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Abstract

Digital watermarking, information embedding, and data hiding systems embed information,
sometimes called a digital watermark, inside a host signal, which is typically an image, audio
signal, or video signal. The host signal is not degraded unacceptably in the process, and
one can recover the watermark even if the composite host and watermark signal undergo a
variety of corruptions and attacks as long as these corruptions do not unacceptably degrade
the host signal.

These systems play an important role in meeting at least three major challenges that
result from the widespread use of digital communication networks to disseminate multimedia
content: (1) the relative ease with which one can generate perfect copies of digital signals
creates a need for copyright protection mechanisms, (2) the relative ease with which one can
alter digital signals creates a need for authentication and tamper-detection methods, and
(3) the increase in sheer volume of transmitted data creates a demand for bandwidth-efficient
methods to either backwards-compatibly increase capacities of existing legacy networks or
deploy new networks backwards-compatibly with legacy networks.

We introduce a framework within which to design and analyze digital watermarking and
information embedding systems. In this framework performance is characterized by achiev-
able rate-distortion-robustness trade-offs, and this framework leads quite naturally to a new
class of embedding methods called quantization index modulation (QIM). These QIM meth-
ods, especially when combined with postprocessing called distortion compensation, achieve
provably better rate-distortion-robustness performance than previously proposed classes of
methods such as spread spectrum methods and generalized low-bit modulation methods
in a number of different scenarios, which include both intentional and unintentional at-
tacks. Indeed, we show that distortion-compensated QIM methods can achieve capacity,
the information-theoretically best possible rate-distortion-robustness performance, against
both additive Gaussian noise attacks and arbitrary squared error distortion-constrained
attacks. These results also have implications for the problem of communicating over broad-
cast channels. We also present practical implementations of QIM methods called dither
modulation and demonstrate their performance both analytically and through empirical
simulations.
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Chapter 1

Introduction

Digital watermarking and information embedding systems have a number of important
multimedia applications [20, 41]. These systems embed one signal, sometimes called an
“embedded signal” or “watermark”, within another signal, called a “host signal”. The
embedding must be done such that the embedded signal causes no serious degradation to
its host. At the same time, the embedding must be robust to common degradations to the
composite host and watermark signal, which in some applications result from deliberate
attacks. Ideally, whenever the host signal survives these degradations, the watermark also

survives.

1.1 Information Embedding Applications

One such application — copyright notification and enforcement — arises due to the relative
ease with which one can create perfect copies of digital signals. Digital watermarking is one
way to help prevent or reduce unintentional and intentional copyright infringement by ei-
ther notifying a recipient of any copyright or licensing restrictions or inhibiting or deterring
unauthorized copying. In some cases the systems need to be robust only against so-called
unintentional attacks, common signal corruptions from sources such as lossy compression,
format changes, and digital-to-analog-to-digital conversion. In other cases the systems must
also resist deliberate attacks by “hackers”. Typically, the digital watermark is embedded
into multimedia content — an audio signal, a video signal, or an image, for example — and
(1) identifies the content owner or producer, (2) identifies the recipient or purchaser, (3) en-

ables a standards-compliant device to either play or duplicate the content, or (4) prevents
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a standards-compliant device from playing or duplicating the content.

For example, a watermark embedded in a digital photograph could identify the pho-
tographer and perhaps include some contact information such as email address or phone
number. Popular commercial image-editing software could include a watermark decoder
and could notify the user that the photograph is copyrighted material and instruct the
user to contact the photographer for permission to use or alter the photograph. Alterna-
tively, a web crawler could look for the photographer’s watermark in images on the Web
and notify the photographer of sites that are displaying his or her photographs. Then, the
photographer could contact the website owners to negotiate licensing arrangements.

Instead of identifying the content owner, the watermark could uniquely identify the
purchaser, acting as a kind of “digital fingerprint” that is embedded in any copies that the
purchaser creates. Thus, if the content owner obtains any versions of his or her content that
were distributed or used in an unauthorized fashion, he or she can decode the watermark
to identify the original purchaser, the source of the unauthorized copies.

The digital watermark could also either enable or disable copying by some duplication
device that checks the embedded signal before proceeding with duplication. Such a system
has been proposed for allowing a copy-once feature in digital video disc recorders [16]. Alter-
natively, a standards-compliant player could check the watermark before deciding whether
or not to play the disc [28].

In addition to being easily duplicated, digital multimedia signals are also easily altered
and manipulated, and authentication of, or detection of tampering with, multimedia signals
is another application of digital watermarking methods [24]. So-called “fragile” watermarks
change whenever the composite signal is altered significantly, thus providing a means for
detecting tampering. Alternatively, one could embed a robust watermark, a digital signa-
ture, for example, within a military map. If the map is altered, the watermark may survive,
but will not match the altered map. In contrast to traditional authentication methods, in
both the fragile and robust cases, the watermark is embedded directly into the host signal.
Thus, no side channel is required, and one can design the watermarking algorithm such that
one can authenticate signals in spite of common format changes or lossy compression.

In addition to authentication, a number of national security applications are described
in [1] and include covert communication, sometimes called “steganography” [33] or low

probability of detection communication, and so-called traitor tracing, a version of the digital
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fingerprinting application described above used for tracing the source of leaked information.
In the case of covert communication, the host signal conceals the presence of the embedded
signal, which itself may be an encrypted message. Thus, steganographic techniques hide

the existence of the message, while cryptographic techniques hide the message’s meaning.

Although not yet widely recognized as such, bandwidth-conserving hybrid transmis-
sion is yet another information embedding application, offering the opportunity to re-use
and share existing spectrum to either backwards-compatibly increase the capacity of an
existing communication network, i.e., a “legacy” network, or allow a new network to be
backwards-compatibly overlayed on top of the legacy network. In this case the host sig-
nal and embedded signal are two different signals that are multiplexed, i.e., transmitted
simultaneously over the same channel in the same bandwidth, the host signal being the
signal corresponding to the legacy network. Unlike in conventional multiplexing scenarios,
however, the backwards-compatibility requirement imposes a distortion constraint between

the host and composite signals.

So-called hybrid in-band on-channel digital audio broadcasting (DAB) [5, 32] is an exam-
ple of such a multimedia application where one may employ information embedding methods
to backwards-compatibly upgrade the existing commercial broadcast radio system. In this
application one would like to simultaneously transmit a digital signal with existing analog
(AM and/or FM) commercial broadcast radio without interfering with conventional analog
reception. Thus, the analog signal is the host signal, and the digital signal is the watermark.
Since the embedding does not degrade the host signal too much, conventional analog re-
ceivers can demodulate the analog host signal. In addition, next-generation digital receivers
can decode the digital signal embedded within the analog signal. This embedded digital
signal may be all or part of a digital audio signal, an enhancement signal used to refine the
analog signal, or supplemental information such as station identification. More generally,
the host signal in these hybrid transmission systems could be some other type of analog
signal such as video [43] or even a digital waveform. For example, a digital pager signal
could be embedded within a digital cellular telephone signal.

Automated monitoring of airplay of advertisements on commercial radio broadcasts is
one final example of a digital watermarking application. Advertisers can embed a digital
watermark within their ads and count the number of times the watermark occurs during

a given broadcast period, thus ensuring that their ads are played as often as promised.
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In this case, however, the watermark is embedded within the baseband source signal (the
advertisement), whereas in the bandwidth-conserving hybrid transmission applications dis-
cussed above, the digital signal may be embedded in either the baseband source signal or

the passband modulated signal (a passband FM signal, for example).

1.2 Thesis Summary

A large number of information-embedding algorithms have been proposed [20, 33, 41] in
this still emerging field. As will be developed in Sec. 2.4, one can classify these methods
according to whether or not the host signal interferes with one’s ability to recover the
embedded watermark. A simple example of a host-interference rejecting method is the
quantization-and-perturbation method of [43], which may be viewed as a type of generalized
low-bit(s) modulation (LBM). These LBM methods range from simple replacement of the
least significant bit(s) of the pixels of an image with a binary representation of the watermark
to more sophisticated methods such as the one in [43] that involve transformation of the host
signal before quantization and adjustment of the quantization step sizes. Host-interference
non-rejecting methods include linear classes of methods such as spread-spectrum methods,
which embed information by linearly combining the host signal with a small pseudo-noise
signal that is modulated by the embedded signal. Although these methods have received
considerable attention in the literature [4, 15, 22, 37, 44, 45], these methods are limited by
host-signal interference when the host signal is not known at the decoder, as is typical in
many of the applications mentioned above. Intuitively, the host signal in a spread spectrum
system is an additive interference that is often much larger, due to distortion constraints,
than the pseudo-noise signal carrying the embedded information.

In this thesis we examine information embedding problems from the highest, most fun-
damental level. Based on first principles we arrive at a general class of host-interference
rejecting embedding methods called quantization index modulation (QIM) that perform
provably better than the methods mentioned above in a wide variety of different contexts.
We also examine the fundamental performance limits of information embedding methods.

We begin our discussion in Chap. 2 by developing formal mathematical models of the
information embedding applications discussed above. In particular, one can view infor-

mation embedding either as distortion-constrained multiplexing or as communication over
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a super-channel with side information that is known at the encoder. Depending on the
context, one view may be more convenient than the other, and we develop mathematically
equivalent models from both of these perspectives. We also develop a framework in which
the performance of an information embedding method may be characterized based on its
achievable rate-distortion-robustness trade-offs and discuss how previously proposed digital
watermarking algorithms fit into this framework.

The framework we develop in Chap. 2 leads quite naturally to the QIM class of embed-
ding methods introduced in Chap. 3. In QIM information embedding, each quantizer within
an ensemble of quantizers is associated with an index. The watermark modulates an index
sequence, and the associated quantizer sequence is used to quantize the host signal, i.e., the
host signal is mapped to a sequence of reconstruction points. By ensuring that the sets of
reconstruction points of the different quantizers in the ensemble are non-intersecting, one
obtains a host-interference rejection property. Also, as discussed in more detail in Chap. 3,
QIM methods are convenient from an engineering perspective because one can easily trade-
off rate, distortion, and robustness by adjusting a few system parameters. Finally, we also
describe so-called distortion compensation, which is a type of post-quantization processing
that provides enhanced rate-distortion-robustness performance.

Not only is the QIM structure convenient from an engineering perspective, but such
a structure also has a theoretical basis from an information-theoretic perspective, as we
discuss in Chap. 4. In this chapter, we examine the fundamental rate-distortion-robustness
performance limits, ¢.e., capacity, of information embedding methods in general and show
that one can achieve capacity against any fixed attack with a type of “hidden” QIM. We
also discuss conditions under which distortion-compensated QIM can achieve capacity.

In general, though, one achieves capacity only asymptotically with long signal lengths, so
we develop practical implementations of QIM called dither modulation in Chap. 5. The QIM
quantizer ensembles in a dither modulation system are dithered quantizers, and modulating
the quantization index is equivalent to modulating the dither signal. Such a structure
allows for implementations with low computational complexity, especially if the quantizers
are uniform, scalar quantizers. We also discuss spread-transform dither modulation in this
chapter, a form of dither modulation that can easily be shown to outperform both so-called

amplitude-modulation spread-spectrum methods and generalized LBM methods.

After having introduced a general framework in which to analyze digital watermarking
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problems and having presented some novel embedding methods, in the remaining chap-
ters we apply the framework to particular scenarios of interest, starting with a discussion
of Gaussian scenarios in Chap. 6. Here, we derive information embedding capacities for
Gaussian host signals and additive Gaussian noise channels, which may be good models
for unintentional degradations to the composite signal. Our results apply to arbitrary host
covariance matrices and arbitrary noise covariance matrices, and hence, apply to a large
number of multimedia application scenarios, as discussed in Sec. 6.2. One of the more in-
teresting results in this chapter is that one can embed at a rate of about 1/3 b/s per Hertz
of host signal bandwidth per dB drop in received host signal-to-noise ratio (SNR) and that
this capacity is independent of whether or not the host signal is available during watermark
decoding. As we also discuss in Sec. 6.2, results in this chapter have important connec-
tions to the problem of communicating over broadcast channels, even in non-watermarking
contexts. We conclude the chapter with a discussion of the gaps to capacity of QIM and
spread spectrum methods and show that spread spectrum methods generally have a large
gap, QIM methods have a small gap, and distortion-compensated QIM (DC-QIM) methods
have no gap, i.e., capacity-achieving DC-QIM methods exist in the Gaussian case.

We focus on intentional attacks in Chap. 7, considering both attacks on systems pro-
tected by a private key and worst-case attacks, where the attacker may know everything
about the embedding and decoding processes, including any keys. Just as in the Gaussian
case, in the case of squared error distortion-constrained attacks on private-key systems, one
can achieve capacity with DC-QIM. In the no-key scenarios, QIM methods are provably
better than spread-spectrum and generalized LBM methods.

To supplement our analytical results, we present simulation results in Chap. 8 for ad-
ditive Gaussian noise channels and for JPEG compression channels. We also provide some
sample host, composite, and channel output images in this chapter and demonstrate prac-
tically achievable gains from error correction coding and distortion compensation.

We conclude the thesis in Chap. 9, where we also discuss some possible directions for

future work.
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Chapter 2

Mathematical Modeling of Digital

Watermarking

A natural starting point in the discussion of information embedding systems is to develop
mathematical models that suitably describe information embedding applications such as
those discussed in Chap. 1. Such models facilitate a precise consideration of the issues
involved in the design and performance evaluation of information embedding systems. We
present two mathematically equivalent models in this chapter from two different perspec-
tives. We conclude the chapter with a discussion of classes of embedding methods. The

reader is referred to App. A for notational conventions used throughout this thesis.

2.1 Distortion-constrained Multiplexing Model

Our first model is illustrated in Fig. 2-1. We have some host signal vector x € RV in

which we wish to embed some information m. This host signal could be a vector of pixel

S U
X —» s(x,m) » Channel -1 DEC [—» m

m 4* n=y-s

Figure 2-1: General information-embedding problem model. An integer message m is em-
bedded in the host signal vector x using some embedding function s(x, m). A perturbation
vector n corrupts the composite signal s. The decoder extracts an estimate m of m from
the noisy channel output vy.
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values, audio samples, or speech samples, for example. Alternatively, x could be a vector of
coefficients from a linear transform of the host signal, such as the Discrete Cosine Transform
(DCT) or the Discrete Fourier Transform (DFT), or from some non-linear transform. We
emphasize the our framework is general enough to accommodate any representation of the

host signal that involves real numbers.

We wish to embed at a rate of Ry, bits per dimension (bits per host signal sample) so

we can think of m as an integer, where
me {1,2,...,2NRm}. (2.1)

The integer m can represent, for example, the watermark or digital fingerprint in a copyright
application, an authentication signal, a covert message, or a digital signal communicated
using an existing analog communication system. Again, our model applies to any type of
digital embedded signal, including of course a digitized version of an analog signal. Although
we focus in this thesis on the digital case since it is the one of interest in most applications,
many of the embedding algorithms considered in later chapters can also be extended to

include embedding of analog data as well, as discussed in Sec. 5.3.

