply additional long and

powerful ECC naturally. We see that the resulting capacity achieved by the overall

system is near optimal in the low SNR regime.

Let us briefly summarize the OSTBC discussion in section 4.2. For a two transmit

two receive antennas system, the OSTBC encodes two information symbols, s1 and

121



s2, into a 2× 2 transmit matrix according to

X =


 s1 −s∗2
s2 s∗1


 . (5.1)

The resulting effective channel can be written as




y11

y21

y∗12

y∗22



=




h11 h12

h21 h22

h∗12 −h∗11
h∗22 −h∗21





 s1

s2


+




w11

w21

w∗12

w∗22



. (5.2)

The repetition, which transmits each symbol twice by both antennas and in different

times, allows OSTBC to achieve the maximum diversity gain of NtNr = 4. However,

this repetition also causes the OSTBC to lose multiplex gain. For this reason, OSTBC

should only be used at low SNR, and not at high SNR.

5.2.1 Equivalent channel

Let us now look at how OSTBC transforms two transmit two receive antenna channels

to AWGN channels so that additional error correction coding can be applied.

From the effective channel expression (5.2), we can see that the two channel vec-

tors,
[
h11 h21 h∗12 h∗22

]T
and

[
h12 h22 −h∗11 −h∗21

]T
, are orthogonal. Because of

this orthogonality, there are no interference between s1 and s2. Thus, the OSTBC

effectively transforms a 2×2 multiple antenna channel with channel matrix H to two

independent AWGN channels with identical gains ‖H‖, one for s1 and one for s2, as

depicted in Figure 5-1. Notice that due to the repetition, only one symbol is actually

transmitted in one time slot.

Once the multiple antenna channel is transformed to AWGN channels, ECC that

was originally design for AWGN channel can now be applied naturally as an outer

code. The concatenated system is shown in Figure 5-2. One information bit stream

is error correction encoded and then demultiplexed and modulated into the symbols
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Figure 5-1: OSTBC effectively transforms a 2 × 2 multiple antenna channel to two
independent AWGN channels with identical gains ‖H‖.

streams S1 and S2. They are then encoded by OSTBC, passed through the multiple

antenna channel, and decoded by a corresponding OSTBC decoder; in other words,

they each pass through the equivalent AWGN channels shown in Figure 5-1. The

OSTBC decoder outputs, S̃1 and S̃2, are then demodulated, multiplexed, and error

correction decoded. Note, we can use one encoder for both S1 and S2, or we can use

separate ones. The advantage of using one encoder is that the delay is cut in half for

the same code length.

5.2.2 Achievable Performance

Let us now look at what performance can be achieved by the concatenated system

shown in Figure 5-2, and compare that with the ultimate performance achievable by

any system.

If we can use capacity achieving ECC as the outer code, i.e., the delay and the

complexity are affordable, then the system in Figure 5-2 should achieve the capacity
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Figure 5-2: Concatenation of an OSTBC inner code with an error correction outer
code.

of the equivalent channel depicted in Figure 5-1, which is,

COSTBC(H) = log2

(
1 +

SNR

Nt

‖H‖2
)
. (5.3)

In comparison, the channel capacity of a multiple antenna channel is

Cchannel(H) = log2

(
det

(
INr

+
SNR

Nt

HH†
))

. (5.4)

In the 2× 2 case, this can also be written as

Cchannel(H) = log2

(
1 +

SNR

Nt

‖H‖2 +
(
SNR

Nt

)2

| det(H)|2
)
. (5.5)

Compare COSTBC (5.3) with Cchannel (5.5), we see that the
(
SNR
Nt

)2
| det(H)|2 term

is missing. At high SNR, this term dominates, and its absence causes the loss of

multiplexing gain. However, at low SNR, this term is insignificant. Therefore, at

low SNR, we expect concatenation of an OSTBC inner code with a powerful error

correction outer code to be able to effectively achieve capacity. This is true for any

particular realization of H. As a consequence, it is also true for an ensemble of H in

the case of fading channels.

To verify the above statement numerically, we plot the outage probability as
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a function of SNR for various target rates R for both Cchannel and COSTBC, i.e.,

P [Cchannel(H, SNR) < R] and P [COSTBC(H, SNR) < R], in Figure 5-3.
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Figure 5-3: Comparison of the family of channel outage probability curves (solid) and
the family of OSTBC outage probability curves (dash) as functions of SNR for rates
2−5, 2−4, · · · , 1, 2, 4, 6, · · · , 18, 20.

From Figure 5-3, we see that for low rates, OSTBC curves match the channel

outage probability curves very well as expected. The approximation is good up to

about 2 b/s/Hz, at which point the gap is about 1 dB. After that, the gap starts

to increase and will increase indefinitely as rate increases further, because of the

difference in multiplexing gain. For rates slightly above 2 b/s/Hz, we might still want

to use OSTBC for the benefits of ease of implementation and low complexity. At

6 b/s/Hz, which is quite large for current practical applications, the gap is a little

over 3 dB. Beyond this point, the gap might be too large to be tolerated, where we

probably would not want to use OSTBC.

In summary, OSTBC transforms multiple antenna channels to AWGN channels,

and powerful capacity approaching error correction codes designed for AWGN chan-

nels can then be concatenated with it. The overall system is near optimal in the low

SNR regime for rates below 2 b/s/Hz. As rates increase, the gap increases. Therefore,
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for system designers who are only interested in using two antennas and transmitting at

below 2 b/s/Hz, OSTBC with ECC is a highly desirable scheme. For other scenarios,

other coding schemes should be considered.

In the next section, we look at a scheme that can be applied to any number of

antennas, as well as a wide range of SNR levels.

5.3 Diagonal-BLAST

In this section, we study the Bell Labs Layered Space-Time architecture, in particular,

the original diagonal-BLAST version, which is a sequential encoding and decoding

method.

The D-BLAST architecture was first introduced by Foschini [9] in 1996. This

scheme can be applied to systems with any number of antennas, and can be imple-

mented with reasonably low complexity. It can also operate in a wide range of SNR

and rate levels.

We first describe the diagonal layered encoding structure and two decoding algo-

rithms, nulling and minimum mean squared estimation. We show that D-BLAST-

MMSE has the potential to achieve channel capacity in the two transmit two receive

antenna case. Next, we discuss several practical problems of D-BLAST, such as error

propagation and some issues related to discreteness. We also run numerical simula-

tions to see how well D-BLAST can do in practice. This result is later compared to

other systems.

5.3.1 Layered Encoding

D-BLAST encoding done in diagonal layers is illustrated in Figure 5-4. Each row of

the grid corresponds to what is transmitted by one antenna, and each column repre-

sents what is transmitted in τ consecutive times. For example, layer “a” corresponds
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Figure 5-4: BLAST encodes in diagonal layers labeled with different alphabetical
letters.

to the following entries in the transmitted signal matrix,




x1,1 · · · x1,τ

x2,τ+1 · · · x2,2τ
. . .

xNt,Ntτ+1−τ · · · xNt,Ntτ



.

(5.6)

To perform encoding, we first encode raw information bits into codewords of length

Ntτ using any suitable coding scheme. Each codeword is then associated with one di-

agonal layer (with Ntτ entries) for transmission during the appropriate slots according

to Figure 5-4.

The key features of this encoding scheme are

1) all Ntτ symbols of a codeword are transmitted during different times, and

2) each codeword is transmitted (in pieces) by all antennas.

The reason for transmitting one codeword using all possible antennas is to maxi-

mize the tolerance of some of the channel coefficients being in deep-fade. The reason

for transmitting in different times is so that the symbols from the same codeword do

not interference with each other, which allows for convenient decoding as we illustrate

next.
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5.3.2 Layered Decoding

In D-BLAST decoding, the diagonally-layered codewords are decoded one at a time, in

order, via successive cancellation. We first briefly describe how successive cancellation

is done to handle the interference between the layers, then describe how each layer

can be decoded.

Suppose we want to decode the layer labeled “a” in Figure 5-4. By this time, layers

“z” and before should have already been decoded. Therefore, we can completely

cancel out their interference on layer “a”. However, layers “b” and later have not

been decoded, so their interference remains. Two ways of handling these interference

are described in detail in the next two sections.

After handling the interference between the layers, each symbol of layer “a” is then

simply corrupted by some effective additive noise. There might be different amount

of noise on different symbols, and the coding applied would allow symbols that are

more reliable to help decode the ones that are not.

We decode each layer as if it had just gone through a varying gain AWGN channel.

One way is to do a two stage decoding. First all the symbols in that layer are indi-

vidually detected. The intermediate result can be in the form of either soft decision

or hard decision. The entire block is then passed on to the decoder where the original

information is extracted.

Next, let us describe in more detail the two ways of handling the interference

between layers, BLAST-nulling and BLAST-MMSE, and see what performance can

be achieved. These two methods are both based on successive cancellation and differ

in the way they handle the interference from the layers that have not been decoded.

BLAST-nulling

The BLAST-nulling scheme was earlier reviewed in section 3.2, and is briefly sum-

marized here. BLAST-nulling uses successive cancellation to cancel out interference

from layers already decoded and use Gram-Schmidt or QR factorization to null out

layers that have not been by only looking in the dimension orthogonal to all the
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interference.

Let us suppose that we want to detect the entry x2,2τ of layer “a”. The received

signal vector at time 2τ is y2τ = Hx2τ + w2τ . The entries xi,2τ , i > 2, have been

decoded, and x1,2τ has not been.

We first factorize the channel matrix as H = QR, where Q is unitary and R is

upper triangular. y2τ can then be pre-processed to obtain y′2τ = Q
†y2τ = Rx2τ+w

′
2τ ,

where w′2τ = Q
†w2τ and † denotes the conjugate transpose operation, so




y′1,2τ

y′2,τ
...

y′Nt,2τ



=




r11 r12 · · · r1Nt

0 r22 · · · r2Nt

...
. . . . . .

...

0 · · · 0 rNtNt







x1,2τ

x2,2τ
...

xNt,2τ



+




w′1,2τ

w′2,2τ
...

w′Nt,2τ



. (5.7)

Focus on the second row of the above matrix equation,

y′2,2τ = r22x2,2τ + r23x3,2τ + · · ·+ r2Nt
xNt,2τ + w′2,2τ , (5.8)

we see that the undecoded entry x1,2τ does not appear due to the nulling, and the

already decoded entries xi,2τ , i > 2, can be canceled out, leaving

ỹ2,2τ = r22x2,2τ + w′2,2τ . (5.9)

Now, we can detect x2,2τ . Notice that if some of the entries xi,2τ , i > 2 were mis-

decoded, wrong values would have been canceled out, and x2,2τ might be mis-decoded

as well. This phenomenon is known as error propagation.

Once we detect all entires of layer “a” in similar fashion, we send the entire block

into a decoder to correct for any detection errors and get the transmitted codeword.

The BLAST-nulling decoding scheme is summarized in Figure 5-5.

To see what fraction of the total capacity can be achieved by such a system,

we note that the effective channel gain experienced by x2,2τ is r22. Similarly, the

channel gain experienced by entry xi,j is rii. So by using the BLAST architecture
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Figure 5-5: BLAST-nulling decoding scheme. Interference from symbols in later
layers, which are not yet decoded, are nulled out via QR factorization of the channel
matrix. Interference from symbols in previous layers, which are already decoded, are
eliminated using successive cancellation.

with BLAST-nulling decoder, the multiple antenna channel is transformed into Nt

independent AWGN channels, each with gain rii. This is similar to the transformation

in the OSTBC case, shown in Figure 5-2, except that the channels gains are different

and each codeword goes through all these different sub-channels due to the diagonal

structure.

The channel capacity of each effective scalar sub-channel is log2(1 + ρr2ii), where

ρ = SNR/Nt. Therefore, the total capacity achievable by BLAST-nulling is

CBLAST−nulling =
Nt∑

i=1

log2(1 + ρr2ii). (5.10)

Compare to the ultimate capacity of the Gaussian channel,

Cchannel(H) = log2(det(INr
+ ρHH†)) = log2(det(INr

+ ρRR†)) ,

BLAST-nulling is sub-optimal. For example, for Nt = 2,

CBLAST−nulling = log2((1 + ρr211)(1 + ρr222)), (5.11)

Cchannel = log2((1 + ρr211)(1 + ρr222) + ρr212). (5.12)
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BLAST-nulling utilizes only the diagonal elements of R and disregards the off

diagonal terms, causing it to be sub-optimal. In the limit of high SNR, the difference

can become arbitrarily small. However, it is still less robust against fading, since

having small diagonal terms for R would by sufficient to kill the transmission. We

do not get any protection from the off diagonal terms. Although BLAST-nulling is

sub-optimal, it is an efficient decoding scheme.

BLAST-MMSE

BLAST-MMSE is a variation of BLAST-nulling. In this section, we describe how they

differ and analyze the performance achievable by BLAST-MMSE in the two-transmit

two-receive antenna case. We show that while BLAST-nulling is sub-optimal, BLAST-

MMSE can actually achieve the full channel capacity by utilizing the off diagonal

terms of R.

The main difference between BLAST-MMSE and BLAST-nulling is how they

handle interference from entries that have not been decoded. In equation (5.7), where

y′2τ = Rx2τ +w
′
2τ is written out in full matrix form, instead of focusing only on the

second row to decode x2,2τ , we use the first two rows. We subtract out the already

decoded terms xi,2τ , i > 2, leaving

ỹ2,2τ =


 ỹ1,2τ

ỹ2,2τ


 =


 r11 r12

0 r22




 x1,2τ

x2,2τ


+


 w′1,2τ

w′2,2τ


 . (5.13)

Since we want to detect x2,2τ only, we can treat x1,2τ as noise, combine the two noise

terms, and rewrite the above equation as

ỹ2,2τ =


 r12

r22


 x2,2τ +


 r11

0


 x1,2τ +


 w′1,2τ

w′2,2τ


=


 r12

r22


 x2,2τ +


 v1,2τ

v2,2τ


 . (5.14)

We can now find the MMSE of x2,2τ using the appropriate noise covariance matrix.

It turns out that the resulting effective SNR is ρr222 + ρr212/(1 + ρr211), instead of

ρr222 as is the case in BLAST-nulling. So by using the BLAST architecture with
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BLAST-MMSE decoder, the 2× 2 multiple antenna channel is transformed into two

independent AWGN channels with gains r11 and
√
r222 + r212/(1 + ρr211). as shown in

Figure 5-6.

w

w

Y = HX+W
X Y

11r

√
r222 + r212/(1 + ρr211)

Figure 5-6: BLAST-MMSE effectively transforms a 2×2 multiple antenna channel to
two independent AWGN channels with effective gains r11 and

√
r222 + r212/(1 + ρr211).

The total capacity achieved by BLAST-MMSE is

CBLAST−MMSE = log2
(
1 + ρr211

)
+ log2

(
1 + ρr222 +

ρr212
1 + ρr211

)
(5.15)

= log2
(
(1 + ρr211)(1 + ρr222) + ρr212

)
= Cchannel (5.16)

This indicates that BLAST-MMSE achieves full channel capacity.

Although theoretically BLAST-MMSE is optimal and BLAST-nulling is near op-

timal, they do have several practical problems, which we discuss in the next section.

5.3.3 D-BLAST Caveats

In this section, we discuss some of the practical issues associated with the D-BLAST

architecture. Some of them are associated with the diagonal layered nature of D-

BLAST; another is associated with the discrete nature of the constellations that are

often used in practice.
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Layered Structure Problems

Some of the problems with the diagonal layered structure are error propagation,

additional re-initialization cost, and increased delay.

Let us first discuss error propagation. Because decoding later layers requires the

previous layers to be correctly decoded, once one layer is mis-decoded, the error

will propagate on to later layers and may not stop for several layers. To reduce

error propagation, we must protect each layer with sufficiently strong error correction

codes. However, even if we do so, there might still be unpredictable events which

could cause occasional errors. If each of such events causes subsequent errors due to

propagation, it would make the system less robust.

One sure way to stop error propagation is to reinitialize, stop transmitting for

several layers and start transmitting a new layer without having to cancel previous

ones. However, this would increase the overhead associated with the initialization.

Because of the diagonal layered architecture, the lower triangle before the first layer

must all be initialized to zero or some known value to allow decoding of the first layer.

In the case of Nt = 2, this overhead is equal to half of a code block. For larger Nt,

the overhead would be even greater. To reduce the impact of overhead, we would

want to transmit many layers before re-initializing. However, this would lead us back

to the error propagation problem. Also, if the channel varies sufficiently fast and

come in and out of fade every few layers, then due to the error propagation, we must

reinitialize every time the channel comes out of a fade. This would lead to a lot of

re-initialization overhead.

The last problem associated with the layered structure that we would like to

mention is increased delay. For a given code length, spreading the codeword out in a

diagonal form so that only one symbol is transmitted at a time increases the delay by

a factor of Nt, compared to simply using all antennas to transmit at the same time.

Accompanying the increased delay, there is also increased buffering need, which for

long codewords (needed to reduce error propagation) might cause a practical problem.
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Discrete Interference

One problem associated with BLAST-MMSE is that it treats all interference from

layers that have not been decoded as Gaussian noise, while in practice, they are often

chosen out of QAM-like constellations. This mis-match could lead to performance

degradation that are unnecessary.

More specifically, from (5.14), we see that when x2 (let us drop the timing index for

convenience) is being decoded, the effective noise is a combination of x1 and the actual

additive white Gaussian noise w′. If x1 has Gaussian distribution, the combined noise

would also be Gaussian. In this case, the MMSE estimator is also the ML estimator,

making MMSE a very good choice. However, in practice, Gaussian input distribution

is never used. Instead, regular constellation such as 16-QAM and 64-QAM are used.

In this case, the combined noise would not be Gaussian. In fact, if r11 is really large,

the noise distribution would look like a set of impulses, very different from Gaussian.

They simply have the same variance. It is well known that Gaussian distribution has

the largest entropy for a given variance. Therefore, the Gaussian noise approximation

would be overly pessimistic.

We might be able to take advantage of the fact that x1 is discrete by treating

the signal constellation as a lattice rather than incorrectly treating it as a continuous

Gaussian distribution. For example, when the channel is near singular, i.e., r11 is

much larger compared to r22, the received constellation points Hx might be close

to being “co-planer”, but they might still be well separated. We would be able to

tell which constellation point is transmitted. However, if we treat x1 as a continu-

ous Gaussian noise with a large variance, we would have a hard time detecting x2.

Later in section 5.6, we use a lattice-aware detector to treat the discreteness of the

constellation. The simulation result shows that there is in fact a small gain.

Finite Constellation Size Problem

Another practical problem associated with BLAST is what we call the finite con-

stellation size problem. The problem is that the amount of information that can be
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carried is not only limited by the channel capacity, but also by the constellation size

used. Recall that BLAST effectively transforms a multiple antenna channel to mul-

tiple single antenna channels. The stronger sub-channels are expected to carry more

information than the weaker sub-channels. However, if the constellation used is too

small, then stronger sub-channels might not be able to carry as much information it

otherwise can. This could potentially prevent the total channel capacity from being

achieved.

In this section, we investigate how this phenomenon affects the system perfor-

mance. We show using both theoretical analysis and numerical simulation that using

a constellations that is too small can lead to a loss of diversity gain. We then discuss

how to choose the constellation size so that the performance loss is acceptable and

the constellation is not unnecessarily large. We propose to set the constellation size

to M2 = min(1 + SNR, 2R) or slightly larger.

In the two transmit two receive antenna case, the BLAST effectively transforms

the multiple antenna channel to two sub-channels. When MMSE detection is used,

combined capacity achievable is (5.15)

CBLAST−MMSE = log2
(
1 + ρr211

)
+ log2

(
1 + ρr222 +

ρr212
1 + ρr211

)
.

Achieving this capacity assumes usage of Gaussian input distribution. However,

in practice, only finite constellations are used, in which case, the capacity achievable

by each sub-channel is upper bounded by log2(M
2), where M 2 is the size of the QAM

constellation used. So the total capacity achievable is instead

CBLAST−MMSE,M=log2
(
min

(
1 + ρr211,M

2
))

+ log2

(
min

(
1 + ρr222 +

ρr212
1 + ρr211

,M2

))
.

Ideally, we would like to have CBLAST−MMSE,M > R whenever CBLAST−MMSE > R,

so that there is no loss in outage probability due to finite constellation size.

The problem associated with finite constellation arises when the constellation size

is small compared to the rate, i.e., M 2 < 2R. In this case, if one of the sub-channel

is in a sufficiently deep fade, i.e., the associated capacity is less then R − log2(M
2),
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then, no matter how large the other channel gain is, the overall capacity would be

less than R, which would cause the transmission to fail. Therefore, both sub-channels

must have sufficient gain to support a minimum rate of R − log2(M
2) in order for

the transmission to succeed. For example, suppose we want to transmit at 8 b/s/Hz

and choose to use 64-QAM constellation (and rate 2/3 code), each sub-channel can

carry at most 6 b/s/Hz. If any of the sub-channels supports less than 2 b/s/Hz, the

transmission would fail. As we see, using a constellation that is too small makes the

system less robust; fading of any sub-channels would cause the transmission to fail.

This translates to a loss of diversity gain.

To demonstrate the loss of diversity gain numerically, we compute the probability

of CBLAST−MMSE,M < R for R = 8 b/s/Hz and M 2 = 16, 64. We then compare

them to the channel outage probability, P [Cchannel = CBLAST−MMSE < R], as shown in

Figure 5-7. The bottom curve is the channel outage probability, which corresponds

to M2 >= 2R = 256. It has slope approaching 4. For M 2 = 64 (middle curve)

and M2 = 16 (top curve), the limiting slopes are only 1, with the M 2 = 16 case

performing slightly worse by a constant factor.

The analytical justification for the diversity reduction to 1 is that with constella-

tion size M 2 < R2, the dominating outage event is when the capacity associated with

the second sub-channel, log2

(
1 + ρr222 +

ρr212
1+ρr211

)
, is less than R− log2(M

2), which is

a positive constant. This event typically happens when ρr222 is small and r212 ≈ r211,

which happens with probability on the order of ρ−1.

Next, we would like to explore how the constellation size should be chosen so

that the performance loss is reasonably small. One obvious solution is to always set

M2 = 2R, i.e., each sub-channel is capable of supporting the entire rate on its own

even when all the other sub-channels completely fade. The problem with this solution

is that the constellation size required might be too large.

Another solution is inspired by the realization that smaller constellations might

be sufficient at relatively low SNR. In Figure 5-7, we see that the middle curve is

quite close to being optimal below 18 dB. We propose to set the constellation size

to M2 = min(1 + SNR, 2R). This would allow us to use smaller constellation sizes at
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Figure 5-7: Demonstration of the finite constellation size problem. When the con-
stellation size used is too small, there is a loss of diversity gain.

lower SNR. At high SNR, we still set M 2 = 2R to avoid loss of diversity.

To demonstrate how well the above proposal works numerically, we plot outage

probability curves for various rates as functions of SNR in Figure 5-8. The set of solid

curves correspond to channel capacity outage curves and the dashed one correspond

to P [CBLAST−MMSE,M < R], where M 2 = min(1 + SNR, 2R). We see that the two sets

of curves match very well. The performance loss is quite small as we desired.

In summary, when using the BLAST architecture, which transforms the multiple

antenna channel to multiple single antenna channels, we need to make sure that the

constellation used is sufficiently large. Otherwise, there might be a loss of diversity

gain. We show that using M 2 = min(1 + SNR, 2R) for the two transmit two receive

antenna case results in reasonably small performance loss. However, the constellation

size required might still be quite large at times.

While BLAST architecture requires usage of large constellations, we do not believe

this is intrinsic to all coding schemes. With two antennas, the total constellation size

is (M 2)2 = M4. With the right coding scheme, we should only need M 2 = 2R/2 to
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Figure 5-8: If we select the constellation size to beM = log2(1+SNR), then the outage
probability associated with BLAST (dash) seems to be very close to the ultimate
channel outage probability (solid). The loss due to finite constellation effect is small.

support rate R, much less than M 2 = 2R. Later in section 5.6, we will see that it is

indeed possible to use smaller constellations and achieve similar performance.

5.3.4 Experimental Setup

We perform some numerical simulations to see how well the D-BLAST-MMSE scheme

works in practice. The experimental setup is describe in detail in this section and the

simulation results are presented in the next section. They will be compared to other

coding schemes we evaluate later.

For simplicity, let us ignore the various issues associated with the layered nature

of D-BLAST mentioned earlier in section 5.3.3. We would simply keep these issues

in mind when we make our comparisons later. To be more specific, we simulate the

error rate for the first layer only, so that there is no error propagation. We do not

count the initialization overhead in our rate calculation. We also grant the additional

delay and buffering need by BLAST for free and simply use code-length as the length

138



measure.

Let us now describe the experimental setup in detail. First, the encoding process

is done in four steps.

1. A block of binary information bits is first encoded into a block of coded bits

using a powerful error correction code, in particular, a length 1024 (information

bits) low density parity check (LDPC) code 1.

2. The coded bits are randomly interleaved so that bits nearby go through different

sub-channels, and are not modulated into the same symbol, which could cause

correlated errors.

3. The bits are modulated into complex symbols with real and imaginary parts

taking values such as {±1,±3,±5,±7, · · · }. We use regular constellations, such

as 64-QAM and 256-QAM. We choose to use Gray-labeling as shown in Figure 5-

9. This way, confusion between neighboring symbols would lead to only one bit

error. For example, there is only one bit difference between −7 ∼ (0, 1, 1) and

−5 ∼ (010). Gray-labeling is also used in systems like bit interleaved coded

modulation (BICM) [4].

MSB 0 0 0 0 1 1 1 1

111 1

1

0 0 0 0

000 01 1 1LSB

−1 1 753−3−5−7

Figure 5-9: Gray-labeling with 8-PAM constellation.

4. The symbols are arranged into a matrix in the following manner.

X =


 x1,1 · · · x1,τ some random symbols

0 · · · 0 x2,τ+1 · · · x2,2τ




1Software for Low Density Parity Check Codes was developed by Radford M. Neal, Dept. of
Statistics and Dept. of Computer Science, University of Toronto.

139



Half of the symbols are transmitted by antenna one for half a block, while

antenna two is off. The second half of the symbols are transmitted by antenna

two for the second half of the time while antenna one transmits some random

symbols representing data from the next layer.

After encoding, the matrix X is transmitted over the multiple antenna channel

Y = HX +W, where one H matrix with IID CN(0, 1) entries is generated for each

block, and an independent one is used for the next one.

Decoding is also performed in four steps corresponding to the reverse of the en-

coding steps.

First, the multiple antenna channel is transformed into two equivalent scalar sub-

channels using the layered decoding algorithm described in section 5.3.2. If we choose

to use BLAST-MMSE, then the two equivalent channels would have SNR ρr211 and

ρr222 + (ρr212)/(1 + ρr211). Note, for the second sub-channel, the interference (from x1)

is discrete, but are treated as Gaussian noise.

With each equivalent scalar channel taking the form of y = x + w with certain

SNR, we can now use decoding techniques for the AWGN channel. We first compute

the bit-wise log likelihood ratios (LLR), i.e., log(P [y|bi = 1]/P [y|bi = 0]), for each bit

bi used to label x. When the constellation is binary, we have

log

(
P [y|b = 1]

P [y|b = 0]

)
= log

(
P [y|x = +1]

P [y|x = −1]

)
= log

(
e−(y−1)

2/2σ2w

e−(y+1)2/2σ2w

)
=

(y + 1)2 − (y − 1)2

2σ2w
.

In this case, the LLR is just the difference between the square distances normalized

by σ2w.

However, when non-binary constellations are used, there are multiple constellation

points with a particular bit being 1 (or 0) as shown in the Gray-labeling picture in

Figure 5-9. In this case, we approximate the LLR by only considering the contribution

from the closest constellation points. More specifically, for a given y, to obtain the

LLR for bit bi, we measure its distance to the closest constellation point with bi = 1

and the closest point with bi = 0, then compute the difference. As an example,

in Figure 5-10, we plot the LLR for the 3 different bits as functions of y, for the
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case of σ2w = 1, and 8-PAM constellation. This way of computing LLR is only

an approximation. However, exact computation requires summing over too many

constellation points, exponentially many in rate.
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Figure 5-10: Approximations of log likelihood ratios of different bits as functions of
y = x+ w for an 8-PAM constellation with σ2w = 1.