These embedding algorithms embed m in the host signal x by mapping m and x to
a composite signal vector s € R using some embedding function s(x, m). As explained
in Chap. 1, the embedding must be done such that any degradations to the host signal
are acceptable. This degradation is measured quantitatively by some distortion function
between the host and composite signals. For example, two convenient distortion measures

that are amenable to analysis are the well-known squared error distortion measure
Dis,x) = ylls = xI” (2.2
s, X) = —||s — x .
1 N 1
and the weighted squared error distortion measure
1 T
D(s,x) = ﬁ(s —x)" W(s —x), (2.3)

where W is some weighting matrix. Also, the expectations Dy of these distortions taken
over a probability distribution of the host signal and/or the embedded information are yet

another set of distortion measures.
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After the embedding, the composite signal s is typically subjected to a variety of sig-
nal corrupting manipulations such as lossy compression, addition of random noise, and
resampling, as well as deliberate attempts to remove the embedded information. These
manipulations occur inside some channel, which produces an output vector y € RY. For
convenience, we define a perturbation vector to be the difference n 2 y — s. Thus, this
model is sufficiently general to include both random and deterministic perturbation vec-
tors and both signal-independent and signal-dependent perturbation vectors. We restrict
attention to cases where the degradations caused by the channel are not too large for at
least two reasons. First, if we allow arbitrary degradations, for example, where the channel
output is totally independent of the channel input, then clearly one cannot hope to reliably
extract the embedded information from the channel output. Second, in most applications
only this bounded degradation channel case is of interest. For example, it is of no value
for an attacker to remove a copyright-protecting watermark from an image if the image
itself is destroyed in the process. In Sec. 2.3, we give some examples of channel models and

corresponding degradation measures that will be of interest in this thesis.

A decoder extracts, or forms an estimate m of, the embedded information m based on
the channel output y. We focus in this thesis on the “host-blind” case, where x is not
available to the decoder. In some applications the decoder can also observe the original
host signal x. We comment on these less typical “known-host” cases throughout this thesis,
where appropriate. The decoder ideally can reliably! extract the embedded information as
long as the channel degradations are not too severe. Thus, the tolerable severity of the

degradations is a measure of the robustness of an information embedding system.

One would like to design the embedding function s(x, m) and corresponding decoder to
achieve a high rate, low distortion, and high robustness. However, in general these three
goals are conflicting. Thus, one evaluates the performance of the embedding system in
terms of its achievable trade-offs among these three parameters. Such a characterization
of the achievable rate-distortion-robustness trade-offs is equivalent to a notion of provable

robustness at a given rate and distortion.

! “Reliably” can mean either that one can guarantee that A1 = m or that the probability of error is small,
Pr[m # m] <e.
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Figure 2-2: Equivalent super-channel model for information embedding. The composite
signal is the sum of the host signal, which is the state of the super-channel, and a host-
dependent distortion signal.

2.2 Equivalent Super-channel Model

An alternative representation of the model of Fig. 2-1 is shown in Fig. 2-2. The two models
are equivalent since any embedding function s(x, m) can be written as the sum of the host

signal x and a host-dependent distortion signal e(x, m),
s(x,m) = x+ e(x, m),

simply by defining the distortion signal to be e(x, m) 2 s(x, m) —x. Thus, one can view e as
the input to a super-channel that consists of the cascade of an adder and the true channel.
The host signal x is a state of this super-channel that is known at the encoder. The measure
of distortion D(s,x) between the composite and host signals maps onto a host-dependent
measure of the size P(e,x) = D(x + e, x) of the distortion signal e. For example, squared

error distortion (2.2) equals the power of e,

1 1
s = xII* = S llell

Therefore, one can view information embedding problems as power-limited communication
over a super-channel with a state that is known at the encoder.? This view can be conve-
nient for determining achievable rate-distortion-robustness trade-offs of various information

embedding and decoding methods, as will become apparent in Chap. 4.

2Cox, et al., have also recognized that one may view watermarking as communications with side infor-
mation known at the encoder [17].
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2.3 Channel Models

The channel model precisely describes the degradations that can occur to the composite
signal. From this perspective, the channel is like a black box, to which one may or may not
have access when formulating a model, and the objective of channel modeling is to describe
the input/output relationship of this black box. From an alternative viewpoint, however,
the channel model could simply describe the class of degradations against which one wishes
the embedder and decoder to be robust, i.e., the system is designed to work against all
degradations described by this particular model. Although the difference between these
two views may be subtle, it can be quite important when dealing with intentional attacks
by a human attacker. From the first viewpoint, accurately describing all degradations that
a human could possibly conceive using a tractable mathematical model could be quite
difficult, if not impossible. However, from the second viewpoint, the channel model is more
like a design specification: “Design an embedder and decoder that are robust against the
following attacks.”

Regardless of which viewpoint one adopts, in this thesis we describe the channel ei-
ther probabilistically or deterministically. In the probabilistic case, we specify the channel
input-output relationship in terms of the conditional probability law py|s(y|s). Implicitly,
this specification also describes the conditional probability law of the perturbation vectors
against which the system must be robust since pys(n|s) = pys(s+n|s). In the deterministic
case, one can in general describe the channel input-output relationship in terms of the set of
possible outputs P{y|s} for every given input, or equivalently, in terms of the set of desired
tolerable perturbation vectors P{n|s} for every given input.

Some examples of families of such channel models are given below. These model families
have parameters that naturally capture the severity of the associated set of perturbation
vectors, and thus, these parameters also conveniently characterize the robustness of embed-

ding methods as discussed in Sec. 2.1.

1. Bounded perturbation channels: A key requirement in the design of information-
embedding systems is that the decoder must be capable of reliably extracting the
embedded information as long as the signal is not severely degraded. Thus, it is
reasonable to assume that the channel output y is a fair representation of the original

signal. One way to express this concept of “fair representation” is to bound the energy
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of the perturbation vector,
ly = sl|* = [[n]]* < No. (2.4)

This channel model, which describes a maximum distortion® or minimum SNR con-
straint between the channel input and output, may be an appropriate model for either
the effect of a lossy compression algorithm or attempts by an active attacker to remove
the embedded signal, for example. We also consider in this thesis the probabilistic

counterpart to this channel, where E[||n|*] < NoZ.

2. Bounded host-distortion channels: Some attackers may work with distortion
constraint between the host signal, rather than the channel input, and the channel
output since this distortion is the most direct measure of degradation to the host
signal. For example, if an attacker has partial knowledge of the host signal, which
may be in the form of a probability distribution, so that he or she can calculate
this distortion, then it may be appropriate to bound the expected distortion Dy =

E[D(y,x)], where this expectation is taken over the conditional probability density

pX|S(X|S).

3. Additive noise channels: In this case the perturbation vector n is modeled as
random and statistically independent of s. An additive white Gaussian noise (AWGN)
channel is an example of such a channel, and the natural robustness measure in
this case is the maximum noise variance o2 such that the probability of error is
sufficiently low. These additive noise channel models may be appropriate for scenarios
where one faces unintentional or incidental attacks, such as those that arise in hybrid
transmission and some authentication applications. These models may also capture

the effects of some lossy compression algorithms, as discussed in App. B.

FSome types of distortion, such as geometric distortions, can be large in terms of squared error, yet still
be small perceptually. However, in some cases these distortions can be mitigated either by preprocessing at
the decoder or by embedding information in parameters of the host signal that are less affected (in terms of
squared error) by these distortions. For example, a simple delay or shift may cause large squared error, but
the magnitude of the DFT coefficients are relatively unaffected.
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2.4 Classes of Embedding Methods

An extremely large number of embedding methods have been proposed in the literature
[20, 33, 41]. Rather than discussing the implementational details of this myriad of specific
algorithms, in this section we focus our discussion on the common performance character-
istics of broad classes of methods. One common way to classify watermarking algorithms is
based on the types of host signals that the algorithms are designed to watermark [20, 41].
However, in this thesis we often examine watermarking at the highest, most fundamental
level in which the host signal is viewed simply as a vector of numbers. At this level, the
behavior (in terms of achievable rate-distortion-robustness trade-offs) of two audio water-
marking algorithms may not necessarily be more alike than, say, the behavior of an audio
watermarking algorithm and a similar video watermarking algorithm, although the measure
of distortion and robustness may, of course, be different for video than for audio. Our clas-
sification system, therefore, is based on the types of behaviors that different watermarking
systems exhibit as a result of the properties of their respective embedding functions. In
particular, our taxonomy of embedding methods includes two classes: (1) host-interference

non-rejecting methods and (2) host-interference rejecting methods.

2.4.1 Host-interference non-rejecting methods

A large number of embedding algorithms are designed based on the premise that the host
signal is like a source of noise or interference. This view arises when one neglects the fact
that the encoder in Fig. 2-2 has access to, and hence can exploit knowledge of, the host
signal x.

The simplest of this class have purely additive embedding functions of the form
s(x,m) =x+ w(m), (2.5)

where w(m) is typically a pseudo-noise sequence. Embedding methods in this class are
often referred to as spread spectrum methods and some of the earliest examples are given

by Tirkel, et al.[44, 45], Bender,* et al.[4], Cox, et al.[14, 15], and Smith and Comiskey [37].

*The “Patchwork” algorithm [4] of Bender, et al., involves adding a small amount § to some pseudo-
randomly chosen host signal samples and subtracting a small amount § from others. Thus, this method is
equivalent to adding a pseudorandom sequence w(m) of £ to the host signal, and hence, we consider the
Patchwork algorithm to be a spread spectrum method.
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From (2.5), we see that for this class of embedding methods, the host signal x acts
as additive interference that inhibits the decoder’s ability to estimate m. Consequently,
even in the absence of any channel perturbations (n = 0), one can usually embed only a
small amount of information. Thus, these methods are useful primarily when either the
host signal is available at the decoder or when the host signal interference is much smaller
than the channel interference. Indeed, in [14] Cox, et al., assume that x is available at the

decoder.

The host-interference-limited performance of purely additive (2.5) embedding methods
is embodied in Fig. 2-3 as the upper limit on rate of the dashed curve, which represents
the achievable rate-robustness performance of host-interference non-rejecting methods, at a
fixed level of embedding-induced distortion. Although the numerical values on the axes of
Fig. 2-3 correspond to the case of white Gaussian host signals and additive white Gaussian
noise channels, which is discussed in Chap. 6,> the upper rate threshold of the dashed
curve is actually representative of the qualitative behavior of host-interference non-rejecting
methods in general. Indeed, Su has derived a similar upper rate threshold for the case of

so-called power-spectrum condition-compliant additive watermarks and Wiener attacks [39].

Many embedding methods exploit characteristics of human perceptual systems by ad-
justing the (squared error) distortion between x and s according to some perceptual model.
When the model indicates that humans are less likely to perceive changes to x, the host
signal is altered a greater amount (in terms of squared error) than in cases when the per-
ceptual model indicates that humans are more likely to perceive changes. One common
method for incorporating these principles is to amplitude-weight the pseudo-noise vector

w(m) in (2.5). The resulting embedding function is weighted-additive:

si(x, m) = x; + a;(x)w;(m), (2.6)

where the subscript ¢ denotes the :-th element of the corresponding vector, i.e., the i-th
element of w(m) is weighted with an amplitude factor a;(x). An example of an embedding

function within this class is proposed by Podilchuk and Zeng [34], where the amplitude

5To generate the curve, robustness is measured by the ratio in dB between noise variance and squared
error embedding-induced distortion, the rate is the information-theoretic capacity (Eqs. (6.1) and (6.26)
for host-interference rejecting and non-rejecting, respectively) in bits per host signal sample, and the ratio
between the host signal variance and the squared error embedding-induced distortion is fixed at 20 dB.
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Figure 2-3: Qualitative behavior of host-interference rejecting (solid curve) and non-
rejecting (dashed curve) embedding methods. The dashed curve’s upper rate threshold
at low levels of robustness (low levels of channel interference) indicates host-interference-
limited performance.

factors a;(x) are set according to just noticeable difference (JND) levels computed from the

host signal.

A special subclass of weighted-additive embedding functions, given in [14], arise by

letting the amplitude factors be proportional to x so that

a; (X) = /\Xi7

where A is a constant. Thus, these embedding functions have the property that large host
signal samples are altered more than small host signal samples. This special subclass of

embedding functions are purely additive in the log-domain since
si(x, m) = x; + Ax;w; (m) = x;(1 4+ Aw;(m))
implies that
log s;(x, m) = log x; + log(1 + Aw;(m)).

Since the log function is invertible, if one has difficulty in recovering m from the com-
posite signal in the log-domain due to host signal interference, then one must also en-

counter difficulty in recovering m from the composite signal in the non-log-domain. Thus,
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host-proportional amplitude weighting also results in host signal interference, although
the probability distributions of the interference log x; and of the watermark pseudo-noise
log(1 + Aw;(m)) are, of course, in general different than the probability distributions of
x; and w;(m). Although in the more general weighted-additive case (2.6), the encoder in

Fig. 2-2 is not ignoring x since

ei(x, m) = a;(x)w;(m),

in general unless the weighting functions a;(x) are explicitly designed to reject host inter-
ference in addition to exploiting perceptual models, host interference will still limit perfor-
mance and thus this class of systems will still exhibit the qualitative behavior represented
by the dashed curve in Fig. 2-3. We remark that in proposing the weighted-additive and
log-additive embedding functions, Podilchuk and Zeng [34] and Cox, et al.[14], respectively,
were actually considering the case where the host signal was available at the decoder, and

hence, host interference was not an issue.

2.4.2 Host-interference rejecting methods

Having seen the inherent limitations of embedding methods that do not reject host interfer-
ence by exploiting knowledge of the host signal at the encoder, we discuss in this section some
examples of host-interference rejecting methods. In Chap. 3 we present a novel subclass
of such host-interference rejecting methods called quantization index modulation (QIM).
This QIM class of embedding methods exhibits the type of behavior illustrated by the solid
curve in Fig. 2-3, while providing enough structure to allow the system designer to easily
trade off rate, distortion, and robustness, i.e., to move from one point on the solid curve of

Fig. 2-3 to another.

Generalized low-bit modulation

Swanson, Zhu, and Tewfik [43] have proposed an example of a host-interference rejecting
embedding method that one might call “generalized low-bit modulation (LBM)”, although
Swanson, et al., do not use this term explicitly. The method consists of two steps: (1) linear
projection onto a pseudorandom direction and (2) quantization-and-perturbation, as illus-

trated in Fig. 2-4. In the first step the host signal vector x is projected onto a pseudorandom
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vector v to obtain

>
ll
X
<

Then, information is embedded in x by quantizing it with a uniform, scalar quantizer of
step size A and perturbing the reconstruction point by an amount that is determined by
m. (No information is embedded in components of x that are orthogonal to v.) Thus, the

projection s of the composite signal onto v is

s = q(x) +d(m),
where ¢(+) is a uniform, scalar quantization function of step size A and d(m) is a perturbation

value, and the composite signal vector is
s=Xx+ (§—Xx)v.

For example, suppose x lies somewhere in the second quantization cell from the left in
Fig. 2-4 and we wish to embed 1 bit. Then, ¢(X) is represented by the solid dot (e) in that
cell, d(m) = £A/4, and s will either be the x-point (to embed a 0-bit) or the o-point (to
embed a 1-bit) in the same cell. In [43] Swanson, et al., note that one can embed more than
1 bit in the N-dimensional vector by choosing additional projection vectors v. One could
also, it seems, have only one projection vector v, but more than two possible perturbation
values d(1),d(2),...,d (QNR"’).