After we obtain the LLR, we then undo the interleaving done at the encoder and

pass the result on to a LDPC decoder to finish decoding.

5.3.5 Simulation Results

Using the encoding and decoding procedures described in the last section, we perform

four sets of simulations at two different rates, each using two different constellation

sizes. More specifically, we evaluate 1020-bit block error rates for rate 6 b/s/Hz using

64-QAM and 256-QAM constellations and 1024-bit block error rate for rate 8 b/s/Hz

using 256-QAM and 1024-QAM constellations.

The reason for working at rates 6 and 8 b/s/Hz is that they are high enough such

that OSTBC is quite far from optimal while low enough such that they are of practical

interest. The reason for using two different constellation sizes is to demonstrate the
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finite constellation size problem discussed in section 5.3.3.
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Figure 5-11: Block error rate for R = 6 and R = 8 b/s/Hz using D-BLAST-MMSE
architecture on a two-transmit two-receive antenna system.

The simulation results are shown in Figure 5-11 in the form of block error rates vs.

SNR. The left figure is for R = 6 b/s/Hz, and the right one is for R = 8 b/s/Hz. In

each figure, the left most thin line represent the ultimate performance limit associated

with channel outage probabilities, while the thicker lines are the resulting block error

rates using the different constellation sizes. We see that similar trends are exhibited

at both rates.

We can use the gap between the block error rates achieved and the ultimate

performance limit as a measure of goodness. We see that at 10−2 block error rate,

D-BLAST-MMSE reaches 4.8 dB from capacity at both rates; while at 10−3 block

error rate, the gap is 5 dB for R = 6 b/s/Hz and 6 dB for R = 8 b/s/Hz.

Let us now compare the block error rates achieved by the different constellation

sizes. Due to the similarity at the two rates, let us comment on only the R = 6 b/s/Hz

case. For this case, 64-QAM constellation is just large enough for each sub-channel

to carry all 6 bits alone.

Comparing the 64-QAM and 256-QAM performance, we see that at 64-QAM

performs slightly better at low SNR while 256-QAM catches up at high SNR. The

reason for larger constellation to perform worst at low SNR is that the points become
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too close compared to the noise level. When this happens, noise could carry the

original signal to many constellation points away. This makes decoding difficult. In

particular, our log likelihood ratio approximation, which only considers the closest

neighbors, becomes inaccurate.

The reason that 256-QAM catches up is related to the finite constellation size

problem. Although the 64-QAM constellation can carry 6 bits, it is insufficient be-

cause the LDPC code used is not capacity achieving. When one of the sub-channel

is in sufficiently deep fade, we can not recover the original codeword just from the 6

bits carried by the remaining sub-channel. From Figure 5-11 we see that the diversity

achieved by the 64-QAM constellation is smaller. This reflects the finite constellation

size effect. On the other hand, using 256-QAM would provide the additional margin

needed by the imperfect LDPC code. The slope achieved is similar to that of the

outage probability.

In summary, we studied the D-BLAST architecture in detail. In particular, we

show that D-BLAST-MMSE is theoretically optimal but have practical problems.

Our numerical simulations show that D-BLAST-MMSE can reach within 5 dB from

capacity.

5.4 Modified BLAST in Block Form

In the last section, we studied the original version of the BLAST architecture, D-

BLAST, which has a sequential form. In this section, we study three variations of

BLAST that are strictly block codes. The goal is to avoid the caveats associated with

the sequential nature of D-BLAST and explore different coding structures.

We first introduce these three different block-form variations, V-BLAST, two-

layer-D-BLAST, and X-BLAST, and describe their coding structures in section 5.4.1.

We then describe one common framework based on multiple access channel in which

all three schemes can be studied in section 5.4.2. The idea is to treat the multiple

codewords as messages from different users. In sections 5.4.3 to 5.4.5, we investigate

each scheme individually. We evaluate the achievable performance analytically, in
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terms of both capacity and diversity-multiplexing tradeoff, when successive cancella-

tion based decoding is performed and when optimal joint decoding is done. We also

plot outage probability curves and compare them with the ultimate channel outage

performance limit. In section 5.4.6, we compare all three schemes along with OSTBC,

to see which method is the best in different SNR regimes, and where future potentials

lay.

All three schemes are described and analyzed in the two transmit antenna case.

The coding structure can be extended to higher dimensional cases, and the analysis

can potentially be done using the same framework, maybe with somewhat increased

complexity.

5.4.1 Code Designs

In this section, we introduce V-BLAST, two-layer-D-BLAST, and X-BLAST. The

first one is well known, while the latter two are new interesting structures that have

not been previously studied to our knowledge. The coding structures are described in

this section, while the analysis will be postponed until after we describe the common

framework in which all three schemes can be studied.

V-BLAST

The first variation of D-BLAST is the well-known V-BLAST, or vertical-BLAST

[39], which limits coding to each row of the transmitted signal matrix X as shown in

Figure 5-12 2. One codeword goes in the lighter region and the other one goes in the

darker region. V-BLAST was introduced after D-BLAST by the same group of people

as a simplified version of the original. However, there is a sacrifice in performance.

In V-BLAST, each codeword appears in only one row, i.e., coding takes place only

across time, but not across space. Because of this, V-BLAST is sub-optimal in the

sense that it achieves the maximum multiplexing gain, but not the maximum diversity

gain, as we will see later.

2The word vertical is used instead of horizontal because the transmitted signal matrix X was
written in a transposed form in the original literature, relative to our formulation.
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antenna 1

antenna 2

Time

Figure 5-12: V-BLAST, where coding is restricted to one row of the transmitted
signal matrix.

Two-Layer-D-BLAST

Another variation of D-BLAST we would like to consider is to simply limit D-BLAST

to two layers, as shown in Figure 5-13. In this way, both layers are the end layers.

We can choose to decode each layer without decoding the other one. There would

be no error propagation issue. Also, both codewords have some symbols that are

always interference free. This could lead to more robust performance. However, the

initialization problem is still there, i.e., nothing is being transmitted in the white

region labeled with “0” in Figure 5-13. And because we reinitialize every two layers,

the overhead takes a fixed and significant percentage of the total resources available.

We will show later that this two layer version of D-BLAST can achieve the maximum

diversity gain, but not the maximum multiplexing gain.

antenna 1

antenna 2

Time

0 0 ... 0

0 0 ... 0

Figure 5-13: Two layers of BLAST. Both layers are end layers.

X-BLAST

The last variation of D-BLAST we would like to study is a blend between D-BLAST

and OSTBC or tilted-QAM as shown in Figure 5-14, which we refer to as X-BLAST.

In this version, there are no overhead issue, unlike two-layer-D-BLAST, and coding oc-

curs in both space and time, unlike V-BLAST. However, we can foresee that decoding
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for this design could be difficult, since both codewords could suffer severe interference

from the other one. We will see that if we can manage joint decoding, this design

can achieve the channel outage probability and the optimal diversity-multiplexing

tradeoff.

antenna 1

antenna 2

Time

Figure 5-14: X-BLAST, where two codewords cross like in OSTBC or tilted-QAM.

5.4.2 Multiple Access Channel Framework

In this section, we describe one common framework based on multiple access channel,

in which we can evaluate the performance achievable by the various designs proposed

in the previous section. We want to analytically express the capacity achievable in

terms of the realized channel when we limit ourselves to each coding scheme and use

powerful coding. We examine the cases where successive cancellation based decoding

is used and where optimal joint decoding is done.

The main idea is that we can consider the two independent codewords in each

of the designs proposed as belonging to two different users, each trying to get some

information through, but suffers interference from the other user. This turns out to

fit the well-studied multiple access channel (MAC) framework, the capacity theorem

for which is [7]:

Theorem 2 (Multiple access channel capacity): The capacity of a multiple access

channel (X1×X2, p(y|x1, x2), ) is the closure of the convex hull of all (R1, R2) satisfying

R1 < I(X1;Y |X2) (5.17)

R2 < I(X2;Y |X1) (5.18)

R1 +R2 < I(X1, X2;Y ) (5.19)
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for some product distribution p1(x1)p2(x2) on X1 × X2.
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I(X  ;Y)

I(X  ;Y)1

2

Figure 5-15: Capacity region for a multiple access channel.

A typical achievable rate region associated with a certain input distribution is

draw in Figure 5-15. The diagonal corresponds to the bound

R1 +R2 < I(X1, X2;Y ) (5.20)

= I(X1;Y ) + I(X2;Y |X1) (5.21)

= I(X2;Y ) + I(X1;Y |X2) (5.22)

= I(X1;Y ) + I(X2;Y ) + I(X1;X2|Y ) (5.23)

The various expressions can be shown to be equivalent with simple manipulation.

When this bound is achieved, it is as if the two users are behaving as a single user.

There is no loss for doing encoding separately.

The achievable rate region is a function of both the input distribution used, p1(x1),

p2(x2), and the channel statistics, p(y|x1, x2). The rate pair (R1, R2) depends on the

number of codewords chosen at the transmitter, and might be inside, on the edge of,

or outside the achievable rate region.

If the transmitter knows the channel, then it can maximize performance by choos-

ing to transmit at rates just inside of the boundary, and even change the input dis-

tribution p1(x1) and p2(x2), to modify the achievable rate region.
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On the other hand, when the transmitter has no knowledge of the channel, which

is the case we are studying, the above can not be done. Instead, the transmitter would

use a fixed input distribution and rate pair (R1, R2). When the realized channel is

weak, such that the achievable rate region does not include the rate pair, we are

in outage. When the realized channel is strong enough, the rate pair is achievable

theoretically using infinitely powerful codes. In this case, depending on where (R1, R2)

is inside the region, joint decoding might or might not be required. This is depicted

in Figure 5-16.

I(X  ;Y)2

I(X  ;Y|X  )12

I(X  ;Y)1 2I(X  ;Y|X  )1 R 1

R  =R1 2

R 2

Figure 5-16: The achievable rate region has two sub-regions. The darkly shaded one
requires joint decoding.

When (R1, R2) is inside the lightly shaded region, joint decoding is not required.

For example, if R1 < I(X1;Y ), then we can decode the message from user 1 first,

treating user 2 as noise, and then decode the message from user 2 after canceling out

user 1. This exploits the mutual information chain rule in (5.21) and (5.22). This is

the successive cancellation idea used in BLAST. From now on, we will refer to this

type of decoding as separate decoding (as opposed to joint decoding).

When (R1, R2) is inside the darker region, decoding is more difficult. Joint decod-

ing using ML or typicality decoder can be used, but are quite complex. Other ways

to achieve rate pairs inside the darker region include time sharing or rate splitting

[30] at the transmitter. The problem is that they require the transmitter to know
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where the corner points of the achievable rate region are.

To further study what rates can be achieved when the transmitter does not have

knowledge of the achievable rate region, let us restrict the rates to R1 = R2 = R/2,

i.e., symmetric between the two users. 3 Now we can look at the outage conditions

in the two cases of joint and separate coding.

(a) (b)

(c) (d)
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I(X  ;Y)1 2I(X  ;Y|X  )1

I(X  ;Y|X  )12
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2I(X  ;Y|X  )1I(X  ;Y)1

R 1

R 2

I(X  ;Y)2

I(X  ;Y|X  )12

I(X  ;Y|X  )12
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R 2 R 2

R 1

2I(X  ;Y|X  )1I(X  ;Y)1 2I(X  ;Y|X  )1I(X  ;Y)1

R 1

R  =R1 2

R  =R1 2 R  =R1 2

R  =R1 2

R 2

R 1

Figure 5-17: The four different ways in which the R1 = R2 line can intersect the
achievable rate bounds.

Depending on the channel realized, the achievable rate region takes on different

shapes. In terms of how the R1 = R2 line intersects the achievable rate bounds, there

are four different cases, as shown in Figure 5-17, (a)-(d). For the two cases of joint

and separate decoding, the maximum rate R that can be supported is tabulated in

3In one variation of V-BLAST, using different rates for the two codes was considered [28]. They
fixed the decoding order and assigned lower rate for the code decoded first. Here, we restrict ourselves
to symmetric cases.
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Table 5.1. We see that for cases (c) and (d), doing joint decoding or not does not

Table 5.1: Rates achievable when joint decoding and separate decoding are used in
various cases depicted in Figure 5-17.

Joint Separate
(a) I(X1, X2;Y ) 2I(X1;Y )
(b) I(X1, X2;Y ) 2I(X2;Y )
(c) 2I(X2;Y |X1) 2I(X2;Y |X1)
(d) 2I(X1;Y |X2) 2I(X1;Y |X2)

matter. For cases (a) and (b), there is a difference, and could potentially be vary

large.

In this section, using the multiple access channel framework, we examined the

maximum rate achievable when there are two independent codewords, or equivalently,

two users, with the same rate. Let us express the bounds listed in Table 5.1 for all

four cases together in a more concise form. With joint decoding, the achievable rate

is

R < min(I(X1, X2;Y ), 2I(X1;Y |X2), 2I(X2;Y |X1)). (5.24)

When joint decoding is unfeasible, using separate decoding based on successive can-

cellation, the achievable rate is

R < 2max(min(I(X1;Y ), I(X2;Y |X1)),min(I(X2;Y ), I(X1;Y |X2))). (5.25)

In the next three sections, we use this tool to analyze each of the three designs pro-

posed in section 5.4.1. Let us assume the input distribution is IID complex Gaussian

with SNR per antenna ρ. For the two cases of using joint decoding and separately

decoding based on successive cancellation, we express the rates achievable explicitly

as functions of the realized channel H, and evaluate the diversity-multiplexing trade-

offs achieved. We also plot families of outage probability curves, and compare to that

of the ultimate limit corresponding to the channel outage probability.
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5.4.3 V-BLAST

In this section, we focus on the specific case of using V-BLAST encoding on a 2× 2

multiple antenna channel with Rayleigh fading, which was described in Figure 5-12.

Let us first evaluate the rates achievable using joint and separate decoding using

(5.24) and (5.25) respectively.

To evaluate I(X1, X2;Y ), let us pretend joint encoding were used instead of two

independent codeword. Then, the capacity achievable is just the channel capacity,

I(X1, X2;Y ) = log2(1 + ρ‖H‖2 + ρ2| det(H)|2). (5.26)

To evaluate I(X1;Y |X2) and I(X2;Y |X1), we need to look at what each user can

achieve after the other user has been canceled out completely. Without interference

from user 2, user 1 sees an effective channel gain of ‖h1‖2, where h1 is the first column

of H. Similarly, user 2 experiences ‖h2‖2. Therefore,

I(X1;Y |X2) = log2(1 + ρ‖h1‖2), (5.27)

I(X2;Y |X1) = log2(1 + ρ‖h2‖2). (5.28)

Substituting the above into (5.24), we obtain the outage condition for joint de-

coding, which is,

R>min
(
log2(1+ρ‖H‖2+ρ2| det(H)|2), 2 log2(1+ρ‖h1‖2), 2 log2(1+ρ‖h2‖2)

)
. (5.29)

Focusing on just the last term, a lower bound on the outage probability is

Pout > P [2 log2(1 + ρ‖h2‖2) < R]
·
= P [ρ‖h2‖2 < ρr/2], (5.30)

where we use 2R ∼ ρr. Since ‖h2‖2 is a chi-squared random variable of order 4,

Pout
·
≥ P

[
‖h2‖2 < ρr/2−1

] ·
= ρr−2. Thus, an upper bound on the diversity-multiplexing

tradeoff achieved is d(r) = 2 − r, a straight line between (0, 2) and (2, 0). This is

drawn as a solid line in Figure 5-18.
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For separate decoding based on successive cancellation, the outage condition can

be obtained using (5.25). From there, it can be shown that an upper bound on the

diversity-multiplexing tradeoff achievable is d(r) = 1 − r/2 [41], i.e., a straight line

between (0, 1) and (2, 0), which is drawn as a dashed line in Figure 5-18. The main

intuition for the maximum diversity gain to be only 1 is that every time the channel

is near singular, i.e., ρ2| det(H)|2 < 1, I(X1, X2;Y ) becomes similar to I(X1;Y |X2)

and I(X2;Y |X1). Thus, I(X1;Y ) and I(X2;Y ) would be small, so the right-hand

side of (5.25) is small.

Comparing to the optimal diversity-multiplexing tradeoff achievable by 2× 2 sys-

tems (shown in Figure 2-4), V-BLAST achieves the maximum multiplexing gain of 2,

but not the maximum diversity gain of 4. The diversity gain loss is more severe when

joint decoding can not be used.
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Figure 5-18: Diversity-multiplexing tradeoffs achieved by V-BLAST encoding with
joint and separate decoding.

Next, let us compare the outage probabilities achieved by V-BLAST to that of

the ultimate channel outage probability limit, for the two cases of joint and sepa-

rate decoding. The families of outage probability curves are plotted as thick dashed

lines in Figure 5-19 and Figure 5-20, respectively. The corresponding channel outage

probability curves are plotted as thin solid lines.

We see that when joint decoding is used (Figure 5-19), the limiting slope of each

152



0 10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

transmit SNR over all antennas (dB)

O
ut

ag
e 

P
ro

ba
bi

lit
y

V−BLAST, optimal joint decoding, R=4,8,...20 b/s/Hz

Figure 5-19: Outage probability curves for rates 2, 4, · · · , 20 b/s/Hz achieved by V-
BLAST encoding with joint decoding (thick dashed), comparing with that of channel
outage probability (thin solid).
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Figure 5-20: Outage probability curves for rates 2, 4, · · · , 20 b/s/Hz achieved by
V-BLAST encoding with more practical separate decoding based on successive can-
cellation (thick dashed), comparing with that of channel outage probability (thin
solid).
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curve is only 2, which is sub-optimal compared to the channel outage probability

curves. However, for higher rates, this deficiency does not have a significant conse-

quence. V-BLAST with joint decoding is only 1 to 2 dB from optimal at 10−3 target

outage probability.

When separate decoding is used (Figure 5-20), the limiting slopes of each curve is

only 1, and there is a significant discrepancy between the outage probability curves

achieved and the performance limit. At 10−3 target outage probability, the gaps

between the corresponding solid and dashed curves are over 10 dB, and become even

larger for lower target outage probabilities.

We note that V-BLAST achieves the maximummultiplexing gain when either joint

decoding or separate decoding is use. Therefore, the spacings between the curves for

both cases are 2 bits per 3 dB, which is optimal. Therefore, for a fixed target error

rate, the gaps to the optimal curves approach constant values as rate increases.

5.4.4 Two-Layer-D-BLAST

Now let us turn to the two-layer-D-BLAST design illustrated in Figure 5-13. Com-

pared to the V-BLAST design we just studied, there are two main differences.

The first one is that this code effectively has three different segments as we can

see visually in Figure 5-13. Because of this, the mutual information achieved is the

average of the three region. We have,

I(X1,X2;Y )=
1

3

(
log2(1+ρ‖h1‖2)+log2(1+ρ‖H‖2+ρ2| det(H)|2)+log2(1+ρ‖h2‖2)

)
,

(5.31)

where the three terms corresponds to the left, middle, and right regions.

The other feature of this design, which is absent in V-BLAST, is the symmetry

between the two users in terms of the individual mutual information achieved. Also

using averaging, we have

I(X1;Y |X2) = I(X2;Y |X1) =
1

3

(
log2(1 + ρ‖h1‖2) + log2(1 + ρ‖h2‖2)

)
. (5.32)
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Combining the above two equations and using the chain rule, we have,

I(X1;Y ) = I(X2;Y ) =
1

3
log2(1 + ρ‖H‖2 + ρ2| det(H)|2). (5.33)

As a consequence of the symmetry, we have the following chain of inequalities:

I(X1;Y ) = I(X2;Y ) ≤ I(X1, X2;Y )

2
≤ I(X1;Y |X2) = I(X2;Y |X1). (5.34)

Using this inequality, the upper bound on the rate achievable when joint decoding

is used stated in (5.24) becomes

R < I(X1, X2;Y ). (5.35)

This means there is no loss for having two separate codewords when joint decoding

is used. And the bound for using separate decoding stated in (5.25) becomes

R < 2I(X1;Y ) =
2

3
log2(1 + ρ‖H‖2 + ρ2| det(H)|2) = 2

3
Cchannel(H). (5.36)

Now let us evaluate the diversity-multiplexing tradeoff achieved in the two different

cases. When separate decoding is used, the maximum rate achievable is simply 2/3 of

the channel capacity. Therefore, the tradeoff achieved is the optimal tradeoff scaled

by 2/3 in the multiplexing gain direction, drawn as a dashed line in Figure 5-21.

When joint decoding is used, the outage probability is

Pout = P [I(X1, X2;Y ) < R] (5.37)

·
= P [(1 + ρ‖h1‖2)(1 + ρ‖H‖2 + ρ2| det(H)|2)(1 + ρ‖h2‖2) < ρ3r] (5.38)

< P [ρ4‖h1‖2| det(H)|2‖h2‖2 < ρ3r] (5.39)

In (5.39), the upper bound is obtained by keeping only the highest order term. To

evaluate (5.39), we use the technique used in section 2.3.3. Let us change basis by

performing a QR decomposition on H. Now we have | det(H)|2 = r211r
2
22, ‖h1‖2 = r211,
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Figure 5-21: Diversity-multiplexing tradeoffs achieved by two-layer-D-BLAST encod-
ing with joint and separate decoding.

and ‖h2‖2 = |r12|2 + r222 ≥ |r12|2. Recall that r211 is a chi-squared random variable of

order 4, |r12|2 and r222 are chi-squared random variables of order 2, and they are all

independent. Therefore

Pout < P
[
‖h1‖2| det(H)|2‖h2‖2 = r411r

2
22|r12|2 < ρ3r−4

] ·
= ρ3r−4. (5.40)

This corresponds to a lower bound on the diversity-multiplexing tradeoff curve of

d(r) = 4−3r, which is a straight line between (0, 4) and (4/3, 0) and drawn as a solid

line in Figure 5-21. For 0 ≤ r ≤ 1, this lower bound meets the optimal tradeoff upper

bound achievable by any system. Therefore, the bound must be tight. For r > 1, we

need to look at (5.38). In this range, 3r > 3. Therefore, if (5.38) is expanded, then

the only term that matters is the highest order term we kept in (5.39). Thus, the

tradeoff bound is exact.

We see that this two-layer-D-BLAST design achieves the maximum diversity gain,

but not the maximummultiplexing gain. This is similar to OSTBC, which was studied

in section 5.2.

We now evaluate numerically the outage probabilities achieved when joint and

separate decoding are used. The families of outage probability curves are plotted as
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thick dashed lines in Figure 5-22 and Figure 5-23, respectively. The corresponding

channel outage probability curves are plotted as thin solid lines for comparison.

Comparing to the optimal curves, we see that the outage probabilities achieved by

the two-layer-D-BLAST design have the same limiting slope, i.e., the same maximum

diversity. However, due to the sub-optimal multiplexing gain, the gap to optimality,

i.e., the gap between the corresponding solid and dashed curves grows indefinitely.

Therefore, this design should not be used at high SNR. Recall that this phenomenon

was also exhibited by OSTBC in Figure 5-3.

It is also worth noting that there is not a significant difference between using joint

decoding and using separate decoding. In the sense that they both have large gaps

at high SNR and non-zero gaps at low SNR.

5.4.5 X-BLAST

The last design to be analyzed is the X-BLAST design shown in Figure 5-14. This

design has complete symmetry between the two users. Using similar techniques as in

the previous cases, it can be shown that

I(X1, X2;Y ) = log2(1 + ρ‖H‖2 + ρ2| det(H)|2), (5.41)

I(X1;Y |X2) = I(X2;Y |X1) =
1

2

(
log2(1 + ρ‖h1‖2) + log2(1 + ρ‖h2‖2)

)
. (5.42)

Also due to symmetry, we have the same chain of inequalities as in (5.34). When

joint decoding is used, the maximum rate achievable is also I(X1, X2;Y ), which is

the same as the channel capacity for this design. Therefore, there is no loss for using

X-BLAST encoding when joint decoding is used.

When separate decoding is used, we have a situation similar to the V-BLAST case.

The quantity I(X1;Y |X2) + I(X2;Y |X1) equals log2(1 + ρ‖h1‖2) + log2(1 + ρ‖h2‖2)
in both cases. The quantity I(X1;Y ) + I(X2;Y ) from both cases are also equal.

Together with the achievable rate upper bound in (5.25), these lead us to believe that

the diversity-multiplexing tradeoff achieved by X-BLAST with separate decoding is

the same as that by V-BLAST, which is d(r) = 1− r/2, a straight line between (0, 1)
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Figure 5-22: Outage probability curves for rates 2, 4, · · · , 20 b/s/Hz achieved by two-
layer-D-BLAST encoding with joint decoding (thick dashed), comparing with that of
channel outage probability (thin solid).
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Figure 5-23: Outage probability curves for rates 2, 4, · · · , 20 b/s/Hz achieved by
two-layer-D-BLAST encoding with more practical separate decoding (thick dashed),
comparing with that of channel outage probability (thin solid).
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and (2, 0).

The tradeoff curves for both cases are drawn in Figure 5-24. We see that using

joint decoding yields the optimal tradeoff, while using separate decoding results in

significant loss in diversity gain, similar to V-BLAST.
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Figure 5-24: Diversity-multiplexing tradeoffs achieved by X-BLAST encoding with
joint and separate decoding.

We also evaluate numerically the outage probabilities achieved by X-BLAST when

joint decoding and separate decoding is used. The families of outage probability

curves are plotted as thick dashed lines in Figure 5-25.

When joint decoding is used, the optimal outage probability is achieved. When

separate decoding is used, the resulting outage probability curves are similar to that

of V-BLAST with separate decoding plotted earlier in Figure 5-20. The curves ap-

proximately form a set of parallel lines with slope 1 and gap 2 bits per 3 dB. This

implies a diversity-multiplexing tradeoff of d(r) = 1− r/2, which is what we believe.

5.4.6 Comparisons

In this section, we look collectively at the performance achieved by the various systems

we evaluated in the last three sections, as well as the OSTBC studied in section 5.2.

The goal is to identify which scheme is better, and in which SNR regime. This could
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Figure 5-25: Outage probability curves for rates 2, 4, · · · , 20 b/s/Hz achieved by X-
BLAST encoding with more practical separate decoding (thick dashed), comparing
with doing joint decoding, which is also the channel outage probability (thin solid).

help us identify areas that are sufficiently solved and areas that require more effort.

We also want to see how the diversity-multiplexing tradeoff achieved affect the actual

performance in the regime we care about. This could lead to design criteria that are

specific for different regimes.

In the previous sections, we plotted families of outage probability curves. To

summarize and compare them, we transform each family of curves to one curve of

gap to capacity (in dB) vs. rate. More specifically, we measure the gaps between

the dashed lines and the corresponding solid ones, for all rates, at target outage

probability 10−3. 4 The resulting curves for the seven different cases are plotted in

Figure 5-26. The cases requiring joint decoding are drawn as dashed lines, indicating

that they are currently still unimplementable.

In Figure 5-26, the lower the curve is the better. Next, we go through various

SNR and rate regimes, compare the performance of different schemes in that regime,

and identify which scheme is the best.

4Throughout the rest of the discussion, we assume that we are always interested in 10−3 (long
block) error rate. The numerical values quoted would vary otherwise.
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• First of all, X-BLAST with joint decoding is optimal for all rates and SNR. 5

Therefore, if joint decoding can somehow be managed efficiently, we should use

this scheme.

• Below R = 6 b/s/Hz (SNR = 20 dB), OSTBC is near optimal, less than 4 dB

away, and very efficient. Therefore, in the low SNR regime, the 2 × 2 case is

essentially solved. There is very little room for improvement.

• Between R = 6 b/s/Hz and 16 b/s/Hz (SNR between 20 dB and 55 dB),

– OSTBC is the best among the currently implementable schemes listed

(solid lines). However, it is up to 12 dB away from capacity.

– Using joint decoding can significantly improve the performance.

– Two-layer-D-BLAST with joint decoding might be the simplest to imple-

ment; some iterative decoding method might succeed. However, it provides

the least improvement.

5The only loss might be an increase in delay required to achieve the same error probability, which
is common for all the schemes we are looking at in this section.
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– V-BLAST with joint decoding provide further gain. However, implemen-

tation might be as difficult as the X-BLAST case.

• Above R = 16 b/s/Hz (SNR = 55 dB),

– V-BLAST with separate decoding based on successive cancellation is the

best among the currently implementable schemes listed. It is about a

constant 12 dB away from capacity.