We notice that all host signal values x that map onto a given X point when a 0-bit is
embedded also map onto the same o point when a 1-bit is embedded. As a result of this
condition, one can label the x and o points with bit labels such that the embedding function
is equivalent to low-bit modulation. Specifically, this quantization-and-perturbation process

is equivalent to the following:

1. Quantize x with a quantizer of step size A/2 whose reconstruction points are the
union of the set of X points and set of o points. These reconstruction points have bit

labels as shown in Fig. 2-4.

2. Modulate (replace) the least significant bit in the bit label with the watermark bit to
arrive at a composite signal bit label. Set the composite signal projection value s to

the reconstruction point with this composite signal bit label.

MIT, June 2000 33



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

O

IR 2V N e B
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Figure 2-4: Equivalence of quantization-and-perturbation to low-bit modulation. Quantiz-
ing with step size A and perturbing the reconstruction point is equivalent to quantizing with
step size A/2 and modulating the least significant bit. In general, the defining property of
low-bit modulation is that the embedding intervals for X points and o points are the same.

Thus, the quantization-and-perturbation embedding method in [43] is low-bit modulation

of the quantization of x.

An earlier paper [42] by Swanson, et al., gives another example of generalized low-
bit modulation, where a data bit is repeatedly embedded in the DCT coefficients of a
block rather than in the projections onto pseudorandom directions. One can view the
DCT basis vectors, then, as the projection vectors v in the discussion above. The actual
embedding occurs through quantization and perturbation, which we now recognize as low-

bit modulation.

Some people may prefer to use the term “low-bit modulation” only to refer to the mod-
ulation of the least significant bits of pixel values that are already quantized, for example,
when the host signal is an 8-bit grayscale image. This corresponds to the special case when
the vectors v are “standard basis” vectors, i.e., v is a column of the identity matrix, and
A = 2. To emphasize that the quantization may occur in any domain, not just in the pixel
domain, and that one may adjust the step size A to any desired value, we used the term
“generalized LBM” above when first introducing the technique of Swanson, et al.. However,
in this thesis the term LBM, even without the word “generalized” in front of it, refers to

low-bit modulation in its most general sense.

In general, low-bit modulation can be defined by its embedding intervals, where the
embedding interval Z,,(sg) of a composite signal value sg is the set of host signal values x

that map onto sg when embedding m, i.e.,

Im(so) = {x|s(x,m) =sp}.
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Low-bit modulation embedding functions have the defining property that the set of embed-
ding intervals corresponding to a given value of m are the same as the set of embedding

intervals corresponding to all other values of m, i.e.,
{Zi(si)lsi € Si} = {Zi(sy)ls; €85}, Vije{1,... 2VFn},

where §; is the set of all possible composite signal values when m = ¢. This point is discussed
in more detail in Chap. 3 and illustrated in Fig. 3-3. For now, we return our attention to
the special case of LBM with uniform, scalar quantization shown in Fig. 2-4.

Because the x and o points in Fig. 2-4 are separated by some nonzero distance, we
see that these LBM methods do, in fact, reject host-signal interference. The host signal x
determines the particular X or o point that is chosen as the composite signal value s, but
does not inhibit the decoder’s ability to determine whether s is a X point or a o point and,
hence, to determine whether the embedded bit is a 0-bit or 1-bit.

However, LBM methods have the defining property that the embedding intervals for the
X points and o points are the same. This condition is an unnecessary constraint on the em-
bedding function s(x, m). As will become apparent throughout this thesis, by removing this
constraint, one can find embedding functions that result in better rate-distortion-robustness

performance than that obtainable by LBM.

Another host-interference rejecting method

Another host-interference rejecting method is disclosed in a recently issued patent [47].
Instead of embedding information in the quantization levels, information is embedded in
the number of host signal “peaks” that lie within a given amplitude band. For example,
to embed a 1-bit, one may force the composite signal to have exactly two peaks within the
amplitude band. To embed a 0-bit, the number of peaks is set to less than two. Clearly, the
host signal does not inhibit the decoder’s ability to determine how many composite signal
peaks lie within the amplitude band. The host signal does, however, affect the amount of
embedding-induced distortion that must be incurred to obtain a composite signal with a
given number of peaks in the amplitude band. For example, suppose the host signal has
a large number of peaks in the amplitude band. If one tries to force the number of peaks

in the band to be less than two in order to embed a 0-bit, then the distortion between
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the resulting composite signal and host signal may be quite significant. Thus, even though
this method rejects host-interference, it is not clear that it exhibits the desired behavior
illustrated by the solid curve in Fig. 2-3. For example, to achieve a high rate when the
channel noise is low, one needs to assign at least one number of signal peaks to represent
m = 1, another number of signal peaks to represent m = 2, another number of signal peaks
to represents m = 3, etc. Thus, one could potentially be required to alter the number of

oNEm 1t is unclear whether or not one can

host signal peaks to be as low as 1 or as high as
alter the number of host signal peaks within the amplitude band by such a large amount

without incurring too much distortion.

Quantization index modulation

As one can see, “bottom-up” approaches to digital watermarking abound in the literature in
the sense that much of the literature is devoted to the presentation and evaluation of specific
implementations of algorithms. One drawback of this approach is that by restricting one’s
attention to a particular algorithm, one imposes certain implicit structure and constraints on
the embedding function and decoder, and often these constraints are not only unnecessary
but also may lead to suboptimal performance. For example, if one restricts attention to
an embedding function that happens to belong to the class of purely additive embedding
functions (2.5), then host interference will inherently limit performance, as discussed above.
Similarly, if one implements a method that can be classified as a low-bit modulation method,
then one has implicitly imposed the constraint that the embedding intervals are invariant
with respect to the watermark value.

In the next chapter, we take a “top-down” approach, where we examine watermarking
from the highest, most fundamental level. Based on first principles we impose only enough
structure as necessary to understand and control rate-distortion-robustness behavior. The
result is a general class of host-interference rejecting embedding methods called quantiza-
tion index modulation. As we show in Chap. 4, we incur no loss of optimality from an

information-theoretic perspective by restricting attention to this class.
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Chapter 3

Quantization Index Modulation

When one considers the design of an information-embedding system from a first principles
point of view, so-called quantization index modulation (QIM) [6, 7] methods arise quite
naturally, as we explain in this chapter. One can exploit the structure of these QIM methods
to conveniently trade off rate, distortion, and robustness. Furthermore, as we shall see in
later chapters, the QIM class is broad enough to include very good, and in some cases
optimal, embedders and decoders, i.e., there exist QIM methods that achieve the best
possible rate-distortion-robustness trade-offs of any (QIM or non-QIM) method. We devote

the rest of this chapter to describing the basic principles behind QIM.

3.1 Basic Principles

In Chap. 2, we considered the embedding function s(x, m) to be a function of two variables,
the host signal and the embedded information. However, we can also view s(x, m) to be
a collection or ensemble of functions of x, indexed by m. We denote the functions in
this ensemble as s(x; m) to emphasize this view. As one can see from (2.1), the rate R,
determines the number of possible values for m, and hence, the number of functions in the
ensemble. If the embedding-induced distortion is to be small, then each function in the

ensemble must be close to an identity function in some sense so that

s(x; m) = x, Vm. (3.1)
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Figure 3-1: Embedding functions with intersecting ranges. The point sg belongs to the
ranges of both continuous embedding functions. Thus, even with no perturbations (y = so)
the decoder cannot distinguish between m =1 (and x = x;) and m = 2 (and x = x3). Using
discontinuous functions allows one to make the ranges non-intersecting.

That the system needs to be robust to perturbations suggests that the points in the range
of one function in the ensemble should be “far away” in some sense from the points in
the range of any other function. For example, one might desire at the very least that the
ranges be non-intersecting. Otherwise, even in the absence of any perturbations, there
will be some values of s from which one will not be able to uniquely determine m, as
illustrated in Fig. 3-1. This non-intersection property along with the approximate-identity
property (3.1), which suggests that the ranges of each of the functions “cover” the space
of possible (or at least highly probable) host signal values x, suggests that the functions
be discontinuous. Quantizers are just such a class of discontinuous, approximate-identity
functions. Then, “quantization index modulation (QIM)” refers to embedding information
by first modulating an index or sequence of indices with the embedded information and

then quantizing the host signal with the associated quantizer or sequence of quantizers.

Fig. 3-2 illustrates this QIM information-embedding technique. In this example, one
bit is to be embedded so that m € {1,2}. Thus, we require two quantizers, and their
corresponding sets of reconstruction points in RV are represented in Fig. 3-2 with x’s and
o’s. If m = 1, for example, the host signal is quantized with the Xx-quantizer, i.e., s is
chosen to be the X closest to x. If m = 2, x is quantized with the o-quantizer. Here, we see
the non-intersecting nature of the ranges of the two quantizers as no X point is the same

as any o point. This non-intersection property leads to host-signal interference rejection.

As x varies, the composite signal value s varies from one X point (m = 1) to another or
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Figure 3-2: Quantization index modulation for information embedding. The points marked
with x’s and o’s belong to two different quantizers, each with its associated index. The
minimum distance dj, measures the robustness to perturbations, and the sizes of the
quantization cells, one of which is shown in the figure, determine the distortion. If m =1,
the host signal is quantized to the nearest x. If m = 2, the host signal is quantized to the
nearest o.

from one o point (m = 2) to another, but it never varies between a x point and a o point.
Thus, even with an infinite energy host signal, one can determine m if channel perturbations
are not too severe. We also see the discontinuous nature of the quantizers. The dashed
polygon represents the quantization cell for the X in its interior. As we move across the
cell boundary from its interior to its exterior, the corresponding value of the quantization
function jumps from the X in the cell interior to a X in the cell exterior. The X points and
o points are both quantizer reconstruction points and signal constellation points,! and we
may view design of QIM systems as the simultaneous design of an ensemble of source codes
(quantizers) and channel codes (signal constellations).

The structure of QIM systems is convenient from an engineering perspective since prop-
erties of the quantizer ensemble can be connected to the performance parameters of rate,
distortion, and robustness. For example, as noted above the number of quantizers in the
ensemble determines the information-embedding rate. The sizes and shapes of the quantiza-
tion cells determine the embedding-induced distortion, all of which arises from quantization
error. Finally, for many classes of channels, the minimum distance dp,;n between the sets of

reconstruction points of different quantizers in the ensemble determines the robustness of

'One set of points, rather than one individual point, exists for each value of m.
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the embedding. We define the minimum distance to be

2 min  min ||s(xi4) — s(x;:5)]- (3.2)

dmin m
(0,7)7#5 (xi,x5)

Alternatively, if the host signal is known at the decoder, as is the case in some applications

of interest, then the relevant minimum distance may be more appropriately defined as either

A . . .
dmin(%) = min_{s(x;7) —s(x; 7)]; (3-3)
(4:5):3#7
or
dmin 2 min  min Is(x;7) — s(x; )]l (3.4)
X (i)

The important distinction between the definition of (3.2) and the definitions of (3.3) and
(3.4) is that in the case of (3.3) and (3.4) the decoder knows x and, thus, needs to decide only
among the reconstruction points of the various quantizers in the ensemble corresponding to
the particular value of x. In the case of (3.2), however, the decoder needs to choose from

all reconstruction points of the quantizers.

Intuitively, the minimum distance measures the size of perturbation vectors that can be
tolerated by the system. For example, in the case of the bounded perturbation channel, the
energy bound (2.4) implies that a minimum distance decoder is guaranteed to not make an
error as long as

d2

e b (3.5)

In the case of an additive white Gaussian noise channel with a noise variance of 2, at high
signal-to-noise ratio the minimum distance also characterizes the error probability of the

minimum distance decoder [26],
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where Q(+) is the Gaussian Q-function,

Qz) = \/%/xoo e U1 dt. (3.6)

The minimum distance decoder to which we refer simply chooses the reconstruction point

closest to the received vector, i.e.,
m(y) = argmin min [ly —s(x; m)]|. (3.7)
m

If, which is often the case, the quantizers s(x;m) map x to the nearest reconstruction point,

then (3.7) can be rewritten as
ily) = argmin ly — s(y; )] (3.8)
Alternatively, if the host signal x is known at the decoder,
inly,) = argmin [l — s(x; )|

For general deterministic channels P{y|s} to guarantee error-free decoding, one needs
to place the quantizer reconstruction points such that the sets of possible channel outputs

for different values of m are non-intersecting, i.e.,

(U 7’{3’|5}) a (U 77~{3>’IS}) =0, Vi#j (3.9)

sES; SES;

where, §; again represents the set of all possible composite signal values when m = 1.
In the case of the bounded perturbation channel, these sets of possible channel outputs
are unions of spheres of radius ¢,v/ N centered around each reconstruction point, and the

non-intersection condition (3.9) reduces to the condition (3.5).

A natural alternative decoder to the minimum-distance decoder (3.7) in the general

deterministic case is what one might call the possible-set decoder:

m= i7 if y € UsES,‘ P{Y|S}7

assuming there is only one such 2. Otherwise, an error is declared. Similarly, for general
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Figure 3-3: Embedding intervals of low-bit modulation. The x and o points within an
embedding interval (coarse cell), which is the union of two finer cells (not shown), differ in
only the least significant bit. Thus, one can view the points as reconstruction points of two
different coarse quantizers, each having the embedding intervals as quantization cells.

probabilistic channels pys(y|s), one might use the generalized maximum likelihood (ML)
decoder

m = arg max max pys(y|s(x;))
i X

if the host signal x is deterministic, but unknown at the decoder. This decoder is, of
course, the same as the minimum distance decoder (3.7) for the additive white Gaussian
noise channel. If the host signal is random, then one might use the maximum likelihood

decoder

m = arg max Z Pr[x € 732'(771)]])3,|s(y|si)7

m S;ESm
where R;(m) is the i-th quantization cell of the m-th quantizer, which has s; € §,, as a

reconstruction point.

3.2 QIM vs. Generalized LBM

Although generalized LBM systems have nonzero minimum distance, there always exists a
QIM system whose achievable performance is at least as good as, and usually better than,

any given generalized LBM system. This concept is illustrated by Fig. 3-3. The X and o
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points are reconstruction points of an LBM quantizer that is used to quantize the host signal.
One bit is embedded by modulating the least significant bit (Isb). After modulation of the
Isb, the corresponding reconstruction point is the composite signal. The X points represent
reconstruction points that have a Isb of 0, and o points represent points that have a Isb of 1.
The unions of the two quantization cells corresponding to reconstruction points that differ
only in their Isb are also shown in Fig. 3-3. We refer to these regions as coarse quantization
cells. Due to modulation of the Isb, any host signal point within a given coarse quantization
cell may be mapped to either the X point or the o point within the coarse cell. Hence, these
coarse quantization cells are the embedding intervals of the x and o points contained within
them. One may also view the X points and o points as the reconstruction points of two
different quantizers in an equivalent QIM system. These two quantizers have the same set
of quantization cells, the coarse quantization cells. Clearly, then, this QIM system achieves
the same performance as the LBM system. In general, though, the quantizers in a QIM
system need not have the same quantization cells. Keeping the same reconstruction points
as in Fig. 3-3, which preserves the minimum distance between quantizers, but exploiting the
freedom to choose different quantization cells for the two quantizers usually results in lower
embedding-induced distortion (except in rare, degenerate cases), and thus, the resulting
QIM system achieves better rate-distortion-robustness performance than the original LBM
system.

Another way of seeing the advantages of QIM over generalized LBM is shown in Figs. 3-4
and 3-5, which show one-dimensional embedding functions for embedding one bit in one host
signal sample using LBM and QIM, respectively, with uniform scalar quantizers. Although
the minimum distances (3.2) in the two cases are the same (dmin = 1/2), the two functions
s(z;1) and s(z;2) in the QIM case more closely approximate the identity function than the
two functions in the LBM case, and thus the embedding-induced distortion in the QIM case

is smaller than in the LBM case. This difference is quantified in Sec. 5.2.3.

3.3 Distortion Compensation

Distortion compensation is a type of post-quantization processing that can improve the
achievable rate-distortion-robustness trade-offs of QIM methods. Indeed, with distortion

compensation one can achieve the information-theoretically best possible rate-distortion-
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Figure 3-4: Embedding functions for LBM with uniform scalar quantization. Each of the
two approximate-identity functions have a bias relative to the identity function, which

increases the embedding-induced distortion.

s(x;m)

Figure 3-5: Embedding functions for QIM with uniform scalar quantization.

-+ |dentity fcn.
— m=1
— -m=2

The two

approximate-identity functions do not share the same embedding intervals and thus more
closely approximate the identity function than do the LBM approximate-identity functions.
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robustness performance in many important cases, as discussed in Chaps. 4, 6, and 7. We

explain the basic principles behind distortion compensation in this section.

As explained above, increasing the minimum distance between quantizers leads to greater

robustness to channel perturbations. For a fixed rate and a given quantizer ensemble, scal-

ing? all quantizers by « < 1 increases d2 by a factor of 1/a?. However, the embedding-
induced distortion also increases by a factor of 1/a?. Adding back a fraction 1 — « of the
quantization error to the quantization value removes, or compensates for, this additional

distortion. The resulting embedding function is
s(x,m)=q(x;m, A/a)+ (1 — a)[x —q(x;m, A/a)], (3.10)

where q(x; m, A/a) is the m-th quantizer of an ensemble whose reconstruction points have
been scaled by « so that two reconstruction points separated by a distance A before scaling
are separated by a distance A/« after scaling. The first term in (3.10) represents normal

QIM embedding. We refer to the second term as the distortion-compensation term.

Typically, the probability density functions of the quantization error for all quantizers
in the QIM ensemble are similar. Therefore, the distortion compensation term in (3.10) is
statistically independent or nearly statistically independent of m and can be treated as noise
or interference during decoding. Thus, decreasing « leads to greater minimum distance, but
for a fixed embedding-induced distortion, the distortion-compensation interference at the
decoder increases. One optimality criterion for choosing « is to maximize a “signal-to-noise
ratio (SNR)” at the decision device,

d}/a? B d3
(1-— 04)2% + o2 (1 —-a)2Ds+ o202’

SNR(a) =

where this SNR is defined as the ratio between the squared minimum distance between
quantizers and the total interference energy from both distortion-compensation interference
and channel interference. Here, d; is the minimum distance when « = 1 and is a charac-

teristic of the particular quantizer ensemble. One can easily verify that the optimal scaling

2If a reconstruction point is at q, it is “scaled” by a by moving it to q/a.
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parameter v that maximizes this SNR is

DNR

—_— A1
DNR + 1’ (3:-11)

QSNR =

where DNR is the (embedding-induced) distortion-to-noise ratio Ds/c2. Such a choice of a
also maximizes the information-theoretically achievable rate when the channel is an additive
Gaussian noise channel and the host signal x is Gaussian, as discussed in Chap. 6. Finally,
as discussed in Chap. 7, one can asymptotically achieve capacity with this choice of a in the

high-fidelity limit of small embedding-induced distortion and small perturbation energy.
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Chapter 4

Information Theoretic Perspectives

In this chapter we consider from an information theoretic perspective the best possible
rate-distortion-robustness performance that one could hope to achieve with any information
embedding system. Our analysis leads to insights about some properties and characteristics
of good information embedding methods, i.e., methods that achieve performance close to
the information-theoretic limits. In particular, a canonical “hidden QIM” structure emerges
for information embedding that consists of (1) preprocessing of the host signal, (2) QIM
embedding, and (3) postprocessing of the quantized host signal to form the composite signal.
One incurs no loss of optimality by restricting one’s attention to this simple structure. Also,
we derive sufficient conditions under which only distortion compensation postprocessing is
required. As we discuss in Chaps. 6 and 7, these conditions are satisfied in the following
three important cases: (1) an additive Gaussian noise channel and a Gaussian host signal,
(2) squared error distortion-constrained attacks and a Gaussian host signal, and (3) squared
error distortion-constrained attacks, a non-Gaussian host signal, and asymptotically small

embedding-induced distortion and attacker’s distortion.

4.1 Communication over Channels with Side Information

The super-channel model of Sec. 2.2 and Fig. 2-2 facilitates our analysis, i.e., we view
information embedding as the transmission of a host-dependent distortion signal e over a

super-channel with side information or state x that is known at the encoder. In this chapter
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we also assume a squared error distortion constraint

1 N
WZG2 S Ds-
=1

and a memoryless channel with known probability density function (pdf)

N
pys(yls) = TT pyis (Wil si),
=1

where ; and s; are the i-th components of y and s, respectively.! Then, the super-channel

is also memoryless and has probability law

N N
Pylex(yle. x) = pys(ylx+ ) = [ pyjs(wilzi + €i) = [ pyjex(wilei, zi).

The capacity [13] of this super-channel is the reliable information-embedding rate R, that

is asymptotically achievable with long signal lengths N.

In non-watermarking contexts Gel’fand and Pinsker [19] and Heegard and El Gamal [21]
have determined the capacity of such a channel in the case of a random state vector x with
independent and identically distributed (iid) components when the encoder sees the entire

state vector before choosing the channel input e. In this case the capacity is

C= max [(uy)— I(u;x), (4.1)

pu,e|x(u76|l’)

where I(-;-) denotes mutual information and v is an auxiliary random variable. In the case
of watermarking, the maximization (4.1) is subject to a distortion constraint F[e?] < Ds. A
formal proof of the extension of (4.1) to include the distortion constraint has been given by
Barron [2, 3]. Others [9, 30] are working on extending or have extended these results to the
case where the channel law p,|s(y[s) is not fixed but rather is chosen by an attacker subject

to a distortion constraint. A related information-theoretic formulation can be found in [31].

As we shall see in the next section, one way to interpret (4.1) is that I(u;y) is the

total number of bits per host signal sample that can be transmitted through the channel

'Extension of results in this chapter to the case where the channel is only blockwise memoryless is
straightforward by letting y; and s; be the i-th blocks, rather than :-th scalar components, of y and s. In
this case, information rates are measured in bits per block, rather than bits per sample.

MIT, June 2000 48



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

\

m
Uy 0
X > Yoo | p(yLL) —>y—>9+m
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[é‘ % e?(uy, Xy) < D

Figure 4-1: Capacity-achieving “hidden QIM”. One embeds by choosing a codeword ug
that is jointly distortion-typical with x from the m-th quantizer’s codebook. The distortion
function is €?(u,x). The decoder finds a codeword that is jointly typical with y. If this
codeword is in the i-th subset, then m = 1.

and [(u;x) is the number of bits per sample that are allocated to the host signal x. The
difference between the two is the number of bits per host signal sample that can be allocated

to the embedded information m.

4.1.1 Optimality of “hidden” QIM

As we show in this section, one can achieve the capacity (4.1) by a type of “hidden” QIM,
.e., QIM that occurs in a domain represented by the auxiliary random variable u. One
moves into and out of this domain with pre- and post-quantization processing.

Our discussion here is basically a summary of the proof of the achievability of capacity
by Gel'fand and Pinsker [19], with added interpretation in terms of quantization (source
coding). Fig. 4-1 shows an ensemble of 2VF» quantizers, where R, = I(u;y) — I(u; x) — 2¢,
where each source codeword (quantizer reconstruction vector) u is randomly drawn from

the iid distribution p,(u), which is the marginal distribution corresponding to the host
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signal distribution py(z) and the maximizing conditional distribution p, .«(u,e|z) from
(4.1). Although the source codebooks are therefore random, both the encoder and decoder,
of course, know the codebooks. Each codebook contains 2NV (4x)+€l codewords so there are

N (usy)=el codewords total.

QIM embedding in this u-domain corresponds to finding a vector ug in the m-th quan-

tizer’s codebook that is jointly distortion-typical with x and generating?

e(ug,x) = [e(up1, 1) -+ e(uo N, xN)]T.

By distortion-typical, we mean that ug and x are jointly typical and ||e(ug, x)||* < N(Ds +
€), i.e., the function e?(u,z) is the distortion function in the u-domain. Since the m-th

oNI(t:xX) codewords, the probability that there is

quantizer’s codebook contains more than
no ug that is jointly distortion-typical with x is small. (This principle is one of the main
ideas behind the rate-distortion theorem [13, Ch. 13].) Thus, the selection of a codeword

from the m-th quantizer is the quantization part of QIM, and the generation of e, and

therefore s = x 4 e, from the codeword ug and x is the post-quantization processing.

The decoder finds a u that is jointly typical with the channel output y and declares
m = ¢ if this u is in the 2-th quantizer’s codebook. Because the total number of codewords
u is less than 2V1(4) the probability that a u other than ug is jointly typical with y is
small. Also, the probability that y is jointly typical with ug is close to 1. (These principles
are two of the main ideas behind the classical channel coding theorem [13, Ch. 8].) Thus,
the probability of error Pr[m # m] is small, and we can indeed achieve the capacity (4.1)

with QIM in the u-domain.

The remaining challenge, therefore, is to determine the right preprocessing and post-
processing given a particular channel (attack) pys(y[s). As mentioned above, for a number
of important cases, it turns out that the only processing required is post-quantization dis-

tortion compensation. We discuss these cases in the next section.

?From convexity properties of mutual information, one can deduce that the maximizing distribution in
(4.1) always has the property that e is a deterministic function of (u, x) [19].
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4.1.2 Optimality of distortion-compensated QIM

We show in this section that distortion-compensated QIM (DC-QIM) can achieve capacity

whenever the maximizing distribution p, o« (u, e|z) in (4.1) is of a form such that
u=e+ ax. (4.2)

As mentioned in the introduction to this chapter, this condition is satisfied in at least three

important cases, which are discussed in Chaps. 6 and 7.

To see that DC-QIM can achieve capacity when the maximizing pdf in (4.1) satisfies
(4.2), we show that one can construct an ensemble of random DC-QIM codebooks that
satisfy (4.2). First, we observe that quantizing x is equivalent to quantizing ax with a

scaled version of the quantizer and scaling back, i.e.,
1
q(x;m,Afa) = —q(ax;m, A). (4.3)
o

This identity simply represents a change of units to “units of 1/a” before quantization
followed by a change back to “normal” units after quantization. For example, if o =
1/1000, instead of quantizing x volts we quantize ax kilovolts (using the same quantizer,
but relabeling the reconstruction points in kilovolts) and convert kilovolts back to volts by
multiplying by 1/«. Then, rearranging terms in the DC-QIM embedding function (3.10)

and substituting (4.3) into the result, we obtain

s(x,m) = q(x;m Afa)+ (1-a)x—q(x;m A/a)]
= aq(x;m,A/a)+ (1 — a)x

= qlax;m,A)+ (1 — a)x. (4.4)

We construct our random DC-QIM codebooks by choosing the codewords of q(-; m, A)
from the iid distribution p,(u), the one corresponding to (4.2). (Equivalently, we choose the
codewords of q(-;m,A/a) in (3.10) from the distribution of v/, i.e., the iid distribution
apy(ou).) Our quantizers q(-; m, A) choose a codeword ug that is jointly distortion-typical
with ax. The decoder looks for a codeword in all of the codebooks that is jointly typical

with the channel output. Then, following the achievability argument of Sec. 4.1.1, we can

MIT, June 2000 51



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

achieve a rate I(u;y) — I(u;x). From (4.4), we see that

s(x,m)=x+ [q(ax;m, A) — ax] = x + (ug — ax).

Since s(x, m) = x+e, we see that e = ug— ax. Thus, if the maximizing distribution in (4.1)
satisfies (4.2), our DC-QIM codebooks can also have this distribution and, hence, achieve

capacity (4.1).

4.2 Noise-free Case

In the noise-free case (y = s), which arises, for example, when a discrete-valued composite
signal is transmitted over a digital channel with no errors, QIM is optimal even without
distortion compensation, i.e., one can achieve capacity with u = x + e = s. To see this, we

first note that the rate Ry, = H(y|x) is achievable with u = s since

Ry = I(uiy)—I(u;x)
= I(y;y) = I({y;x)
= H(y)—[H(y)— H(y|x)]

= H(y|x), (4.5)

where we have used v = s = y in the second line. Now, we shall show that the capacity

(4.1) cannot exceed H (y|x):

Iu;y) = Hu;x) = H(u) = H(uly) = H(u) + H(u|x)
= H(u|x) - H(uly)
< H(ulx) — H(uly,x)
= I(uylx)
= H(ylx) — H(y|u,x)

IN

H{y|x). (1.6)

The third line follows since conditioning decreases entropy. The final line arises since entropy

is nonnegative. Thus, we see that QIM is optimal in the noise-free case and achieves the
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capacity

C1n0ise—free = 1Inax H(.y|X)7 (47)

pe|x(6|x)

where we have replaced a maximization over p|,(y|x) (H (y|x) depends only on p, |, (y|z)px(z)
and py(z) is given.) with an equivalent maximization over pg|.(e|z) = py|x(z + €|z) since

y=s=x+e.

4.3 Known-host Case

In some information embedding applications the host signal may be available at the decoder,
and one may view the known-host information embedding problem as one of communication
with side information known both at the encoder and decoder, a scenario for which Heegard

and El Gamal have determined the capacity to be [21]

Cknown = max I (e;y|x). (4.8)

pe|x(6|x)

Once again, one can achieve this capacity with QIM in the u-domain, except that the
total number of codewords u is 2VI(WyX)=e ingtead of 2VI(W¥)=d and decoding involves
finding a u that is jointly typical with the pair (x,y) rather than with only y. (There are

still 2NU(ux)+e] codewords per quantizer.) Thus, the achievable rate is

Huy,x) = I{u;x) = 2¢ = I(u;x) + I(u;y|x) — I(u; x) — 2e
= H(y|x) — H(y|u,x) — 2¢
= H(y|x)— H(y|u,x,e)— 2¢
= Hy|x) — H(y|x,e) — 2¢

= I(e;y|x) — 2¢,

where the first line follows from the chain rule for mutual information [13, Sec. 2.5], the
third line since e is a deterministic function of x and u, and the fourth line from the fact
that v — (x, e) — y forms a Markov chain.

Thus, we see that with the appropriate choice of domain, or equivalently with the

appropriate preprocessing and postprocessing, QIM is optimal in the sense that capacity-
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achieving QIM systems exist. In the next chapter we discuss practical implementations of

QIM with reasonable delay and complexity.

4.4 Conditions for Equivalence of Host-blind and Known-

host Capacities

Before we discuss practical implementations, however, we derive in this section a necessary
and sufficient condition for the equivalence of the host-blind and known-host capacities.®
When this condition is satisfied, information embedding methods exist that completely
reject host interference since no loss in rate-distortion-robustness performance results from
not having the host signal at the decoder.