– OSTBC and the two-layer-D-BLAST design become very far from optimal

in the high rate regime due to the loss of multiplexing gain.

Besides the families of outage probability curves, we also evaluate the diversity-

multiplexing tradeoff curves achieved. They are collected in Figure 5-27.
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Figure 5-27: Diversity-multiplexing tradeoff curves achieved by variations of BLAST
in block form and OSTBC.
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When joint decoding is used (solid curves), X-BLAST achieves the optimal trade-

off, V-BLAST achieves only the lower segment of the optimal tradeoff, while two-layer-

D-BLAST achieves only the upper segment. With separate decoding, X-BLAST and

V-BLAST achieves only the maximum multiplexing gain point, while two-layer-D-

BLAST and OSTBC achieves only the maximum diversity gain point.

Looking at Figure 5-26 and Figure 5-27 together, we can get some ideas of how

diversity-multiplexing tradeoff achieved can affect the actual performance in the

regime we care about. This could lead to design criteria that are specific for dif-

ferent regimes.

In the low SNR, low rate regime, it seems that achieving the maximum diversity

gain is important. This can be realized by the design criterion of maximizing the

worst case determinant, or at least keeping it away from zero.

In the high SNR, high rate regime (high relative to a certain target error rate),

it appears that achieving the maximum multiplexing gain is important, so that the

SNR required would grow with rate as slowly as possible. This can be realized by

utilizing all degrees of freedom and not using repetition. Comparing V-BLAST with

joint and with separate decoding, we see that it is much more advantageous to achieve

the entire lower segment of the tradeoff curve. The design criterion for this is still

unclear.

In the next two sections, we explore a couple schemes that actually employ joint

decoding, instead of successive cancellation based separate decoding. In particular,

we look at systems where tilted-QAM codes proposed in section 4.3 are combined

with hard-decision and soft-decision based error correction codes.

5.5 Tilted-QAM With Hard-Decision ECC

In this section, we build upon the tilted-QAM code we developed earlier in Chapter 4,

which achieves the optimal diversity-multiplexing tradeoff, and will strengthen it with

powerful error correction coding to obtain additional coding gain. In particular,

we concatenate it with a Reed-Solomon (RS) outer code with hard-decision based
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decoding. RS code is a commonly used hard-decision code that has been used in

industry for decades.

We first describe the system setup and then present simulation results. We show

that combining tilted-QAM with a hard-decision ECC can reach about 5 dB from

capacity with moderate complexity.

5.5.1 System Setup

Y = HX+W
Channel

X

Ydecoder

encoder

RS

RS

demodulate

modulate
S

S

encoder
Tilted−QAM

Tilted−QAM
decoderhard

bit stream
information

bits
coded

bit stream
corrected

bits
decoded

hard

decision

Figure 5-28: Concatenation of a tilted-QAM inner code with a Reed-Solomon outer
code.

The tilted-QAM-Reed-Solomon concatenated code system is depicted in Figure 5-

28. The tilted-QAM code is used as the inner code around the channel to transform

it from a multiple antenna channel to a generic channel with certain error rate. The

RS code is then used as an outer code to provide additional redundancy; if errors

occur across the effective inner channel, they can be corrected.

At the encoder, information bits are first encoded with an RS code. In particular,

we choose to use GF(256) RS code, so that each RS symbol conveniently corresponds

to one byte 6. The encoded bits are then modulated into symbols using Gray-labeling,

6In RS coding, groups of bits are mapped to RS symbols from an algebraic field, for example,
GF(256). The redundancy or coding is introduced at the symbol level.
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as depicted earlier in Figure 5-9. Every eight (real) symbols, S, are then encoded into

one 2× 2 block according to the tilted-QAM coding scheme before transmission.

A particular detail of the implementation is that during the modulation step, we

choose to modulate the eight bits that belong to one RS symbol to the same bit level

(eg. MSB, LSB) within one 2× 2 block. The motivation is to reduce the number of

RS symbol errors resulting from bit errors, by grouping bits that experience similar

error rates and are somewhat correlated into one RS symbol.

At the decoder, the reverse of the encoding steps are performed. First, for each

2×2 block of received symbols,Y, a sphere decoder is used to find the most likely eight

symbols Ŝ that would result in Y, dealing with the combined effect of the channel

and the tilted-QAM encoder. Once all the symbols in a codeword are detected, they

are demodulated and put through an RS decoder to correct any error that might have

occurred. If the number of byte errors is less then what the RS code can tolerate,

then the decoding would be successful.

We stress that the decoding is hard-decision based. Information regarding how

close Y is to the constellation points is disregarded. It is well-known that doing

hard-decision is sub-optimal, although it is often used to reduce complexity.

5.5.2 Simulation Results

Using the system setup described above, we perform three groups of simulations in the

moderate to high SNR regime using 16-QAM, 64-QAM, and 256-QAM constellations.

The RS code-length used is 256 bytes (255 for 64-QAM) 7 . To evaluate the effect

of coding and to gauge how much coding should be use, a series of experiments

are performed for each constellation with increasingly stronger RS codes to correct

increasingly more errors. In other words, data rate is reduced in exchange for better

performance. In the 16-QAM case, five experiments are performed with code-rates 1

(uncoded), 7/8, 3/4, 5/8, and 1/2. These code-rates are chosen so that the data rate

would conveniently correspond to R = 8, 7, 6, 5, 4 b/s/Hz. Similarly, in the 64-QAM

7The 256 bytes, or 2048 bits, is the length of the RS codeword, not the length of the uncoded
message.
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case, seven experiments are run with R = 12, 11, · · · , 6 b/s/Hz; in the 256-QAM case,

there are nine experiments with R = 16, 15, · · · , 8 b/s/Hz.

The resulting block error rate curves are shown in Figure 5-29. The three groups

of experiments can be identified by the different SNR intervals and the experiments

within the groups are selectively labeled by the rates R.
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Figure 5-29: Block error rate curves for 16-QAM, 64-QAM, and 256-QAM cases. As
we gradually reduce the data rate by 1 b/s/Hz, the block error rate lowers due to
stronger coding. However, the gain diminishes.

We see that for each of the three groups of curves, the top gap is always the largest,

which corresponds to the greatest improvement in block error rate for 1 bit of rate

reduction. As we reduce the rate further, although the block error rate improves, the

gain diminishes. The reason for the diminishing gain is that we are operating in the

regime where the uncoded error rate is not too high. Although there are often some

errors to be corrected, most of those times, there are only a few errors. It becomes

less likely to have more.

In conclusion, it appears that a small amount of coding is sufficient, about 1

b/s/Hz rate reduction. If we apply too much coding, then the gain from correcting a

few more block errors would not be worth the reduction in rate, or the constellation
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expansion.

Next, let us look at how close the tilted-QAM-RS concatenated coding scheme can

approach the capacity limit. The block error rate curves for the R = 7 (16-QAM),

R = 11 (64-QAM), and R = 15 (256-QAM) cases are re-plotted in Figure 5-30,

together with the corresponding outage probability curves.
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Figure 5-30: Block error rate curves for 16-QAM, 64-QAM, and 256-QAM cases with
1 b/s/Hz rate reduction using RS coding. The unmarked curves are the corresponding
channel outage probability curves.

At 10−2 block error rate, we see that 5.2 dB gaps to the ultimate performance

limits are achieved for all three rates. This is slightly worse than the D-BLAST-

MMSE, which achieves 4.8 dB gaps at 10−2 for R = 6 and 8 b/s/Hz.

5.6 Tilted-QAM with Soft-Decision ECC

In this section, we look at how to enhance tilted-QAM codes with soft-decision based

error correction codes, in particular, low-density-parity-check (LDPC) codes, which is

a powerful soft-decision code that can approach close to capacity. Other soft decision

codes, such as turbo codes, may also be used. We simply choose to work with LDPC

167



here.

Soft-decision decoding is generally believed to be better performing, although

potentially more complex, than hard-decision decoding. In the soft-decision case,

bits decoded are assigned confidence measures. Bits that are incorrectly decoded

often have lower confidence measures than the correctly decoded ones. Soft decision

decoding takes advantage of this difference to allow correction of more bit errors.

We first present the system setup, then describe an iterative soft-decision decoding

procedure in detail, and finally present simulation results. We show that the proposed

system can reach about 3 dB from capacity.

5.6.1 System Setup
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Figure 5-31: Concatenation of a tilted-QAM inner code with an LDPC outer code
with a two component iterative soft-decision decoder.

A tilted-QAM-LDPC concatenated code system is depicted in Figure 5-31. The

concatenated structure of the encoder is very similar to that used in the hard-decision

case. Information bits are first encoded using an LDPC code, modulated into symbols,

and then encoded into 2×2 blocks according to the tilted-QAM coding scheme before

transmission.

One implementation detail we briefly mention here is that an interleaver is used

at the output of the LDPC to scramble the coded bits before modulation. The
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motivation is that bits modulated within the same 2 × 2 tilted-QAM coded matrix

suffer correlated errors. We want those bits to be well separated within a codeword.

For brevity, the interleaver and de-interleaver are not shown explicitly in Figure 5-31.

At the receiver, a two-component iterative soft-decision decoder is used. Tentative

decisions of the bits expressed as log-likelihood-ratios (LLR) are passed iteratively

between a lattice-aware detector and an LDPC decoder until convergence or until a

maximum number of iterations is reached. Afterward, the decisions are finalized by

comparing the LLRs to a threshold, typically zero. The details of this decoder will

be described shortly.

The motivation for the two-component and iterative structure is that the two

components each handles a particular aspect of the decoding. The lattice-aware

detector deals with the channel distortion and the lattice structure of the tilted-

QAM code, and knows what symbols are close to the received point; while the LDPC

decoder focus on the redundancy, and knows which bit strings are valid codewords.

For optimal decoding, both aspects should be considered simultaneously, i.e., we want

a valid codeword that is the closest to the received point. However, directly solving

for it would have extremely high complexity. Instead, we iterate between the two

components, allow them to exchange information and come to a joint conclusion as

their decisions converge.

Next, we describe the iterative soft-decision decoding algorithm in detail.

5.6.2 Iterative Soft-Decision Decoder

The detail of the iterative soft-decision decoder is shown in Figure 5-32. The log-

likelihood-ratio scores passed between the LDPC decoder and the lattice-aware de-

tector are labeled. These forms of LLR are common to many soft-decision systems.

Let us first look at the LDPC decoder. We do not say much about it here except

that the input bit-wise LLR scores it requires are

log
P [Y|b = 1]

P [Y|b = 0]
, (5.43)
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Figure 5-32: Passing of bit-wise LLR scores between an LDPC decoder and a lattice-
aware detector unit consisting of a lattice detector and an MMSE detector.

and its output LLR scores have the form

log
P [b = 1|Y]

P [b = 0|Y]
= log

P [b = 1,Y]

P [b = 0,Y]
= log

P [Y|b = 1]

P [Y|b = 0]
+ log

P [b = 1]

P [b = 0]
. (5.44)

More details on the LDPC can be found in [10].

The lattice-aware detector we design has two components as shown in Figure 5-32.

The lattice detector tries to treat the discrete constellation exactly. However, due to

computationally constraint, approximations must be made. In certain cases where

the approximations can not be easily computed, we use the MMSE detector, where

the constellation is simply treated as continuous Gaussian with the right means and

variances.

The lattice detector takes as input the LLR score,

log
P [b = 1]

P [b = 0]
= log

P [b = 1|Y]

P [b = 0|Y]
− log

P [Y|b = 1]

P [Y|b = 0]
,

which is initialized to all zeros during the first iteration.

We now describe how it computes the LLR score log P [Y|b=1]
P [Y|b=0] from the input

log P [b=1]
P [b=0]

, or equivalently, P [b = 1] and P [b = 0].

For each 2 × 2 block, there are M 8 constellation points labeled by 8 log2M bits,

where M is the constellation size per dimension. Let us use b to indicate such a bit
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string, and use bi for the ith bit, then we have

log
P [Y|bi = 1]

P [Y|bi = 0]
= log

P [bi = 1,Y]

P [bi = 0,Y]
− log

P [bi = 1]

P [bi = 0]
(5.45)

= log

∑
{b|bi=1} P [Y|b] · P [b]

∑
{b|bi=0} P [Y|b] · P [b]

− log
P [bi = 1]

P [bi = 0]
. (5.46)

To compute P [b], the bits are treated as if they were independent, i.e.,

P [b] =

8 log2M∏

j=1

P [bj].

This is because the redundancy is ignored by the lattice detector and is only handled

by the LDPC decoder.

The conditional probability P [Y|b] is

P [Y|b] ∝ exp

{‖Y −HX(b)‖2
2σ2w

}
,

whereX(b) is the transmit constellation point corresponding to the bit string b. This

is a result of the additive white Gaussian noise assumption.

To compute log P [Y|bi=1]
P [Y|bi=0] exactly according to (5.46), we need to sum over all

M8 constellation points. However, this is obviously too computationally intensive.

Instead, we approximate it by listing a small number of points with the highest values

of P [Y|b]P [b] and only summing over them. Similar listing technique was used by

Hochwald and ten Brink in [14].

To determine the number of points to list, we must find a balance between com-

plexity and performance. We should list as few as possible to keep the complexity

low, and list as many as possible so that the approximation is good. In our simula-

tions, we choose to use 40 ∼ 120 points, which has acceptable complexity, and seem

to yield reasonably good performance.

Listing the set of constellation points with the highest values of P [Y|b]P [b] is

done using a specially modified sphere decoder. We will not discuss sphere decoder

in detail here except that it locates the closest point in a high dimensional lattice to
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a given point. We modify the sphere decoder to list all the points within a certain

radius. We also modified it to consider 2σ2w log(P [b])+‖Y−HX(b)‖2 as the effective
distance measure, so that the likelihood scores are included.

Once we have the list of points with the highest values of P [Y|b]P [b], we can

then perform the summation in (5.46) over this set for each bit bi. From this, the

lattice detector can compute its output LLR scores.

The LLR scores computed using the partial sum approximation are good in many

cases; however, for some bits, the points listed might all have that bit being 1 or

all 0. When this happens, one of the summations in (5.46) would be empty, and

no meaningful LLR score can be computed. This would typically happen for MSBs,

since points with different MSBs are often far away. For these bits, we use the MMSE

detector.