To derive this equivalence condition, we write the following equalities and inequalities,

where all mutual informations and entropy expressions are with respect to the host-blind

capacity-achieving distribution, the maximizing distribution in (4.1):

Crnown > 1(e5y|x) (4.9)
> I(uylx) (4.10)
—  H(ulx) — H(uly,x)
> H(u|x) - H(uly) (4.11)

= H(u)— H(uly) - [H(u) — H(u|x)]
= Iuy) - I(u;x)

= Chost—blind-

The first line follows from (4.8) and the second from the Data Processing Inequality [13,
Sec. 2.8] since u — e — y is a Markov chain given x. The fourth line arises since conditioning
never increases entropy. The final line arises since all mutual informations are with respect
to the maximizing distribution in (4.1). Thus, we obtain the obvious result that the host-
blind capacity cannot be greater than the known-host capacity.

We arrive at conditions for equivalence of the two capacities by finding necessary and

sufficient conditions for the inequalities (4.9), (4.10), and (4.11) to hold with equality. The

®The results we report in this section are from joint work with Richard Barron of MIT [3].
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Data Processing Inequality (4.10) holds with equality if and only if
I(y;elu,x)=0. (4.12)

This condition is always satisfied since the maximizing distribution in (4.1) has the property
that e is a deterministic function of (u, x) [19]. The expression (4.9) holds with equality if

and only if the conditional pdf

pe|x(e|$) = Zpu,e|x (u7 €|$)

corresponding to the maximizing distribution in (4.1) is also the maximizing distribution
n (4.8). The final inequality (4.11) holds with equality if and only if H(uly,x) = H (uly),

or equivalently if and only if x and u are conditionally independent given y,
I(x;uly)=0. (4.13)

An intuitive interpretation for this condition is that if this condition holds, observing x
does not give any more information than that obtained from observing y alone about which
codeword u was chosen by the encoder. Since the decoder estimates m by determining the
codebook to which u belongs, if (4.13) holds, then the decoder’s job is not made any easier

if it is allowed to observe the host signal x.
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Chapter 5

Dither Modulation

Viewing an embedding function as an ensemble of approximate identity functions and re-
stricting these approximate identity functions to be quantizers leads to a convenient struc-
ture in which one can achieve rate-distortion-robustness trade-offs by adjusting the number
of quantizers, the quantization cells, and the minimum distance, as discussed in Chap. 3.
This structure reduces the information-embedding system design problem to one of con-
structing an ensemble of quantizer reconstruction points that also form a good signal con-
stellation. Furthermore, as discussed in Chap. 4 imposing such structure need not lead
to any loss of optimality provided one chooses the proper domain for quantization and,
as we discuss in Chaps. 6 and 7, when used in conjunction with distortion compensation
(Sec. 3.3), such structure need not result in any loss of optimality in certain important cases

even when quantizing in the composite-signal domain.

Imposing additional structure on the quantizer ensembles themselves leads to additional
insights into the design, performance evaluation, and implementation of QIM embedding
methods, particularly when one is concerned with low-complexity implementations. A con-
venient structure to consider is that of so-called dithered quantizers [23, 49], which have the
property that the quantization cells and reconstruction points of any given quantizer in the
ensemble are shifted versions of the quantization cells and reconstruction points of any other
quantizer in the ensemble. In non-watermarking contexts, the shifts typically correspond
to pseudorandom vectors called dither vectors. For information-embedding purposes, the
dither vector can be modulated with the embedded signal, i.e., each possible embedded

signal maps uniquely onto a different dither vector d(m). The host signal is quantized with
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the resulting dithered quantizer to form the composite signal. Specifically, we start with

some base quantizer q(-), and the embedding function is
s(x; m) = a(x -+ d(m)) - d(m).

We call this type of information embedding “dither modulation”. We discuss several low-

complexity realizations of such dither modulation methods in the rest of this chapter.

5.1 Coded Binary Dither Modulation with Uniform Scalar

Quantization

Coded binary dither modulation with uniform, scalar quantization is one such realization.
(By scalar quantization, we mean that the high dimensional base quantizer q(-) is the
Cartesian product of scalar quantizers.) We assume that 1/N < R, < 1. The dither

vectors in a coded binary dither modulation system are constructed in the following way:

e The NR,, information bits {by, by, ..., byrg,,} representing the embedded message m
are error correction coded using a rate-k,/k. code to obtain a coded bit sequence
{zl7 2, ... 7ZN/L}7 where

L= Ri(ku/kc).

(In the uncoded case, z; = b; and k,/k. = 1.) We divide the host signal x into N/L
non-overlapping blocks of length I, and embed the :-th coded bit z; in the :-th block,

as described below.

e Twolength-L dither sequences d[k, 0] and d[k, 1] and one length-L sequence of uniform,
scalar quantizers with step sizes Aq,..., Ay are constructed with the constraint
dlk,0]+ Ar/2, d[k,0]<0
dlk, 1] = [k, 01+ /2, dlk, 0] S k=1,....,L,
This constraint ensures that the two corresponding L-dimensional dithered quantizers
are the maximum possible distance from each other. For example, a pseudorandom

sequence of +A;/4 and its negative satisfy this constraint. One could alternatively
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Figure 5-1: Embedder for coded binary dither modulation with uniform, scalar quantization.
The only required computation beyond that of the forward error correction (FEC) code is
one addition, one scalar quantization, and one subtraction per host signal sample.

choose d[k, 0] pseudorandomly with a uniform distribution over [~Ay/2, Ay/2].1 Also,

the two dither sequences need not be the same for each length-L block.

e The ¢-th block of x is quantized with the dithered quantizer using the dither sequence
d[k, z;].

5.1.1 Computational complexity

A block diagram of one implementation of the above embedding process is shown in Fig. 5-1,
where we use the sequence notation x[k] to denote the k-th element of the host signal vector
x. The actual embedding of the coded bits z; requires only two adders and a uniform, scalar
quantizer.

An implementation of the corresponding minimum distance decoder (3.8) is shown in
Fig. 5-2. One can easily find the nearest reconstruction sequence of each quantizer (the
0-quantizer and the l-quantizer) to the received sequence y[k] using a few adders and
scalar quantizers. For hard-decision forward error correction (FEC) decoding, one can
make decisions on each coded bit z; using the rule:

i L

zy=argmin > (y[k]-s[k;)?*,  i=1,...,N/L.
01} p=(i—1)L+1

! A uniform distribution for the dither sequence implies that the quantization error is statistically indepen-
dent of the host signal and leads to fewer “false contours”, both of which are generally desirable properties
from a perceptual viewpoint [23].
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Figure 5-2: Decoder for coded binary dither modulation with uniform, scalar quantization.
The distances between the received sequence y[k] and the nearest quantizer reconstruction
sequences s, [k; 0] and s,[k; 1] from each quantizer are used for either soft-decision or hard-
decision forward error correction (FEC) decoding.

Then, the FEC decoder can generate the decoded information bit sequence {131, cen BNR,,,}
from the estimates of the coded bits {21, . 72N/L}- Alternatively, one can use the metrics
L
metric(¢, () = Z (y[k]—sy[k;l])Q, i=1,...,N/L, [=0,1,
k=(i—1)L+1

for soft-decision decoding. For example, one can use these metrics as branch metrics for a

minimum squared Euclidean distance Viterbi decoder [26].

5.1.2 Minimum distance

Any two distinct coded bit sequences differ in at least dg places, where dg is the minimum
Hamming distance of the error correction code. For each of these dy blocks, the reconstruc-
tion points of the corresponding quantizers are shifted relative to each other by £A/2 in

the k-th dimension. Thus, the square of the minimum distance (3.2) over all N dimensions
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is

L 2
A
o = n 2 ()

where 7, is often referred to as the gain of the error correction code,
A
Ye = dg(ky/k:). (5.2)

If the quantization cells are sufficiently small such that the host signal can be modeled as
uniformly distributed within each cell, the expected squared error distortion of a uniform,

scalar quantizer with step size Ay is

4 dx

1 /AM? 5 A2
A Joay )2 127

Thus, the overall average expected distortion (2.2) is

1 2

Combining (5.1) and (5.3) yields the distortion-normalized squared minimum distance,

2, = G 3% (5.4)

which can be used to characterize the achievable performance of particular QIM realizations,

as is done in later chapters.

5.2 Spread-transform Dither Modulation

Spread-transform dither modulation (STDM) is a special case of coded binary dither mod-
ulation. Some advantages of STDM over other forms of dither modulation, over a class
of spread-spectrum methods we call amplitude-modulation spread spectrum (AM-SS), and

over the generalized LBM method in [43] are discussed below.
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Figure 5-3: Dither modulation with uniform quantization step sizes.

5.2.1 Basic description and principles

The distortion-normalized squared minimum distance (5.4) of binary dither modulation with
uniform scalar quantization does not depend on the sequence Apg, i.e., on the distribution

of the distortion across samples within the length-L block. Thus, one is free to choose any

2

¢ ems Which completely characterizes the performance of

distribution without sacrificing d
dither modulation (and QIM in general) against bounded perturbation attacks and bounded
host-distortion attacks, as we show in Chap. 7.

It may be advantageous in other contexts, though, to concentrate the distortion in a
small number of samples, for example, in the first sample of every length-L block. Fig. 5-3
shows the reconstruction points of two quantizers for embedding one bit in a block of two
samples, where the quantization step sizes are the same for both samples. Fig. 5-4 shows
the case where a unitary transform has first been applied before embedding one bit. The
first transform coefficient is the component of the host signal in the direction of v, and the
second transform coefficient is the component orthogonal to v. The step size for quantizing
the first transform coefficient is larger than in Fig. 5-3, but the step size for quantizing
the second transform coefficient is zero. In this case to embed a 0-bit, the host signal is
quantized to the nearest point on a line labeled with a x. To embed a 1-bit, the host signal
is quantized to the nearest point on a line labeled with a o. The minimum distance in both

cases is A//2, and the average squared error distortion is A?/12 per sample. Thus, the

robustness against bounded perturbations is the same in both cases. However, the number
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Figure 5-4: Transform dither modulation with quantization of only a single transform com-
ponent. The quantization step size for the component of the host signal orthogonal to v is
zero.

o N AVIT2

% N ;'/'
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Figure 5-5: Transform dither modulation with non-uniform quantization step sizes.
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of perturbation vectors of length dp,;,/2 that cause decoding errors is higher for the case
of Fig. 5-3 than for the case of Fig. 5-4. (For intermediate cases such as the one shown in
Fig. 5-5, where quantization step sizes in different dimensions are different but non-zero,
the number of perturbation vectors of length dyi,/2 that cause decoding errors is the same
as in Fig. 5-3, but these vectors are not orthogonal.) Thus, for probabilistic channels such
as additive noise channels, the probability of error may be different in the different cases.
For example, suppose a 0-bit is embedded and the composite signal is the x point labeled
with s in Figs. 5-3 and 5-4. If the channel output lies in the decision region defined by the
dashed box in Fig. 5-3 and defined by the two dashed lines in Fig. 5-4, then the decoder
will correctly determine that a 0-bit was embedded. If the perturbation vector places the
channel output outside the decision region, however, the decoder will make an error with
very high probability. (There is some possibility that the channel output is outside the
decision region but is still closer to a x point other than s than to the closest o. These
events, however, are very unlikely for many perturbation probability distributions that are
of practical interest.) Since the decision region of Fig. 5-4 contains the decision region of
Fig. 5-3, we conclude that the probability of a correct decision in the case of non-uniform

quantization step sizes is higher.

The unitary transform in the case of Fig. 5-4 not only facilitates a comparison of Figs. 5-
3 and 5-4, but also may be necessary to spread any embedding-induced distortion over
frequency and space, in the case of an image, and over frequency and time, in the case of an
audio signal, to meet a peak distortion constraint, for example. Although, the distortion is
concentrated in only one transform coefficient, if the energy of v is spread over space/time
and frequency — for example, v is chosen pseudorandomly — then the distortion will also
be spread. Thus, we call this type of dither modulation, which is illustrated in Fig. 5-6,
“spread-transform dither modulation (STDM)”.

Later in this thesis, we show that dither modulation methods have considerable per-
formance advantages over previously proposed spread spectrum methods in a variety of
contexts. However, much effort has already been invested in optimizing spread spectrum
systems, for example, by exploiting perceptual properties of the human visual and auditory
systems or designing receiver front-ends to mitigate effects of geometric distortion. An ad-
vantage of spread-transform dither modulation over other forms of dither modulation is that

one can easily convert existing amplitude-modulation spread spectrum (AM-SS) systems,
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Figure 5-6: Spread-transform dither modulation. Information is embedded in the projection
of a block x of the host signal onto v, which is typically a pseudorandom vector. Components
of x orthogonal to v are added back to the signal after dithered quantization to form the
corresponding block of the composite signal s.

a class of previously proposed spread spectrum methods that have embedding functions of

the form

s(x,m)=x+ a(m)v,

into spread-transform dither modulation systems since the embedding function can be re-

written in the form

s(x,m)= (x4 a(m))v+ (x — xv),

where x = xTv. We see that AM-SS is equivalent to adding a value a(m) to the projection
x of the host signal onto the spreading vector v. Thus, if one has spent considerable effort
in designing a good spread spectrum system, for example, by designing a v that has good
perceptual distortion properties, but would like to gain the advantages of dither modulation,

one can do so simply by replacing the addition step of AM-SS,
s=Xx+a(m), (5.5)
by the quantization step of STDM,
§=q(x+d(m)) —d(m). (5.6)

5.2.2 SNR advantage of STDM over AM spread spectrum

The close coupling of STDM and AM spread spectrum allows a direct comparison between

the performance of the two methods that suggests that STDM has important performance
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advantages over AM spread spectrum in a broad range of contexts, as we show in this
section. This performance advantage results from the host signal interference rejection
properties of QIM methods in general.

We consider embedding one bit in a length-IL block x using STDM and AM spread
spectrum methods with the same spreading vector v, which is of unit length. Because
the embedding occurs entirely in the projections of x onto v, the problem is reduced to a

one-dimensional problem with the embedding functions (5.5) and (5.6). For AM-SS (5.5),
a(m) = £1/L Dy so that

la(1) — a(2)|* = 4L Ds. (5.7)
For STDM (5.6),

&?}g) |3(x1, 1) — 5(%,2)|* = A*/4 = 3L D, (5.8)
where A = \/12L D so that the expected distortion in both cases is the same, and where we
have used the fact that d(1) and d(2) are chosen such that |d(1) — d(2)| = A/2. Because all
of the embedding-induced distortion occurs only in the direction of v, the distortion in both
cases also has the same time or spatial distribution and frequency distribution. Thus, one
would expect that any perceptual effects due to time/space masking or frequency masking
are the same in both cases. Therefore, squared error distortion may be a more meaningful
measure of distortion when comparing STDM with AM-SS than one might expect in other
more general contexts where squared error distortion may fail to capture certain perceptual
effects.

The decoder in both cases makes a decision based on y, the projection of the channel

output y onto v. In the case of AM-SS,
y =a(m)+ x4+ n,

while in the case of STDM,

(x,m) + n,

0

y=

where n is the projection of the perturbation vector n onto v. We let P(:) be some measure

of energy. For example, P(z) = z? in the case of a deterministic variable z, or P(x) equals

MIT, June 2000 66



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

the variance of the random variable x. The energy of the interference or “noise” is P(x+ n)
for AM-SS, but only P(n) for STDM, i.e., the host signal interference for STDM is zero.