We perform MMSE detection for each symbol in S treating all others as continuous

interference. Once we obtain the MMSE estimate, we can consider the equivalent

channel, ŝ = s+e, and compute LLR scores for each bit in the symbol using the same

method as in the D-BLAST-MMSE case (see Figure. 5-10).

As iterations go by, we can use existing soft estimates of the bits in the form of

log P [b=1|Y]
P [b=0|Y]

to help reduce the interference. We estimate the mean of the interference

and cancel that out. Eventually, if all the bits are known exactly, then there would be

no interference left. We choose to use log P [b=1|Y]
P [b=0|Y]

instead of log P [b=1]
P [b=0]

because it carries

more information about the bits and seem to yield better performance empirically.

Combining the lattice detector and the MMSE detector, LLR scores for all bits

can be computed.

Note that the main difference between the lattice detector and the MMSE detector

is that the former treats the interference as discrete while the latter treats it as

continuous. Given a certain received signal point, it is important to treat the nearby

points as discrete to have accurate measures of the distances to them, which is done

by the lattice detector. For points far away however, the discreteness matters less,

allowing us to use the MMSE detector.
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5.6.3 Simulation Results

Using the system setup and the iterative soft-decision decoder described, we perform

three sets of simulations at two different rates, R = 6 and 8 b/s/Hz, which are the

same rates used in the D-BLAST-MMSE simulations. For the R = 6 b/s/Hz case,

we experiment with 16-QAM and 64-QAM constellations to see how the performance

is effected by the choice of constellation size. For the R = 8 b/s/Hz case, only 64-

QAM constellation is used. At the iterative decoder, a maximum of five iterations

are allowed, which appears to be sufficient.

The resulting block error rate curves are plotted in Figure 5-33. The left figure

is for R = 6 b/s/Hz, and the right one is for R = 8 b/s/Hz. In each figure, the

left most thin line represent the ultimate performance limit associated with channel

outage probability, the thick solid lines are for the tilted-QAM-LDPC concatenated

system we are evaluating, and the dashed lines are for the D-BLAST-MMSE case (see

section 5.3.5), drawn here for comparison.
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Figure 5-33: Block error rates achieved by tilted-QAM-LDPC concatenated systems
(thick solid), compared with D-BLAST-MMSE (dashed), and the ultimate outage
probability limit (thin solid), at R = 6 and R = 8 b/s/Hz, using two-transmit two-
receive antenna systems.

We first look at the gaps to the ultimate performance limits achieved, as labeled

in Figure 5-33. At 10−2 target block error rate, tilted-QAM-LDPC can reach 3.1 dB
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from capacity in the R = 6 b/s/Hz case. Compared to D-BLAST-MMSE, which

is 4.8 dB away, a small improvement in performance is achieved. This is because

D-BLAST-MMSE treats the interference between the symbols as Gaussian, when it

is really discrete. (This problem was discussed earlier in section 5.3.3.) Tilted-QAM-

LDPC, on the other hand, avoids this problem using the lattice-aware detector.

In the R = 8 b/s/Hz case, tilted-QAM-LDPC only reaches 5.7 dB from capacity,

and is about 1 dB worse than D-BLAST-MMSE, which is still 4.8 dB away. The

reason for this degradation in performance is that, as rate increases, it becomes more

difficult to perform the soft-decision decoding. In particular, the lattice detector only

considers a small number of neighbors instead of all the constellation points to reduce

complexity. The larger the constellation is, the worse the approximation.

We note that in all the experiments performed, no constellation shaping is used.

Therefore, all the gaps to capacity quoted include a portion due to the lack of shaping

gain. With simple shaping techniques, the resulting gap could be smaller by about

1 dB.

Next, let us turn our attention to the constellation size issue. Compare the two

tilted-QAM-LDPC results (thick solid lines) in the R = 6 b/s/Hz case, it is clear

that 16-QAM constellation does better than 64-QAM. This is because when the con-

stellation is unnecessarily dense, the points become too close compared to the noise

level. When this happens, noise could carry the original signal to many constellation

points away, and the transmitted point would not be among the nearby neighbors of

the received point, and would not be considered by the lattice detector.

Another constellation size issue worth noting is that tilted-QAM-LDPC uses

much smaller constellations compared to D-BLAST-MMSE, while achieving simi-

lar performance. Smaller constellations are preferred for ease of implementation.

For R = 6 b/s/Hz, tilted-QAM-LDPC uses 16-QAM constellation, while D-BLAST-

MMSE uses 256-QAM. This is due to the finite constellation problem of D-BLAST

we discussed in section 5.3.3. As tilted-QAM-LDPC demonstrates, this problem is

avoidable.
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5.7 Summary

In this chapter, we study building practical system using long error correction codes

in the multiple antenna communication scenario. We combine powerful coding tech-

niques developed for scalar AWGN channels with multiple antenna coding techniques,

in particular, OSTBC, various versions of BLAST, and tilted-QAM codes.

We examine two approaches. One is to transform a multiple antenna channel to

multiple single antenna channels. This leads to application of error correction codes

in a natural way. This is the approach taken by various versions of BLAST with

successive cancellation decoding. The other approach is to use a concatenated coding

scheme where codes specific to the multiple antenna channel, such as tilted-QAM

codes, are used as inner codes, and hard or soft-decision ECC are used outer codes to

further enhance the performance of the overall system. A system combining OSTBC

and ECC can be interpreted both ways.

We show that OSTBC enhanced with capacity achieving ECC is near optimal

in the low SNR regime. It is less than 1 dB from optimal for SNR below 10 dB

and rate below 2 b/s/Hz and less than 3 dB from optimal for SNR below 20 dB

and rate below 6 b/s/Hz. This suggests that although OSTBC loses multiplexing

gain due to repetition, it is still a very attractive method in the low SNR regime. It

also has very simple implementation and low decoding complexity. However, OSTBC

becomes increasingly sub-optimal in the high SNR regime. Also, there is no good

higher-dimensional OSTBC codes for systems with more than two antennas.

While OSTBC can be used for systems operating in low to moderate SNR regimes,

coding schemes suitable for high SNR still needs further study. Current designs like

diagonal-BLAST is theoretically optimal, but its non-block form leads to practical

problems like error propagation. Other block form variations like V-BLAST and X-

BLAST would be optimal or close to being optimal if joint decoding can be done.

However, there is no efficient joint decoding scheme at this time.

We experiment with combining tilted-QAM code with hard and soft decision error

correction codes. The complexity of the joint decoding involved is feasible for off-line
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simulations but beyond reach for current real time systems, especially in the case

of soft decoding. At the target error rate of 10−2, the resulting gap to capacity is

about 5.2 dB for hard decision systems. For soft-decision ones, the gap is 3.1 dB for

R = 6 b/s/Hz and 5.7 dB for R = 8 b/s/Hz. In comparison, D-BLAST-MMSE is

4.8 dB from capacity at those rates.

From our study, it is evident that more work is needed to design good systems for

multiple antenna communication in the high SNR regime and using more antennas,

and new design criteria might be needed.
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Chapter 6

Non-Coherent Communications

In the earlier chapters, we have assumed perfect channel knowledge at the receiver.

However, in many practical applications, this assumption can not be satisfied exactly.

For example, the channel might be varying too fast to be tracked accurately. This

scenario is appearing more and more often as wireless devices are now operating at

higher and higher carrier frequencies while the lower frequency spectrum becomes

quickly filled. Even when the channel is varying more slowly, we might only be able

to track it to some degree, instead of having perfect channel knowledge.

In this chapter, we investigate the case of non-coherent communication, where

the channel knowledge at the receiver is absent or imperfect. Again, we assume that

the transmitter has no channel knowledge. We continue to model the channel as

Y = HX+W, where the Nr ×Nt, Nr ≥ Nt, matrix H represents the flat, Rayleigh,

and block fading channel, andW is the additive white Gaussian noise. Entries of H

and W are independent with identical distribution CN(0, 1). The average energy of

each entry of X is ρ, while that of each column of X is SNR = Ntρ.

There are still many unanswered question for this non-coherent communication

problem. Neither exact capacity formulas nor efficient encoding and decoding algo-

rithms exist. Only some aspects of the achievable capacity are known and there exist

some inefficient or sub-optimal coding algorithms.

We first review some existing work on theoretical results, design rules, as well as

some specific designs. Then, we propose a geometric approach that links the non-
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coherent signal design problem to that of the coherent case with training, where some

predetermined, non-information bearing signal is sent to probe the channel. We argue

that the training approach is not too far from being optimal. We also look at what

decoding performance can be achieved using the channel estimates obtained through

training.

6.1 Theoretical Background

6.1.1 Capacity

The capacity of a non-coherent system is clearly upper bounded by the capacity of

a system where the channel coefficients are perfectly known by the receiver, which is

[36]

Cu = log2
(
det
(
INr

+ ρHH†
))
, (6.1)

where ρ = SNR/Nt is the average transmit SNR per antenna.

This capacity grows linearly with log2 ρ in the limit of high SNR. Specifically, for

every 3 dB increase in SNR, the capacity grows byK b/s/Hz, whereK = min(Nt, Nr).

For non-coherent systems, it turns out that the growth rate is slightly modified.

Zheng and Tse studied the capacity of non-coherent systems in the limit of

high SNR, assuming block fading model in [40]. They showed that non-coherent

capacity also grows linearly in the limit of high SNR. The difference is that for

every 3 dB increase in SNR, the capacity grows by K(1 − K/T ) b/s/Hz, where

K = min(Nt, Nr, bT/2c) and T is the coherence time of the channel, which is the

time that the channel remains constant before independently changing to other val-

ues.

While the full proof is more involved, the intuition behind the capacity growth

rate result is a dimensionality count. For simplicity, let us look at the symmetric

case, K = Nt = Nr ≤ T/2. At the transmitter, with K transmit antennas and

a block of T times, we have KT degrees of freedom. At the receiver, we need to
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solve for the channel, which has NtNr = K2 degrees of freedom. So we are left with

KT −K2 = K(T −K) degrees of freedom for transmitting information. Normalize

this by time, we have K(1−K/T ).

Furthermore, [42] shows that a non-coherent system with Nt transmit antennas 1,

Nr receive antennas, and block length T , has similar diversity-multiplexing tradeoff

as a coherent system with the same number of antennas and block length T − Nt.

The difference is that the tradeoff curved achieved is scaled in the direction of the

multiplexing gain, the r axis, by a factor of (1−Nt/T ). This tradeoff can be achieved

with training, where a pilot signal of duration Nt is first sent to allow the receiver to

learn the channel and then the system is treated as coherent. The training phase is

what causes the reduction of the factor of (1−Nt/T ) in multiplexing gain. In the limit

of T →∞, or slow fading, (1−Nt/T ) approaches 1. The non-coherent capacity meets

the perfect-knowledge upper bound as expected. Since for large coherence time, we

can spend some time to learn the channel first with negligible cost in rate.

One crucial assumption made in [42] is that the channel stays constant exactly

during the coherence time of the channel, so that we can learn the channel to any

precision desired and then treat the channel as known. However, this block fading

model is not accurate. In reality, channel varies continuously, so that future channel

coefficients can be estimated, but not perfectly. In [16], Lapidoth and Moser modeled

the channel as jointly stationary and ergodic stochastic processes. They concluded

that at high SNR, capacity grows double-logarithmically in SNR and not logarithmi-

cally as in the block fading case. They suggested in [17] that this double-logarithmic

behavior is dominant when the transmission rate significantly exceeds a fading num-

ber, which is typically increased by using multiple antennas. At this point, let us

assume that the regime we are interested in is below this fading number, so that the

block fading model is still reasonably good.

1Assume all Nt transmit antennas are used in this statement. Sometimes, it is preferable not to
use all antennas available.
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6.1.2 Capacity Achieving Distribution

In order to design good coding schemes, we first look at the capacity achieving distri-

bution, which was studied in [24]. Given a particular distribution on the transmitted

signal matrix X, the mutual information between the input and output of the channel

is defined as,

I(Y;X) = EY,X

[
log

(
p(Y|X)

EY[p(Y|X)]

)]
. (6.2)

The capacity achieving distribution is the distribution p(X) that maximizes the mu-

tual information to achieve capacity,

C = sup
p(X)

I(Y;X). (6.3)

The mutual information I(Y;X) is a function of both p(Y|X) and p(X). There-

fore, the distribution p(X) that maximizes I(Y;X) depends on p(Y|X), which we

now look at. In the case of Y = HX+W, where the entries of H and W are IID

CN(0, 1) random variables, and X is Nt × T , we have

p(Y|X) =
exp

(
−tr

((
IT +X†X

)−1
Y†Y

))

πTNr(det (IT +X†X))Nr
. (6.4)

We see that the effect of X appears only through X†X, so we can multiply X by any

unitary matrix on the left without changing p(Y|X). We can perform singular value

decomposition on X and factor it into X = ΨΛΦ†, where Ψ and Φ are unitary and Λ

is diagonal. Since we can remove Ψ by multiplying Ψ† on the left without changing

p(Y|X), we can limit X to take the form of just X = ΛΦ† with no loss of generality.

With some additional rotational symmetry argument, it turns out that the capacity

distribution is given by the following lemma [24].

Lemma 6.1 The signal matrix that achieves capacity can always be factored as

X = ΛΦ†, where Φ is an T ×Nt isotropically distributed unitary matrix, and Λ is an

independent Nt ×Nt real, non-negative, diagonal matrix.
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An isotropically distributed unit vector is a unit length vector that is equally

likely to point in any direction. An isotropically distributed unitary matrix is a

matrix whose columns are isotropically distributed unit vectors that also satisfy the

orthogonality constraint, i.e., the second column is a vector that is equally likely to

point in any direction that is orthogonal to the first, and so on. One property of

isotropically distributed unitary matrix is rotational symmetry, i.e., p(Φ) = p(ΘΦ),

for any unitary matrix Θ.

The capacity achieving distribution for the diagonal matrix Λ is not given in [24]

except in the limiting case. For fixed Nt, as T → ∞, the optimal distribution of Λ

converges to
√
ρT INt

in probability. This means that when T is large enough, we

can pick all diagonal entries of Λ to be
√
ρT , so that, X =

√
ρTΦ†. For the case of

Nt = Nr = 1, this approximation is shown to be good when T > 12 at SNR = 0 dB,

T > 4 at SNR = 6 dB, and T > 3 at SNR = 12 dB [24]. We see that the lengths

required are not very large and can be satisfied easily in practice.

It seems intuitive that the capacity achieving distribution should be isotropic when

the channel is Rayleigh fading and the transmitter has absolutely no knowledge of

the realized channel. However, if the transmitter were to have some side information

about the realized channel through feedback or if the channel were not Rayleigh

fading, then the symmetry would be broken and the capacity achieving distribution

would be different. Some of these issues are investigated in [37].

In comparison, the capacity achieving distribution for the AWGN channel is simply

Gaussian with zero mean and variance matching the signal power constraint. The

capacity achieving distribution of the non-coherent multiple antenna channel is much

more complicated, and the coding problem is more difficult as well.

6.2 Non-Coherent Communication Signal Design

By looking at the capacity achieving distribution, we have established that when

T is sufficiently large, we can pick the transmitted signal matrix for message l,

l ∈ {1, · · · , L}, to be X =
√
ρTΦ†l , where Φl is an T × Nt unitary matrix and L
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is the size of the signal set. This scheme is called Unitary Space-Time Modulation.

Geometrically, unitary matrices, or the subspaces they span, are used to represent

messages. In comparison, points are used for AWGN channels.

6.2.1 Design Criterion

In this study, the Nt× T transmitted signal matrix Φ is considered as one codeword,

and we are interested in detecting which one is transmitted from the received signal

Y =
√
ρTHΦ†l +W.

The maximum-likelihood detector for this signal set is ΦML = argmaxΦl
p(Y|Φl).

After some mathematical manipulation, it turns out to be [12]

ΦML = argmax
Φl∈{Φ1,··· ,ΦL}

tr (YΦ†lΦlY
†). (6.5)

This ML detector maximizes the energy contained in the product YΦ†l , similar to

match filtering. With this detector, the pair-wise error probability, the probability of

confusing Φ1 and Φ2 while ignoring other ones, has a Chernoff upper bound of

P [Φ1 → Φ2] ≤
1

2

Nt∏

n=1

[
1

1 + (ρT/Nt)2(1−d2n)
4(1+ρT/Nt)

]Nr

, (6.6)

where 1 ≥ d1 ≥ . . . ≥ dNt
≥ 0 are the singular values of the Nt × Nt correlation

matrix Φ†2Φ1.

From the above equation, we see that the probability of error decreases with

decreasing dn. Geometrically, these dn
′s correspond to the cosine’s of a set of principle

angles defined between the two subspaces spanned by Φ1 and Φ2. Therefore, to design

a good signal set that has low probability of error, we need to find a set of unitary

matrices, such that the subspaces they span are well separated in terms of the angles

between them.
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6.2.2 Existing Schemes

Next, we review some existing signal design schemes.

Iterative Search Method One iterative method of searching for a good determin-

istic signal set was described in [12]. The basic idea is to start from an initial signal

set and improve it iteratively. We first compute all pairs of correlation matrices Φ†iΦj,

and then identify the worst pair and try to “move them apart”. This procedure is

repeated until improvement diminishes. This method is computationally intensive,

especially when the signal set is large. For a signal set of size L, there are L(L− 1)/2

pairs of correlations to compute. Therefore, this method is only applicable in low

dimensional and low rate cases.

Systematic Design of Unitary Space-Time Signals A systematic method of

designing good unitary space-time signal sets was developed in [13]. The design is not

optimal, but the design complexity is low. The idea is to design one unitary matrix

Θ and use it to generate all signal matrices in the set. More specifically, the design

proposed is

Φl = Θl−1Φ1, for l = 1, · · · , L, (6.7)

where Θ is a T × T unitary matrix such that ΘL = IT , and Φ1 is a T × Nt unitary

matrix. The advantage of this design is that, for any two Φi and Φj, the correlation is

Φ†1Θ
((j−i) mod L)Φ1. Every signal matrix forms the same set of correlation matrices

with all the other signal matrices. Now there are only L − 1 correlation matrices to

check, instead of L(L− 1)/2. To further reduce the design complexity, Θ is restricted

to be diagonal with entries Θtt = ej(2π/L)ut for t = 1, · · · , T , where ut are integers

satisfying 0 ≤ u1 ≤ · · · ≤ uT ≤ L − 1. Now we only need to search over a finite set

of integers to find the best Θ.

Unitary Space-Time Autocoding Constellations Another structured way of

designing unitary space-time signal sets was proposed in [23]. A signal set of size
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L = 2RT takes the form of

Φl1l2···lRT
= Ωl1

1 Ω
l2
2 · · ·ΩlRT

RT Φ00···0, l1, l2, · · · , lRT ∈ {0, 1}, (6.8)

where Φ00···0 is T ×Nt and Ω1, · · ·ΩRT are T ×T independent isotropically distributed

unitary matrices. 2 A desirable property of this design is that, statistically, every sig-

nal set has signal matrices that are pair-wise independent and marginally isotropically

random. This statistics is capacity achieving.

Differential Coding Differential coding is well studied for the non-coherent single

antenna system, and was extended to multiple antenna systems by various groups

[11, 33]. In this case, Nt×Nt matrices are used to represent messages. The idea is to

utilize the fact that channel does not change much between these short blocks, and

transmit

Xτ = Xτ−1Φ
†
l (6.9)

for message l during block τ . This differential scheme leads to

Yτ = H(Xτ−1Φ
†
l ) +Wτ = Yτ−1Φ

†
l + (Wτ −Wτ−1Φ

†
l ). (6.10)

The effective channel is Yτ−1, which is perfectly known at the receiver. The detection

problem becomes a coherent one. However, the down-side is that the noise from

the previous block, Wτ−1, propagates through, so that the effective noise power is

doubled. Note that, for differential coding, the block fading model is not used.

2Detection for this signal set is like “trying to pick a combination lock”. There is no efficient
algorithm but exhaustive search.
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6.3 Geometric Approach

The criterion for designing good codes for non-coherent communication is to have a

set of unitary matrices such that the subspaces they span are well separated in terms

of the angles between them. Most of the existing schemes design unitary matrices

algebraically. In this section, we introduce a geometric approach. This is based on

work by Conway and Sloane on packing low dimensional subspaces in high dimensions

[5].

6.3.1 Projection Matrices

Subspaces have a one-to-one relationship with projection matrices corresponding to

projection onto that subspace. A subspace spanned by a T × Nt unitary matrix

Φ corresponds to a T × T projection matrix P = ΦΦ† with rank Nt. The task of

designing good signal sets can be turned into choosing a set of projection matrices

that are well separated in terms of a Euclidean distance, which is a metric that we

are much more familiar with and can visualize easily.

The Euclidean distance between two matrices is defined as the L2 norm of the

difference matrices. Let P1 −P2 = ∆, and let δij be the entries of ∆,

‖P1 −P2‖2 = ‖∆‖2 =
∑∑

δ2ij = tr(∆†∆) = tr(∆∆†). (6.11)

Consider two unitary signal matrices Φ1 and Φ2. Their corresponding projection

matrices are P1 = Φ1Φ
†
1 and P2 = Φ2Φ

†
2. Using the projection matrix properties,

P = P†, P = P2, and tr(P) = rank (P), we have,

‖P1 −P2‖2 = tr(P2
1) + tr(P2

2)− 2 · tr(P1P2)

= Nt +Nt − 2 · tr(Φ1Φ
†
1Φ2Φ

†
2)

= 2(Nt − ‖Φ†2Φ1‖2)

= 2
Nt∑

i=1

(1− d2i ), (6.12)
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where {di} is the set of singular values of Φ†2Φ1. Recall that the error probability

of the ML detector (6.6) decreases with decreasing di. So maximizing the Euclidean

distance between P1 and P2 can lead to smaller di and lower probability of error.

It happens that the ML detector also has a geometric interpretation of minimizing

Euclidean distances between matrices.

ΦML = argmax
Φl

(YΦ†lΦlY
†) = argmin

Φl

(‖Y†Y − Φ†lΦl‖2). (6.13)

Note that Y†Y is not a projection matrix, just a Hermitian matrix.

6.3.2 Embedding on Spheres

Let us now look at some properties that can help us visualize the geometry of all

projection matrices. Let us simplify the problem by treating all matrices as real for

the purpose of developing geometric intuitions.

First of all, all real projection matrices are symmetric, and the set of T × T sym-

metric matrices forms an Euclidean space. Summing and scaling symmetric matrices

result in symmetric matrices and we can use the L2 norm between matrices (6.11) as

the distance metric in this space.

This space of symmetric matrices is the space we operate in. We can show that

all projection matrices are embedded on a sphere centered at IT/2 with radius
√
T/2.

∥∥∥∥P−
IT
2

∥∥∥∥
2

= tr

(
P2 −P+

IT
4

)

= tr

(
IT
4

)
=
T

4
. (6.14)

All the projection matrices we are interested in for signal design are rank Nt.

We now show using similar techniques that the set of rank Nt projection matri-

ces are embedded on a lower dimensional sphere centered at (Nt/T )IT with radius
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√
Nt(1−Nt/T ).

∥∥∥∥P−
Nt

T
IT

∥∥∥∥
2

= tr

(
P2 − 2Nt

T
P+

N2
t

T 2
IT

)

=

(
1− 2Nt

T

)
Nt +

N2
t

T 2
T = Nt

(
1− Nt

T

)
(6.15)

Recall that at high SNR, capacity grows by K(1 −K/T ) b/s/Hz for every 3 dB

increase in SNR, where K = min(Nt, Nr, bT/2c). We see that when K = Nt, capacity

growth rate is determined by the radius of the sphere. The intuition is that the larger

the sphere, the more points we can choose for a given minimum distance criterion,

the greater the capacity.

The geometrical properties of projection matrices in (6.14) and (6.15) are sum-

marized in Figure 6-1.

6.3.3 Signal Design

We have now rephrased the signal design problem to one of finding well separated

points on a sphere. However, doing it systematically is still difficult. Here, we propose

to use an approximation of the sphere to allow systematic construction of a signal set

(constellation).

The idea is to approximate the sphere with a set of tangential planes as shown

in Figure 6-2. The signal design can now be decomposed into two parts. Within

each plane, we can design a constellation (small dots) using existing techniques for

choosing well separated points in a Euclidean space, for example, a lattice code. We

call this the fine constellation. Across planes, we need to choose where the tangent

points are (large dots). We call them the coarse constellation. Their design still has

the original non-coherent signal design complexity. Note that the more planes there

are, the more accurate the approximation of the sphere; however, there are more

coarse constellation points to be chosen, which increases design complexity.

Next, we translate the geometric intuition into more precise algebraic expressions.
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2

P

0

P

trace = T

trace = 0

T T

T

trace = N
N

trace = T−N

t
t

t

I

I

Figure 6-1: In the space of symmetric matrices, all projection matrices (of any rank)
are embedded on (the surface of) a sphere centered at IT/2 with radius

√
T/2. Pro-

jection matrices with a particular trace (rank) are embedded on lower dimensional
spheres. This figure is from [5].

One projection matrix of rank Nt is


INt

0

0 0


. Without loss of generality, let us use

it as one of the coarse constellation points. The points on the plane tangent to the

sphere at this point can be described by


INt

Ψ†

Ψ 0


 ≈


INt

Ψ



[
INt

Ψ†
]
. Note that

Ψ is an Nt × (T − Nt) matrix, so the total degrees of freedom normalized by T is

Nt(1−Nt/T ). Again, this is the capacity growth rate when Nt = min(Nt, Nr, bT/2c).

All coarse constellation points are rank Nt projection matrices. They can be writ-

ten in the form of Ω


INt

0

0 0


Ω†, where Ω is a T×T unitary matrix. Fine constellation

points on planes tangent at those points can be described by Ω


INt

Ψ†

Ψ 0


Ω†.
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[
INt

Ψ

Ψ
†
0

]

[
INt

0
0 0

]

Ω

[
INt

0
0 0

]
Ω
†

Figure 6-2: Using a “polygon” approximation to design a set of well separated points
on a sphere.

Therefore, a signal matrix described by coarse constellation point i and fine con-

stellation point j is

Φij = Ωi


 INt

Ψj


 . (6.16)

We can design the set of coarse constellation points {Ωi} and the set of find constel-

lation points {Ψj} separately.

6.3.4 Relationship to Training

We can relate the geometric view in Figure 6-2 to the training approach. If we

only consider the tangential plane through


INt

0

0 0


, the constellation points on it

correspond to Φj =


 INt

Ψj


. This can be considered as first sending INt

to allow the

receiver to estimate the channel, and then transmit data using Ψj. This is essentially

the training approach. If we also consider using multiple tangential planes, then we

can potentially convey additional information during the training phase. Therefore,
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this geometric coding design can be considered as a modified training approach where

the pilot signal can be one of many. This scheme is more complex, but has the

potential to increase data rate.

This additional amount of information turns out to be negligible, at least in the

high SNR limit. As SNR increases, the fine constellation points can become denser

and denser to take advantage of the smaller noise. However, no new tangential planes

can be added. Therefore, the amount of information that can be carried during the

training phase does not grow with SNR, and becomes negligible in the high SNR

limit. In fact, Zheng and Tse showed that training is optimal in terms of diversity-

multiplexing tradeoff [42]. This is because multiplexing gain only focuses on growth

rate; a constant number of bits does not matter.

In summary, this geometric approach translates the non-coherent signal design

problem to one of packing points on a sphere. Further approximation of the sphere

using a set of tangential planes leads to a scheme which is a modified training ap-

proach where the pilot signal itself can carry some fixed amount of information. This

geometric view together with Zheng and Tse’s result suggests that training is a rea-

sonably good approach.

6.4 Channel Training Approach

In this section, we focus on a training approach for non-coherent communication.

In the training scheme we consider, the transmitter first transmit a training signal
√
SNRINt

for a period of Nt, and then spend the rest of coherence time T − Nt

transmitting data as if the channel is perfectly known at the receiver. This is a very

simplistic scheme. More optimally, the transmitter should consider the fact that the

receiver only has an estimate of the channel after the training phase. But this is more

difficult.

One issue we would like to discuss briefly here relates to the time varying nature

of the channel and the block fading approximation. If the channel were truly block

fading, then the channel we experience during the training and data-transmission
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phases would be truly identical. We would be able to first spend some time to obtain

a sufficiently good channel estimate and then use it for the rest of the block. However,

in reality, the channel varies in time. Even if we had obtained a very good estimate

of the channel during the training phase, the true channel would have drifted by the

data-transmission phase. As time goes on, the deviation would increase until the

next training phase. Médard, Abou-Faycal, and Madhow [25] studied the possibility

of transmitting at higher rates during times closer to the pilot signal when the channel

estimation error is less and transmitting at lower rates in between when the error is

greater.