Thus, the signal-to-noise ratio at the decision device is

4L Dg
N gy = —————
SNRAM-ss Pt )
for AM-SS and
3LDg
N =
SNRsTDM P{r)

for STDM, where the “signal” energies P(a(1)—a(2)) and P (min(;(h;(z)) |S(Xx1, 1) — $(xz, 2)|)
are given by (5.7) and (5.8). Thus, the advantage of STDM over AM-SS is

SNRsTDM B §P()~( + FI)
SNRAM-s5 4 P(f]) ’

(5.9)

which is typically very large since the channel perturbations n are usually much smaller
than the host signal x if the channel output y is to be of reasonable quality. For example, if
the host signal-to-channel noise ratio is 30 dB and x and n are uncorrelated, then the SNR
advantage (5.9) of STDM over AM spread spectrum is 28.8 dB.

Furthermore, although the SNR gain in (5.9) is less than 0 dB (3/4 = —1.25 dB) when
the host signal interference is zero (x = 0), for example, such as would be the case if the host
signal x had very little energy in the direction of v, STDM may not be worse than AM-SS
even in this case since (5.9) applies only when x is approximately uniformly distributed
across the STDM quantization cell so that Dy = A%/(12L). If x = 0, however, and one
chooses the dither signals to be d(m) = £A/4, then the distortion is only Dy = A?/(161)
so that STDM is just as good as AM-SS in this case.

5.2.3 SNR advantage of STDM over generalized LBM

Spread-transform dither modulation methods also have an SNR advantage over generalized
low-bit(s) modulation methods such as the quantization-and-perturbation [43] embedding
method. As we show in App. C, the distortion-normalized squared minimum distance (5.4)
of LBM is 7/4 ~ 2.43 dB worse than that of dither modulation in the case of uniform,
scalar quantization. Thus, for a fixed rate and embedding-induced distortion, the squared-

minimum distance, and hence the SNR at the decision device, for LBM will be 2.43 dB
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Figure 5-7: Spread-transform dither modulation vs. generalized low-bit modulation. The
embedding interval boundaries of generalized LBM, which are shown with solid lines, are
the same for both X points and o points. In contrast, in the case of STDM, the X-point
embedding intervals, shown by solid lines, differ from the o-point embedding intervals,
shown by dashed lines. An SNR advantage of 7/4 = 2.43 dB for STDM results.
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Figure 5-8: Analog dither modulation with uniform, scalar quantization. An analog mod-
ulation technique such as amplitude modulation generates a dither sequence. Dithered
quantization follows.
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Figure 5-9: Analog dither demodulation with uniform, scalar quantization. The first stage,
estimation of the dither sequence, is followed by second stage analog demodulation.

worse than that of STDM.

This SNR advantage is illustrated in Fig. 5-7, where the quantizer reconstruction points
and embedding intervals for both generalized LBM and STDM are shown. The embedding-
induced squared error distortion is the same for both cases, but the squared minimum

distance for generalized LBM is a factor of 4/7 smaller than that of STDM.

5.3 Embedding Analog Data

In some potential applications, one may desire to use some of the embedding methods
discussed in this thesis to embed analog data as well as digital data. In this section we

briefly discuss some aspects of analog embedding using dither modulation.

If m[k] is a sequence of real numbers rather than a sequence of bits, one can still use it

to modulate the dither vector, as illustrated in Fig. 5-8. For example, one could modulate
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the amplitude of a signature sequence v[k],?

d[k] = m[k]v[k].
Using vector notation, the analog dither modulation embedding function is

s(x,m) = q(x+d(m)) —d(m). (5.10)

One method for decoding the embedded message m[k] is the two-stage demodulation
method illustrated in Fig. 5-9. First, one constructs an estimate d of the dither vector.
Then, one demodulates the embedded message m from this estimated dither vector. Typi-
cally, one modulates the dither vector d such that it will not carry a reconstruction point

out of its quantization cell, i.e.,

q(gqo—d) = qo

for every reconstruction point qq. For example, in the case of uniform scalar quantization,
this condition is satisfied if |d[k]| < Ag/2, where Ay is the quantization step size of the k-th

scalar quantizer. In these typical cases

d(s) = q(s)—s

m). (5.11)

Thus, the dither estimation stage (5.11) of Fig. 5-9 is the inverse of the dithered quantization
stage (5.10) of Fig. 5-8, and if the analog demodulation stage is the inverse of the analog
modulation stage, this decoder perfectly reconstructs m in the noiseless case. In the noisy

case if the perturbation vector n is small enough such that

q(s+n) =q(s),

2We include the possibility that the embedded information is a single number that has been expanded
into a sequence m[k] through repetition.
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then

where we have used (5.11) in the last line. Thus, in this small perturbation case the
dithered quantization and dither estimation stages are transparent to the analog modulator
and analog demodulator (to within a sign change). The effective channel connecting the
analog modulator to the analog demodulator produces the same perturbation vector, to

within a sign change, as the perturbation vector of the actual channel.
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Chapter 6

Gaussian Channels

As discussed in Chaps. 1 and 2, a number of information embedding applications arise in
which robustness against only unintentional attacks is required. In many of these cases,
an additive Gaussian noise model for the channel may be appropriate, especially if we
allow an arbitrary covariance matrix or, equivalently, an arbitrary noise power spectrum.
Furthermore, although many of the host signals that arise in multimedia applications —
speech, audio, images, and video signals, for example — may not be precisely Gaussian,
a Gaussian model for these signals can still capture the correlation among signal samples,
provided that we allow an arbitrary covariance matrix. Thus, even if the host signal is
not actually Gaussian, if we have only a second-order characterization of the host signal,
a Gaussian model allows us to incorporate all of this information. Also, given the host-
signal interference rejection properties of good information embedding systems, the non-
Gaussianity of the host signal may not play a significant role in the ultimate performance
of such systems.

Thus, in this chapter we examine the ultimate performance limits of various information
embedding methods when both the host signal is Gaussian and the channel is an additive
Gaussian noise channel. Specifically, we consider the case where the host signal vector x

and the noise vector n are statistically independent and can be decomposed into

x=[x oy’ and n= [y

where the x; are independent and identically distributed (iid), L-dimensional, zero-mean,

Gaussian vectors with covariance matrix K, = QxA,QL and the n; are iid, L-dimensional,
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zero-mean, Gaussian vectors with covariance matrix K, = Q,A,QT. The columns of the
matrices x and @), are the eigenvectors of their respective covariance matrices and A, and
A, are diagonal matrices of the respective eigenvalues. This model is appropriate when
the power spectra of the host signal and channel noise are sufficiently smooth that one can
decompose the channel into L parallel, narrowband subchannels, over each of which the host
signal and channel noise power spectra are approximately flat. Many bandwidth-conserving
hybrid transmission applications are examples of such a scenario, and this model may also
apply to optimal, i.e., rate-distortion achieving [13], lossy compression of a Gaussian source,

as discussed in App. B.

When the channel noise is not white, issues arise as to how to measure distortion and how
to define distortion-to-noise ratio (DNR). One may want to make the embedding-induced
distortion “look like” the channel noise so that as long as the channel noise does not cause
too much perceptible degradation to the host signal, then neither does the embedding-
induced distortion. One can impose this condition by choosing distortion measures that
favor relatively less embedding-induced distortion in components where the channel noise is
relatively small and allow relatively more distortion in components where the channel noise
is relatively large. Then, the embedding-induced distortion will look like a scaled version of
the channel noise, with the DNR as the scaling factor. If the DNR is chosen small enough,

then the embedding-induced distortion will be “hidden in the noise”.

In this chapter we consider two ways to measure distortion and DNR, and show that in
each case when we impose this constraint that the embedding-induced distortion signal look
like a scaled version of the channel noise, the information-embedding capacity is independent
of the host and noise statistics and depends only on the DNR. After presenting these capacity
results in Sec. 6.1, we discuss in Sec. 6.2 their implications for bandwidth-conserving hybrid
transmission applications where a digital data signal is embedded within a multimedia host
signal. We also discuss some connections between information embedding and broadcast
communication problems in this section. We conclude the chapter in Sec. 6.3 by comparing

different types of information embedding methods in terms of their gaps to capacity.
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6.1 Capacities

As explained in Chap. 4, viewing information embedding as communication with side infor-
mation allows one to apply earlier results of Gel'fand and Pinsker [19] to conclude that the
information embedding capacity is given by (4.1). In this section we specialize this result

to the Gaussian case described above. Our main results are:

1. The capacity is
1
C(Grauss = 5 108;2(1 + DNR)7 (61)

when one uses one of two squared error based distortion measures and constrains the
embedding-induced distortion to look like a scaled version of the channel noise. This

capacity is the same as in the case when the host signal is known at the decoder.

2. Preprocessing the host signal with a linear transform that whitens the channel noise
and decorrelates the host signal samples, embedding with distortion-compensated
QIM, and postprocessing the result with the inverse linear transform is an optimal

(capacity-achieving) embedding strategy in the Gaussian case.

We arrive at these results by considering first the case of a white host signal and white noise.
After determining the capacity in that simplest case, we show that one can transform the
case of a colored host signal and white noise into the white host, white noise case. Finally,
we show that one can transform the most general case of a colored host signal and colored

noise into the colored host, white noise case.

6.1.1 White host and white noise

We consider first the case of a white host signal (K, = 02I), white noise (K, = 021), and
the distortion constraint
N/L

Z eZ»TeZ' < LD, (6.2)

=1

L
N

This case is equivalent to the L = 1 case, and the equivalent distortion constraint is
1 N
2
AT Z ei S DS7
N =1
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with the corresponding constraint on p, |« (u,€|z) in (4.1) being Ele?] < Ds. We see
that squared error distortion-constrained, Gaussian information embedding is equivalent to
power-constrained communication over a Gaussian channel with Gaussian side information

known at the encoder, a case for which Costa [11] has determined the capacity to be

1 Dy 1
CawaN = 5 10g2 (1 + 0—2) = 5 10g2(1 + DNR)7 (6.3)

n

as asserted in (6.1). Remarkably, as we discuss in Sec. 6.1.4, the capacity is the same as in
the case when the host signal x is known at the decoder, implying that an infinite energy
host signal causes no decrease in capacity in this Gaussian case, i.e., good information
embedding systems can completely reject host-signal interference in the Gaussian case.
Before proceeding to the colored host signal case, we briefly discuss the proof [11] of
(6.3). As discussed in Chap. 4, one wishes to find the pdf that maximizes (4.1). One

distribution to try is the one implied by [11]
u=e-+ax, (6.4)

where e ~ A/(0, Dg) and e and x are independent.! For a fixed value of «, an achievable

rate I(u;y) — I(u;x) is [11]

1 DS(DS—|—02—|—02)
— _1 X T
k(a) = 5 log, (Dsagu " )2+ o2 (Ds + ato?) )’

which can also be written in terms of the DNR and the host-signal-to-noise ratio (SNR, =

0z/o%),

1 DNR(1 + DNR + SNR,) )
R(a) = -1 . 6.5
(a) = 3 log, (DNR SNR, (I — )2 + (DNR + a2SNR,) (65)
This rate is maximized by setting
DNR
(6.6)

“ear = DNR + 1

to obtain (6.3). Clearly, since (6.3) is the maximum achievable rate when x is known at the

"We emphasize that while the sequences e and x may be of independent type, the distortion signal e is
still chosen as a function of the host signal x, as described in Chap. 4.
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Figure 6-1: Embedding in transform domain for colored host signal and white noise. The
dashed box is the equivalent transform-domain channel.

decoder (See Sec. 6.1.4.), one cannot exceed this rate when x is not known at the decoder,

and this achievable rate is the capacity.

6.1.2 Colored host and white noise

We now consider the case of an arbitrary host signal covariance matrix K, = Q AQL
and white noise (K, = 02I). The distortion constraint is still (6.2) with the corresponding
constraint on p, |« («, €lz) in (4.1) being EleTe] < LDs. Thus, LD is the maximum
average energy of the L-dimensional vectors e;, so Dy is still the maximum average energy
per dimension.

One way to determine the capacity in this case is to consider embedding in a linear
transform domain, where the covariance matrix of the host signal is diagonal. Because
the transform is linear, the transformed host signal vector remains Gaussian. One such
orthogonal transform is the well-known Karhunen-Loeve transform [46], and the resulting

transformed host signal vector is

T
:QXX7

>

with covariance matrix Kz = A,. The distortion constraint (6.2) in the transform domain

on the vectors & = Qle is

N/L

el'e; < LD,

~

2| =
I

since

éiTéi = eZ»TQXQzei —ele;.

k3

An overall block diagram of the transformed problem is shown in Fig. 6-1. The transform-

domain channel output y is

<t
ll
o
_|_
>
_|_
ual
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where the transform-domain noise n has the same covariance matrix as n,
Kn=QF (021) Qx = 021 = K,

Since both Ky and Kj are diagonal, in the transform domain we have I parallel, independent
subchannels, each of which is an AWGN channel with noise variance o2 and each of which
has a white, Gaussian host signal. Thus, as we show formally in App. D, the overall capacity

is simply the sum of the capacities of the individual subchannels (6.3),

L
1 L
Cp = 2 51085 (1 + DNR) = = log(1 + DNR). (6.7)
This capacity is in bits per L-dimensional host signal vector, so the capacity in bits per

dimension is
1
C = 3 log,(1+ DNR), (6.8)

the same as the capacity when the host signal is white (6.3). Thus, not only is the capacity
independent of the host signal power for white Gaussian host signals as discussed above in
Sec. 6.1.1, but in the more general case where the host signal has any arbitrary covariance
matrix, the capacity is independent of all host signal statistics. (The statistics of a Gaussian

random vector are completely characterized by its mean and covariance.)

6.1.3 Colored host and colored noise

We now extend our results to the case of arbitrary host signal and noise covariance matrices
Ky = QA QL and K, = Q,A,QL, respectively. We assume that the eigenvalues of K, are
non-zero, i.e., I, is invertible.

As discussed in the introduction to this chapter, when the channel noise is not white,
one may want to constrain the embedding-induced distortion signal to “look like” a scaled
version of the channel noise. As mentioned during that discussion, we consider two such
ways to impose this constraint through our definition of distortion and DNR. The first
distortion measure is a weighted average squared error measure, and in the second case, we
use multiple distortion constraints, one on each of the components. Below, we show that

both cases can be transformed into a colored host, white noise case, and thus, the capacity
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is (6.1).

Weighted squared error distortion

We consider the distortion measure and constraint

7 N/L .
~ ; e; K,'e; < LDNR, (6.9)
so that the corresponding constraint on p, o« (u,e|z) in (4.1) is E[e"K;'e] < LDNR. The
weighting matrix K1 more heavily penalizes distortion in the directions of eigenvectors
corresponding to small eigenvalues (noise variances). Thus, the embedding-induced distor-
tion will tend to be large only in those components where the channel noise is also large,
and the distortion will tend to be small in the components where the channel noise is also
small. The equivalence between this case and the colored host, white noise case discussed
in the last section will be made apparent through an invertible, linear transform.
The transform required in this case not only diagonalizes the noise covariance matrix,
but also makes the transformed noise samples equivariant. Specifically, the transform matrix

is A;l/z T and the transformed host signal vector

5= APQNx
has covariance matrix
Ky = A;Y2QTK,QuA Y2,

A block diagram for the overall problem is similar to the one in Fig. 6-1, with the transform

matrix QL replaced by AEI/QQZ and the inverse transform matrix )« replaced by QnA,l/z.