In this section, let us still assume the block fading model and focus on the simple

scheme of training plus coherent communication. We first discuss how the receiver can

estimate the channel and what the quality is, and then look at how the performance

is affected by imperfect channel knowledge.

6.4.1 Quality of Channel Estimation

During the training phase, the transmit signal matrix X is the pilot signal X =
√
SNRINt

. 3 The scaling factor
√
SNR is chosen such that the power used during

the training phase is the same as the average power used during data-transmission.

It is a reasonable thing to do. It also turns out to be very convenient. If the SNR

available increases and we want to transmit at a higher rate, we will need to have

higher quality channel estimation, and using more energy during training gives us

that.

When X =
√
SNRINt

, we have

Y = HX+W =
√
SNRH+W, (6.17)

3Other signals may be used, for example, one with reduced peak power. However, there is no
significant difference in this context.
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Written in a component-wise form,

yij =
√
SNRhij + wij. (6.18)

We can perform scalar minimum mean square error (MMSE) estimation to estimate

hij. The reason for choosing the MMSE estimator is so that the resulting estimation

error is independent from the estimate, and its variance is minimized.

Using standard MMSE formulation, the resulting estimate is

ĥij =

√
SNR

SNR + 1
yij. (6.19)

Let us denote the estimation error with ∆H = H − Ĥ and δh,ij = hij − ĥij. It is

easy to show that all δh,ij are IID, circularly symmetric, complex Gaussian random

variables with density CN(0, 2σ2h), where

2σ2h =
1

SNR + 1
. (6.20)

Note that, as the SNR available to us increases, the variance decreases, and the

channel estimation quality improves. Next, let us look at how the quality of the

channel estimation affects the system performance.

6.4.2 Effect of Imperfect Channel Knowledge

After training, we obtain an estimate of the true channel coefficients. Conditioned

on the received signal yij, each channel coefficient hij is complex Gaussian with den-

sity CN

( √
SNR

SNR+1
yij,

1
SNR+1

)
. Therefore, we effectively have a Rician channel . The

receiver knows both the mean and the variance of the channel coefficients, while the

transmitter only knows the variance but not the mean. This is different from the

coherent case, where H is deterministic at the receiver and is also different from the

non-coherent case, where H has (zero mean) Rayleigh density.

Ideally, during the data-transmission phase, the transmitter and receiver should

employ a scheme specific for the Rician channel. However, this is beyond the scope of

192



our study. Instead, we simply use the coherent communication schemes studied earlier

and treat the channel estimation error as a form of noise. We discuss its performance

and argue that there is effectively no loss in terms of diversity and multiplexing gains.

We can re-write the channel during the data-transmission phase as

Y = HX+W = ĤX+∆HX+W. (6.21)

In the first term, Ĥ is perfectly known to the receiver. This is similar to coherent

detection. The second term ∆HX can be treated as a new additive noise. Entries of

∆H have variance 1
SNR+1

≈ 1
SNR

and X has energy on the order of SNR. Consequently,

∆HX has energy on the order of 1, which is also the noise variance. This means

that the new noise ∆HX and the original AWGNW have energy on the same order.

Therefore, by doing simple coherent communication treating Ĥ as the trueH, we only

increase the amount of noise by a constant factor. Effectively, this cost only appears

as a constant dB loss in SNR, which means that the diversity and multiplexing gains

achieved are not affected.

The question of how good channel estimation needs to be was also studied by

Lapidoth and Shamai in [18]. They suggested that the channel estimation error

should be small compared to 1
SNR

to avoid significant performance degradation.

It is worth noting that the new noise ∆HX is not quite the same as the original

AWGN W. First of all, for a given X, the variance of ∆HX is a function of X.

Although the variance is on the order of 1, it does fluctuate with X. Also, averaging

over X, the distribution of ∆HX is not really Gaussian. It is the average of many

zero mean Gaussian distributions. This being said, it is plausible that treating it as

Gaussian probably does not influence the performance much.

There is another important difference between the noise terms. After the initial

training, ∆H is fixed within one block. If it happens to be large, then we are stuck

with a large noise for an entire block of T , even though ∆HX has energy of order 1

on average. On the other hand, all entries of W are independent. The consequence

of this difference is that, while we can use coding to average large and small entries of
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W within one block, we are not able to do that for ∆H. However, since short codes

can achieve the same tradeoff as long ones, we expect the inability to do coding to

not affect the diversity-multiplexing tradeoff.

Earlier when we argued for ∆HX and W having energy on the same order, we

needed the variance of ∆H to be on the order of 1
SNR

. This is true if we have true

block fading and the training signal has energy on the order of SNR. If the channel

were slowly varying, then a certain time after the training phase, the channel would

have drifted by a certain amount independent of SNR. This would contribute to a

component of the estimation error that is not order 1
SNR

. When this happens, ∆HX

would be much greater than W as SNR grows. Therefore, at high SNR, we might

have to train more frequently before ∆H becomes too large.
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Chapter 7

Summary and Future Directions

7.1 Contributions

In this thesis, we studied the problems of efficient designs for multiple antenna com-

munication systems. We studied the design problems in various delay and complexity

regimes, from uncoded systems, to structured codes with short delay, to long error

correction code enhanced systems.

The main advantages of multiple antennas communication over traditional single

antenna communication are the rate gain and robustness gain toward channel fading.

To better achieve these gains, we focused on the perspective of diversity-multiplexing

tradeoff, a framework established by Zheng and Tse [41], which describes how fast rate

increases and how rapidly error probability decays with SNR. We used this diversity-

multiplexing tradeoff as a measure of goodness to evaluate systems through out the

thesis. As systems become more complex and the code length becomes longer, better

tradeoff can be achieved.

In chapter 2, we reviewed the diversity-multiplexing tradeoff framework and also

provided some of our own intuitions. We measured the the horizontal spacings be-

tween a family of error probability curves and the slopes of these curves to evaluate

the diversity-multiplexing tradeoff. This family of curves not only captures the re-

lationship between rate, SNR, and error probability, in the finite SNR regime, but

also allows us to see the limiting tradeoff behaviors. We evaluated systems by plot-
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ting families of error probability curves and comparing them to the family of outage

probability curves.

In section 2.3.5, we briefly discussed the concept of local diversity-multiplexing

tradeoff. In certain situations, system designers may care about how the performance

of an existing system changes when the operating parameters change slightly, such as

when more SNR becomes available, or when the desired data rate increases. In these

cases, the local tradeoff is the quantity of interest.

We also discussed the relationship between different segments of the diversity-

multiplexing tradeoff curve and the different regions of the (SNR, Pe, R) parameter

space. Depending on where the system designer wants to operate in, different seg-

ments of the tradeoff curve should be focused on. In particular, for higher rates, the

segment of the tradeoff corresponds to larger r is important.

For most of this thesis, we focused on two-transmit two-receive antenna systems,

which arises frequently in practice. Even though it is small, this system can provide

significant gains over single antenna systems.

In chapter 3, we introduced a lattice-reduction-aided detection idea. By operating

traditional low-complexity detectors in a lattice reduced basis, we can achieve near

optimal performance with low complexity. In particular, we can achieve the same

diversity as the more-complex maximum likelihood detectors, and can achieve the

optimal diversity-multiplexing tradeoff achievable by any length-one code. This idea

is mainly for low dimensional cases. When extended to higher dimensions, it quickly

becomes complex. It can also be used at the transmitter as a pre-coding technique.

One main problem with this detector is that it does not treat the boundary of the

constellation. Because of this problem, it can not be combined with the tilted-QAM

code introduced in chapter 4 to achieve the same tradeoff that ML detectors can.

In chapter 4, we proposed a tilted-QAM code design for the two-transmit two-

receive antenna channel that can achieve the optimal diversity-multiplexing tradeoff

curve with code length two. This answers the previously open question of whether the

optimal tradeoff is achievable at this length. This code improves upon the OSTBC

by replacing the repetition used with a rotation, thus avoiding the multiplexing gain
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loss. At high SNR, tilted-QAM code is increasing better than OSTBC; however, at

low SNR, OSTBC is preferred for its low complexity.

In the tilted-QAM code, one key feature is a set of universally optimal rotation

angles that leads to the same worst case determinant for all rates. Similar rotation

ideas have been previously studied, but the existence of the universally optimal rota-

tion angles was unknown. This result can also be applied elsewhere, for example, to

single antenna communication over multiple fades, as discussed in section 4.6.

We evaluated the performance of the tilted-QAM code from two different per-

spectives. These error evaluation techniques developed may potentially be used to

evaluate other deterministic codes and be extended to higher dimensional cases.

In chapter 5, we investigated using powerful error correction codes in multiple

antenna systems to build practical systems with good performance. We explored

many schemes and a wide range of possibilities. For low SNR regime, we showed that

the low-complexity OSTBC scheme is near optimal. However, for higher SNR levels

and systems with more antennas, further research is needed. D-BLAST system is

shown to be theoretically optimal but suffers from problems such as error propagation.

Other block form variations of BLAST require joint decoder to do well. We also tested

system that combine tilted-QAM code with error correction codes. The Hard-decision

based system can reach 5 dB from capacity with moderate complexity; while the soft-

decision one reduces the gap to 3 dB, but increases the decoding complexity.

In chapter 6, we studied the case of non-coherent communication where neither

the transmitter nor the receiver knows the channel. We reviewed several coding

designs and a graphical view that relates coding for non-coherent communication to

packing on a sphere. By approximating the sphere with tangential planes, we turned

the signal design problem into a problem of designing a set of coarse points plus

doing coherent communication coding within the planes. We concluded that training

scheme corresponds to using just one of the planes and the loss in rate is a constant

factor.
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7.2 Future Directions

7.2.1 Coherent Communications

One interesting future direction of research is to extend the tilted-QAM code design

to higher dimensions. This is a challenging problem due to the higher number of

dimensions and the larger number of variables. One open question we hope to an-

swer is the achievability of optimal diversity multiplexing tradeoff using codes with

length Nt ≤ T < Nt + Nr − 1. Gaussian random codes at these lengths are sub-

optimal. However, it might be possible to construct deterministic codes that can

reach optimality.

Another theoretically interesting topic is the design criteria in higher dimensional

cases. In the two-transmit two-receive antenna case, we saw that maximizing the

worst-case determinant is important for achieving the optimal tradeoff for 0 ≤ r ≤ 1,

while keeping the degree of freedom and not use repetition is important for achieving

the maximum multiplexing gain. In higher dimensional cases, the optimal tradeoff

curve has more linear segments, we suspect that there are different criteria for the

different segments, and these criteria need to be identified. Also, since the different

segments correspond to different (SNR, Pe, R) regimes, depending on the operating

point, we might need to focus on different criteria.

More practically, if more antennas are available, we can consider using the 2 × 2

tilted-QAM code as a building block. For example, in a Nt = Nr = T = 4 system, if

we encode for the four antennas using two independent 2× 2 tilted-QAM codes and

do ML decoding, we expect that a maximum diversity of 8 can be achieved, instead

of NtNr = 16. This loss is acceptable practically, since the target error rate needed

are usually not too low. More work involving how 2×2 tilted-QAM code can be used

as a component in systems with more antennas may lead to practical schemes.

Another practical problem that needs to be solved is the joint decoding problem

for V-BLAST or X-BLAST. We saw that X-BLAST can achieve optimal performance

if joint decoding can be done. Therefore, if joint decoding can be done efficiently, this

may lead to many practical applications.
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In order to do joint decoding, we must deal with the interference between the

transmitted symbols. One low-complexity way to do so is to use the lattice-reduction-

aided detectors. We saw earlier that this does not work due to the boundary problem

of lattice decoding. Therefore, if we could deal with the boundary efficiently, it might

lead to a way of doing joint decoding efficiently and well enough such that the optimal

tradeoff can be achieved.

7.2.2 Non-coherent Communications

The field of non-coherent communication is still a wide open one. Developing deeper

understanding of this problem is very important, because the channel is never known

perfectly at the receiver in reality. When systems developed with the channel knowl-

edge assumption are implemented in practice, engineers often have to deal with chan-

nel uncertainty issues. If systems could be designed from non-coherent communication

theory, they might lead to more robust implementations in practice.

The geometric approach presented in section 6.3 allows existing coherent multiple

antenna communication techniques to be applied to the non-coherent case. This may

be a promising approach. Directly solving the non-coherent problems seems difficult.

Leveraging on existing coherent communication techniques may make the problem

easier. One of the key problems that still need to be resolved along this path is how

large the tangential planes can be before the approximation of the sphere becomes

bad near the edge. This effect also appears in the case of coherent communication

with training, in that channel estimation error causes more interference for points

at the edge of the constellation. Another key problem is the design of the coarse

constellation points. From the size limit of the tangential planes, we can estimate

how many coarse constellation points are needed. If this number is small, we may

be able to use existing techniques or use very special structures. However, if a large

number of points is needed, the design may be difficult.

Among the existing non-coherent communication results, most are developed us-

ing the block fading model. This assumption that the channel stays exactly constant

could be mis-leading. It allows for techniques such as learning the channel as accu-
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rately as desired at the beginning and then treat the channel as coherent, which is not

possible if the channel is fading continuously. One consequence of this discrepancy is

that the capacity growth rate at high SNR is different depending on the model used.

Another problem associated with the block fading model is the choice of the

coherence time T , the period in which we assume the channel stays exactly constant.

If T were set to be too large, the channel could change significantly within one block,

invalidating the block fading assumption. If T were set to be too small, the channel

seen by neighboring blocks would be quite close, and not taking advantage of this

correlation is inefficient.

One non-coherent signal design that does not used the block fading model and

avoids the above problem is the differential coding scheme. It uses small blocks

and assumes the channel does not change much between neighboring blocks. Slight

channel variations are treated as noise. This scheme may be further improved by

considering the channel variation across blocks.

Generally, further research based on more accurate continuous fading models is

needed to understand its effect and how good block fading model really is.

In terms of theoretical results, one that is useful but may be difficult to develop

is the capacity achievable at low SNR. This result is important for evaluating system

performance in practical regimes.
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