Because the transform is invertible, there is no loss of optimality from embedding in this

transform domain. The transform-domain channel output y is
y—¢é+x+n,
where the transform-domain noise n has covariance matrix

Kn = 0, 2Q1 (QutnQh) QuA; 12 = 1. (6.10)
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Thus, the components of n are uncorrelated (and independent since nis Gaussian) and have

unit variance.

The distortion constraint (6.9) in the transform domain is

since

eZ»TKn_lei eZ»T (QnAngf) &
= (ef'Qury"?) (7120 e)

el'e;

= y €.

Thus, the transform-domain distortion constraint in this case is the same as the non-
transform domain distortion constraint (6.2) of the last section. In both cases the host
signal is colored and Gaussian, and the channel noise is white and Gaussian. Thus, the

capacity in both cases is the same (6.1),
1
C = §log2(1 + DNR), (6.11)

and was determined in the last section.

Multiple, simultaneous squared error distortion

An alternative, and more restrictive, distortion constraint to (6.9) arises by strictly requiring
that the embedding-induced distortion in components corresponding to small noise eigen-
values be small rather than simply weighting these distortions more heavily. Specifically,

we consider the set of constraints

%Z (%‘Tei)ZSDNRM j=1...,L, (6.12)
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where q; and A; are the j-th eigenvector and eigenvalue, respectively, of K,. Any distortion

signal that satisfies (6.12) also satisfies (6.9) since

[ ML . N
ZeTK = WZ (QTeZ) (QTeZ)
=1
L ML 2 1
- ﬁm;(qfei) X

L I N/L
- ; N ; (quei)z]
< LDNR,

where the first line follows from the factorization K ' = Q,A;'QT and where the final line

follows from (6.12). Thus, the constraint (6.12) is indeed more restrictive than (6.9).

To determine the information-embedding capacity in this case, we again consider the
noise-whitening linear transform A;l/fo. The j-th component of the transform-domain

. . - ~1/2 .
distortion vector & = Ap / Qfei is

- I 7
&), = ——qTe.
i /X
Thus, the transform-domain distortion constraint equivalent to (6.12) is
N/L

L
~ Y [&]?<DNR, j=1,...,L. (6.13)
=1

By (6.10), the transform-domain noise covariance matrix is the identity matrix. Thus, if
we treat each of the L subchannels independently, each with its own distortion constraint

(6.13) and a noise variance of unity, then on the j-th subchannel we can achieve a rate
1
C; = 3 log, (1 4+ DNR),

so the total rate across all L channels in bits per dimension is

1
=7 Y ¢ = 1og2 (1+ DNR). (6.14)

=1
Since this rate equals the capacity (6.11) corresponding to a less restrictive distortion con-
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straint (6.9), we cannot hope to achieve a rate higher than this one. Thus, treating the L
subchannels independently does not result in any loss of optimality, and the achievable rate
(6.14) is indeed the capacity.

Thus, for Gaussian host signals and additive Gaussian noise channels, with the con-
straint that the embedding-induced distortion signal “look like” the channel noise, the
information-embedding capacity is independent of the host and noise covariance matrices
(Since the signals are Gaussian, the capacity is actually independent of all host signal and

noise statistics.) and is given by (6.1).

6.1.4 Non-interfering host signal

There are some scenarios in which host-signal interference is either small or non-existent.
For example, the watermark may be embedded only in host signal components that have a
small amount of energy, especially if robustness to intentional attacks or lossy compression
is not required. Alternatively, the host signal may be large, but available to the decoder.
We treat both of these cases below.

In the limit of small host signals (x — 0), Fig. 2-2 reduces to the classical communication
problem considered in many textbooks [13] since s — e. In this limit, of course, the
capacity is the mutual information between e = s and y maximized over all pe(-) such that
Ele?] < Ds. In the additive white Gaussian noise channel case, the capacity is well known
to be [13]

Chyo = %logz(l + DNR),

which, again, equals the capacity (6.1) when the host signal is not small. By examining
(6.5), (6.18), and (6.26) in the limit of small host signals (SNR, — 0), we see that distortion-
compensated QIM with any «, regular QIM, and additive spread spectrum, respectively,
are all optimal in this case.

As discussed in Chap. 4, when the host signal is not necessarily small but is known at
the decoder, then the capacity is given by (4.8). Again, the maximization is subject to a
distortion constraint, which in the case of white noise is F[e?] < Ds. Because subtracting a

known constant from y does not change mutual information, we can equivalently write

C'= max I(e;y— x|x).
pe|x(e|w)
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We note that y — x = e 4+ n, so in the case of an AWGN channel the capacity is again
1
C1Grauss,known = 5 108;2(1 + DNR)7

where the maximizing distribution pe(e|z) is a zero mean Gaussian distribution with vari-
ance Dg. Again, both QIM and spread spectrum are optimal in this case. Quantizers of
optimal QIM systems have reconstruction sequences s; chosen iid from a zero mean Gaus-
sian distribution with variance ¢2 4+ Ds, and optimal spread spectrum systems add zero

mean iid Gaussian sequences with variance Dg to the host signal.

6.2 Capacities for Embedding Data within Multimedia Host

Signals

The capacity expressions in Sec. 6.1 apply to arbitrary host and noise covariance matri-
ces and, thus, these achievable rate-distortion-robustness expressions are quite relevant to
many of the multimedia applications mentioned in Chap. 1, especially those where one faces
incidental channel degradations (unintentional “attacks”). For example, these capacities do
not depend on the power spectrum of the host signal and thus these results apply to au-
dio, video, image, speech, analog FM, analog AM, and coded digital signals, to the extent
that these signals can be modeled as Gaussian. Also, the additive Gaussian noise with
arbitrary covariance model may be applicable to lossy compression, printing and scanning
noise, thermal noise, adjacent channel and co-channel interference (which may be encoun-
tered in digital audio broadcasting (DAB) applications, for example), and residual noise
after appropriate equalization of intersymbol interference channels or slowly varying fading
channels. Furthermore, when considering the amount of embedding-induced distortion, in
many applications one is most concerned with the quality of the received host signal, i.e.,
the channel output, rather than the quality of the composite signal. For example, in FM
DAB applications, conventional receivers demodulate the host analog FM signal from the
channel output, not from the composite signal, which is available only at the transmitter.
Similarly, in many authentication applications, the document carrying the authentication
signal may be transmitted across some channel to the intended user. In these cases one

can use the capacity expressions of this chapter to conveniently determine the achievable

MIT, June 2000 83



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

embedded rate per unit of host signal bandwidth and per unit of received host signal degra-
dation. In particular, we show in this section that this capacity is about 1/3 bit per second
(b/s) for every Hertz (Hz) of host signal bandwidth and every dB drop in received host
signal-to-noise ratio (SNR).

We examine two cases, one where the host signal is an analog signal and one where the
host signal is a digital signal. We also point out some connections between our results and

the problem of communication over the Gaussian broadcast channel [13, Ch. 14].

6.2.1 Analog host signals

In each of the cases considered in Sec. 6.1, the measure of distortion, and hence the DNR,
is defined to make the embedding-induced distortion signal “look like” the channel noise,
again the idea being that if channel noise distortion to the host signal is perceptually
acceptable, then an embedding-induced distortion signal of the same power spectrum will
also be perceptually acceptable. As discussed in those sections, one can view the DNR as
the amount by which one would have to amplify the noise to create a noise signal with
the same statistics as the embedding-induced distortion signal. Thus, if one views the
received channel output as a noise-corrupted version of the host signal, then the effect of
the embedding is to create an additional noise source DNR times as strong as the channel

noise, and therefore, the received signal quality drops by a factor of (1 4+ DNR) or
10logyo(1 + DNR) dB. (6.15)

In the white noise case (K, = 02I), for example, the embedding-induced distortion looks
like white noise with variance Ds. With no embedding, one would have had a received
host signal-to-noise ratio of SNR, = ¢2/¢2. Due to the additional interference from the

embedding-induced distortion, however, the received host SNR drops to

o2 SNR,

T

Dy+02  1+DNR’

a drop of 1 4+ DNR.

Since the capacity in bits per dimension (bits per host signal sample) is given by (6.1),

and there are two independent host signal samples per second for every Hertz of host signal
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Host Signal Bandwidth Capacity
NTSC video 6 MHz 2.0 Mb/s/dB
Analog FM 200 kHz | 66.4 kb/s/dB
Analog AM 30 kHz 10.0 kb/s/dB
Audio 20 kHz 6.6 kb/s/dB
Telephone voice 3 kHz 1.0 kb/s/dB

Table 6.1: Information-embedding capacities for transmission over additive Gaussian noise
channels for various types of host signals. Capacities are in terms of achievable embedded
rate per dB drop in received host signal quality.

bandwidth [26], the capacity in bits per second per Hertz is
C =logy(1 4+ DNR) b/s/Hz. (6.16)

Taking the ratio between (6.16) and (6.15), we see that the “value” in embedded rate of

each dB drop in received host signal quality is

_ logy(1+DNR) 1
~ 10log;o(1+ DNR) 10

log, 10 ~ 0.3322 b/s/Hz/dB (6.17)

Thus, the available embedded digital rate in bits per second depends only on the bandwidth
of the host signal and the tolerable degradation in received host signal quality. Information-

embedding capacities for several types of host signals are shown in Table 6.1.

6.2.2 Coded digital host signals

When the host signal is a coded digital signal, one could, of course, apply the above analysis
to determine the achievable embedding rate for a given SNR degradation to this coded
digital host signal. An alternative measure of the received host signal quality is the capacity
of the corresponding host digital channel. For example, in the case of white noise and a
white host signal,? if there were no embedding, the capacity corresponding to a host digital

signal power of ¢2 and a noise variance of o2 is

1
Ro = 5logy(1 4 SNR,).

2 As is well known [13], white Gaussian coded signals are capacity-achieving for transmission over additive
white Gaussian noise channels, so a white, Gaussian model for the coded host digital signal is actually a
pretty good model in this case.
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Embedding an additional digital signal within the host digital signal drops the host digital
capacity to

1 SNR,

1+DNR

due to the drop in received host signal-to-noise ratio of 1 + DNR. Unlike in the case of
an analog host signal, if one must actually lower the rate of the coded host digital signal
as a result of the embedding, then one may have to redesign both the digital encoder that
generates this coded digital host signal and the corresponding decoder. However, there may
still be an advantage to this configuration of embedding one digital signal within another
over simply designing a single new digital system that encodes both the host message and
embedded message into a single digital signal. For example, the decoder for the host digital
signal is different from the decoder for the embedded digital signal so information in the
embedded channel is kept secret from those with decoders for the host signal. The embedded

digital channel rate is given by (6.1),
1
Ry = 3 log, (1 4+ DNR)
so that the combined rate of the two channels is
1

Because the combined rate is greater than the original rate Ry of the no-embedding case,
the rate Ry of the embedded signal is actually higher than the loss in rate of the host signal,
i.€., one bit in the host signal buys more than one bit in the embedded signal. Of course,
this apparent increase in total capacity comes at the cost of increased total power, which is
Dy + O'z,. Still, the combined rate Ry + R5 is as large as the achievable rate using a single
digital signal with this same total power, indicating that creating two signals that can be

decoded separately results in no loss.

6.2.3 Connections to broadcast communication

We conclude this section by commenting on the connection between information embedding
and broadcast communication [13, Ch. 14], where a single transmitter sends data to multiple

receivers (decoders). For example, the downstream (base-to-mobile) channel in a cellular
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telephone system is a broadcast channel. Our analyses in Secs. 6.2.1 and 6.2.2 apply to two
special cases of the broadcast communication problem. In each case a single transmitter

sends data to a host decoder and an embedded information decoder.

In Sec. 6.2.1 the host decoder is the identity function (x = y), the host signal is an
analog message, and the distortion measure is (possibly weighted) squared error distortion.
The constraint on the host decoder to be the identity function arises, for example, from a
backwards-compatibility requirement.

In contrast, we drop the backwards-compatibility requirement in Sec. 6.2.2, allowing a
different host decoder (with rate R) in the broadcast case than the decoder (with rate Ry)
in the single user case. Also, both the host signal and embedded information are digital
signals. Indeed, the rate pair (Ry, R3) is the achievable rate pair for the Gaussian broadcast
channel [13, Ch. 14] when broadcasting independent information to two different receivers
with the same noise variance. However, if one were to use superposition coding [12], the
usual method for achieving capacity on broadcast channels, the embedded information
decoder would need to know the host signal codebook so that the decoder could decode the
host signal and subtract it from the channel output before decoding the embedded signal.
This type of decoding is sometimes called “onion peeling” or successive cancellation. The
above discussion in Sec. 6.2.2 shows that one can actually achieve the same rates without

requiring that the embedded information decoder have access to the host signal codebook.

6.3 Gaps to Capacity

The capacity (6.1) gives the ultimate performance limit that is achievable by any informa-
tion embedding system. When designing these systems, we often impose certain structure
on the embedding function s(x, m) so that we can understand how the system will behave.
For example, as discussed in Chap. 3, the structure of QIM embedding functions allow us to
conveniently trade off rate, distortion, and robustness by adjusting the number of quantiz-
ers, the quantization cell sizes and shapes, and the minimum distance between quantizers,
respectively. Similarly, one achieves rate-distortion-robustness trade-offs in an amplitude-
modulation spread spectrum system by adjusting the number of different amplitudes, the
magnitudes of the amplitudes, and the differences between amplitudes. Imposing such

structure allows one to search for the best embedding functions within a restricted class.

MIT, June 2000 87



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

Although finding the best embedding function within a restricted class may be easier than
finding the best embedding function over a large class, one incurs some risk, of course, that
the restricted class may not contain very good embedding functions.

In this section, therefore, we discuss the “goodness” of the best possible embedding
functions that lie within certain embedding function classes. In particular, we examine
the performance gaps to capacity of the best possible embedding functions within the
distortion-compensated QIM, regular QIM (QIM without distortion compensation), and
additive spread spectrum classes. We also consider the gap to capacity of uncoded STDM
and uncoded generalized LBM with uniform scalar quantization. We restrict our attention
to the white host, white noise case since, as discussed in Sec. 6.1, one can transform the

more general colored host, colored noise case into the white host, white noise case.

6.3.1 Optimality of distortion-compensated QIM

In Sec. 4.1.2 we showed that the condition (4.2) on the maximizing distribution in (4.1)
is a sufficient condition for the existence of a capacity-achieving DC-QIM codebook. As
discussed in Sec. 6.1.1, the maximizing distribution in the white Gaussian host, white
Gaussian noise case satisfies (6.4), which is indeed the same condition as (4.2). Therefore,
there is no gap between DC-QIM and capacity in this case. Furthermore, the capacity-
achieving distortion compensation parameter « is given by (6.6), which is the same as the

SNR-maximizing « given by (3.11).

6.3.2 Regular QIM gap to capacity

If one sets o« = 1, one obtains a regular QIM embedding function with no distortion com-
pensation. Then, if one chooses reconstruction points from the pdf implied by (6.4),” one

can achieve a rate (6.5):

(6.18)

1 1+ DNR + SNR,,
Rqm > 5 log, (DNR i s )

DNR + SNR;

However, the converse is not true, i.e., one cannot show that a QIM system cannot achieve

a rate greater than (6.18), and thus (6.18) is only a lower bound on the capacity of QIM.

*The pdf of the reconstruction points ¢ = s in this case is N(0, Ds + cri)7 which 1s not the same as the
well-known rate-distortion optimal pdf [13] for quantizing Gaussian random variables, which is A'(0, 02— D5).
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One can quantify the gap between regular QIM and the Gaussian capacity (6.1) in
terms of the additional DNR required by a regular QIM system to achieve the same rate
as a capacity-achieving system. We show below that regular QIM asymptotically achieves
capacity at high embedding rates and that at finite rates the gap is never more than e =

4.3 dB.

A QIM system can achieve the rate (6.18), but this lower bound on capacity of QIM is
not tight. In fact, the expression (6.18) actually approaches —oo in the limit of low DNR.
However, we can determine a tighter lower bound on the capacity of spread-transform QIM,
a subclass of QIM methods. Since these spread-transform QIM methods are special cases

of QIM methods, this tighter lower bound is also a lower bound on the capacity of QIM.

Spread-transform QIM is a generalization of spread-transform dither modulation (See
Sec. 5.2.) in which the host signal vector x = [x; - - -xy]” is projected onto N/Lgt orthonor-
mal vectors vi,..., Vy/rs, € RN to obtain transformed host signal samples X, . . . s XN/ Lgps
which are quantized using QIM. Because projection onto the vectors v; represents a change
of orthonormal basis, the transformed host signal samples and the transformed noise samples
Ry, ..., NN/Lep, Which are the projections of the original noise vector n = [ny - -ny]T onto
the orthonormal vectors v;, are still independent, zero-mean, Gaussian random variables
with the same variance as the original host signal and noise samples, respectively. However,
if the distortion per original host signal sample is Dg, then the distortion per transformed
host signal sample is Lgp Dg. Thus, we obtain a “spreading gain” of Lgr in terms of DNR,
but the number of bits embedded per original host signal sample is only 1/Lgt times the
number of bits embedded per transformed host signal sample. Thus, one can determine

an achievable rate Rsrqm of spread-transform QIM by appropriately modifying (6.18) to

obtain

1 1+ Lt -DNR—I—SNRQU)
> log, ( Lst - DN
Hstom 2 57 log, ( ST DNR— DNR 1 SNR,
> log, (Lst - DNR). (6.19)
2LsT

To upper bound the gap between QIM and capacity we first recognize from (6.19) that

the minimum DNR required for QIM to achieve a rate R asymptotically with large N is

22LSTR

DNRgm < (6.20)

ST
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which is minimized at Lgt = 1/(2RIn2). One may wonder if one can actually obtain
this spreading gain, however, since the description of the spread-transform operation above
requires that N/Lgt be a positive integer less than or equal to N. If N/Lgt must be

rounded to the nearest integer, the spreading gain has lower and upper bounds

N < N < N
( N4 0.5) round (%) ( N 0.5)

LST LST

and, thus, still approaches Lgt in the limit of large N. Therefore, the rounding operation
has an asymptotically negligible effect on the spreading gain. However, Lgp > 1 even in

the limit of large N to have N/Lgt < N. Thus, if one sets

Lsr = max{ (6.21)

1 1}
2RIn2" ")’
then (6.20) remains a valid upper bound on the required DNR for a QIM method to achieve
a rate R. From (6.1) we see that the minimum DNR required for a capacity-achieving

method to achieve a rate R is

DNR,p = 227 — 1.

Combining this expression with (6.20), we see that the gap between QIM and the Gaussian

capacity is at most

DNRQIM < 92LsT R

. 22
DNRopt — Lgr (22R — 1) (6 )

This expression is plotted in Fig. 6-2, where Lg7 is given by (6.21).

We now examine the asymptotic limits of (6.22) at low and high rates. Eq. (6.21) implies
Lgr =1/(2RIn2) in the limit of small R, so in this limit (6.22) approaches

DNRQIM < 22LsTh
DNRopt — Lgt (22R — 1)
_ 2Y/Im2(2RIn2)
B 220
2RIn?2
= € m — €, as R — 0

The third line follows from the identity 2!/1"% = e for any x, which one can derive by noting

that Inz'/"* = (1/Inz)Inz = 1. Thus, the gap is at most a factor of ¢ (approximately
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Figure 6-2: DNR gap between spread-transform QIM and Gaussian capacity. The spreading
length is restricted to be greater than or equal to 1. The maximum gap is a factor of e,
which is approximately 4.3 dB.

4.3dB) in the limit of low rates. In the limit of large R, (6.21) implies Lgt = 1 so (6.22)

approaches
DNRqm _ 2%F
DNRype  22H -1

— 1, as R — oo.

Thus, QIM asymptotically achieves capacity at high embedding rates.

As we described in Sec. 6.2, in many applications one may be concerned about the
degradation to the received host signal, which is (1 + DNR) rather than DNR. The gap in
DNR (6.22) is larger than the gap in (1 + DNR), which has a corresponding upper bound

14 92RLgT
1+ DNRqm < Tsr
1+ DNRoy = 2°R

This gap is plotted in Fig. 6-3 as a function of 2R, the ratein b/s/Hz. Again, Lgt is given by
(6.21) since minimizing DNRqmy also minimizes 1+ DNRqgm. Thus, for example, a digital
rate of 1 b/s/Hz using QIM requires at most 1.6 dB more drop in analog channel quality
than the approximately 3-dB drop required for a capacity achieving method (Sec. 6.2).

6.3.3 Uncoded STDM gap to capacity

The performance of the best QIM methods can approach the Gaussian capacity at high

rates and is within 4.3 dB of capacity at low rates, indicating that the QIM class is large
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Figure 6-3: Received host SNR gap (1+DNR) between spread-transform QIM and capacity.
The spreading length is restricted to be greater than or equal to 1. One bit/dimension equals

2 b/s/Hz.

enough to include very good embedding functions and decoders. In this section we consider
the achievable performance of uncoded spread-transform dither modulation (STDM) with
uniform scalar quantization since STDM is an important, low-complexity realization of
QIM.

The gap between uncoded STDM and the Gaussian capacity (6.1) can easily be quanti-
fied for low rates (Rp, < 1), which are typical in many applications, at a given probability

of error. From Fig. 5-4, we see that an upper bound on the bit-error probability of uncoded

STDM is
d? .
P, <2 B
b > Q 40_7% Y

where, as in Chap. 3, Q(-) is the Gaussian Q-function (3.6). This bound is reasonably tight
for low error probabilities, and from (5.4) we can write this probability of error in terms of

the rate-normalized distortion-to-noise ratio DNRyo;m = DNR/ Ry,

Pa2Q (, /%) =2Q (MZDNRHOM) : (6.23)

From (6.1), a capacity-achieving method can achieve arbitrarily low probability of error as

long as Ry, < CGauss OF
DNR
2R 1 > 1.
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Figure 6-4: Uncoded spread-transform dither modulation (STDM) gap to Gaussian capac-
ity. The solid curve shows the bit-error probability for uncoded STDM as a function of
rate-normalized distortion-to-noise ratio (DNRyorm). The dashed curve is the minimum
required DNR,orm for reliable information-embedding for any embedding method.

For small Ry, 22F'» — 1 ~ 2R,,In 2 so the minimum required DNRpomm for arbitrarily low

probability of error is
DNRuorm 2> 2In2 ~ 1.4 dB. (6.24)

The probability of error P, of STDM is plotted as a function of DNRym, in Fig. 6-4.
The required DNRyorm for a given Py can be compared to (6.24) to determine the gap to
capacity. For example, at an error probability of 1076, uncoded STDM is about 13.6 dB
from capacity. One can reduce this gap by at least 9.3 dB through channel coding, vector
quantization, and non-dithered quantization. The remaining gap (at most 4.3 dB) is the
gap between QIM and capacity and can be closed with distortion compensation. In Chap. 8
we illustrate that one can fairly easily close the gap between uncoded STDM (with uniform
scalar quantizers) and capacity by about 6 dB using practical channel codes and distortion

compensation.

6.3.4 Uncoded LBM gap to capacity

Again, from App. C the distortion-normalized minimum distance for LBM with uniform

scalar quantization is a factor of 7/4 ~ 2.43 dB worse than that of STDM (5.4). Thus, the
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LBM counterpart to (6.23) is that the bit-error probability of uncoded LBM is

P~ 20 (, /%DNRnorm) . (6.25)

Then, the gap to capacity of uncoded LBM at an error probability of 107 is about 16 dB,
2.4 dB more than the 13.6-dB gap of uncoded STDM.

6.3.5 Spread spectrum gap to capacity

Additive methods such as spread spectrum linearly combine a watermark signal with the

host signal, s = x + w(m), so that the distortion signal in Fig. 2-2
e(x,m) = w(m)
is not a function of the host signal. Thus,
y=s+n=e+x+n.

The distortion constraint still constrains the size of e to E[e?] = Ds so that in the Gaussian
case considered here, the achievable rate of a spread spectrum method is the well-known [13]
Gaussian channel capacity, treating both x and n as interference sources,

1 D, 1 DNR
Res = ~log, (14— ) = Zlog, (14 —— v 6.26
58 2°g2< +a;+ag) 2°g2< +SNRx—|—1)’ (6.26)

where, again, SNR, is the ratio between the host signal variance and the channel noise
variance. (This rate is also the capacity when n is non-Gaussian, but still independent of s,
and a correlation detector is used for decoding [25].) By comparing (6.26) to (6.1) we see

that the gap to capacity of spread-spectrum is

DNR,,
DNR,p

= SNR, + 1.

Typically, SNR,. is very large since the channel noise is not supposed to degrade signal
quality too much. Thus, in these cases the gap to capacity of spread-spectrum is much
larger than the gap to capacity of regular QIM.

In the high signal-to-distortion (SDR) limit where 02/Ds > 1, which is of interest
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for many high-fidelity applications, the achievable rate of spread spectrum (6.26) clearly
approaches zero. This result is one more example of the inability of spread spectrum
methods to reject host signal interference, in contrast to dither modulation, QIM, and

other optimal or near optimal embedding methods.

6.3.6 Known-host case

As discussed in Sec. 6.1.4, both capacity-achieving QIM and capacity-achieving spread
spectrum methods exist when the host signal is known at the decoder. Although coded
binary dither modulation with uniform, scalar quantization is not optimal in this case, for
AWGN channels one can achieve performance within we/6 = 1.53 dB of capacity as we
show below. We consider the case of dither signals with a uniform distribution over the

interval [—A/2, A/2]. In this case,

s=q(x+d)—d=x+e,

where the quantization error e is uniformly distributed over the interval [-A /2, A/2] and
statistically independent of x (even though e is a function of x and d) [23]. Thus, the
achievable rate I(e; e+ n) is slightly lower than the case where e is Gaussian. The entropy

power inequality can be used to show that the decrease in achievable rate is bounded by [40]

14+ DNR
(6/me)DNR’

1
auss,known — i S =1 2
CGauss k Raien < 7 logs T (6.27)

This gap approaches the upper limit of %log2 T~ 0.2546 bits/dimension as the distortion-
to-noise ratio gets large. For any finite DNR, the gap is smaller. By subtracting the upper
bound on the gap (6.27) from the capacity (6.1), one obtains a lower bound on the achievable

rate of this type of dither modulation:
1 6
Raitn > = 10g2 (1 + — DNR) . (6.28)
2 e

Thus, dither modulation with uniform scalar quantization in this case is at most we/6 =

1.53 dB from capacity.
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Chapter 7

Intentional Attacks

Intentional, distortion-constrained attacks may be encountered in copyright, authentication,
and covert communication applications. In a digital video disc (DVD) copyright applica-
tion, for example, the attacker may try to remove the watermark from illegally copied video
so that a standards compliant DVD player will not recognize the video as watermarked
and will thus play the disc. In authentication applications, if an attacker can successfully
remove authentication watermarks so that even authentic documents are rejected as unau-
thentic, then the authentication system will be rendered useless. In the context of covert
communications, even if an adversary is unable to detect the presence of a hidden message,
an attacker can disrupt its communication by degrading the composite signal carrying the

message.

In each of these examples, the attacker faces a distortion constraint on his or her signal
manipulations. In the DVD copyright application, the distortion constraint arises because
the attacker desires a copy of the video that is of acceptable quality. In the case of authen-
tication, degrading the signal too much to remove the authentication watermark results in
a signal that may indeed be no longer authentic due to its unacceptably low quality. In the
covert communication application, the attacker may be prohibited from degrading the host
signal so severely that it will no longer be useful for its intended purpose. For example,
the host signal may communicate useful information over a network to a group of only
partially trusting allies of which the attacker is a member. That attacker suspects that two
other members of this group wish to covertly communicate additional information to each

other by embedding the information in the host signal. The attacker wishes to disrupt such
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potential covert communication, but cannot destroy the host signal in the process.

An attacker’s ability to prevent reliable watermark decoding depends on the amount of
knowledge that the attacker has about the embedding and decoding processes. To limit such
knowledge, some digital watermarking systems use keys, parameters that allow appropriate
parties to embed and/or decode the embedded signal. The locations of the modulated bits
in a LBM system and the pseudo-noise vectors in a spread-spectrum system are examples of
keys. If only certain parties privately share the keys to both embed and decode information,
and no one else can do either of these two functions, then the watermarking system is a
private-key system. Alternatively, if some parties possess keys that allow them to either
embed or decode, but not both, then the system is a public-key system since these keys can
be made available to the public for use in one of these two functions without allowing the
public to perform the other function. However, in some scenarios it may be desirable to
allow everyone to embed and decode watermarks without the use of keys. For example, in a
copyright ownership notification system, everyone could embed the ASCII representation of

” in their copyrightable works. Such a system is

a copyright notice such as, “Property of ...
analogous to the system currently used to place copyright notices in (hardcopies of) books,
a system in which there is no need for a central authority to store, register, or maintain
separate keys — there are none — or watermarks — all watermarks are English messages
— for each user. The widespread use of such a “no-key” or “universally-accessible” system

requires only standardization of the decoder so that everyone will agree on the decoded

watermark, and hence, the owner of the copyright.

Although the attacker does not know the key in a private-key scenario, he or she may
know the basic algorithm used to embed the watermark. In [30], Moulin and O’Sullivan
model such a scenario by assuming that the attacker knows the codebook distribution,
but not the actual codebook. As we discuss below, in this private-key scenario the results
of Moulin and O’Sullivan imply that distortion-compensated QIM methods are optimal
(capacity-achieving) against squared error distortion-constrained attackers. In the absence
of keys, however, the attacker does know the codebook, and the bounded perturbation
channel and the bounded host-distortion channel models of Chap. 2 are better models for
attacks in these no-key scenarios. As we show in this chapter, QIM methods in general, and
dither modulation in particular, achieve provably better rate-distortion-robustness trade-

offs than both spread spectrum and generalized LBM techniques against these classes of
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attacks on no-key systems.

7.1 Attacks on Private-key Systems

Moulin and O’Sullivan have derived both the capacity-achieving distribution and an explicit

expression for the capacity (4.1) in the case where the host is white and Gaussian and the

2

attacker faces an expected perturbation energy constraint E[||n||?] < ¢2. In this case the

capacity is [30]

o SNRw,attack + DNRattaCk
B SNRw,attack + DNR -1 '

DNRattack ) ﬁ

1
CGauss private = 5 log, (1 + 3

where DNRygtack = Ds/02 is the distortion-to-perturbation ratio and SNR attack = ol/o?

is the host signal-to-perturbation ratio. The maximizing distribution is [30]

u=-e+ OGauss,privateX,

where e ~ N (0, Ds) is statistically independent of x and

DNRattack

auss,private — 75 . 5° 7.1
e P ‘ DNRattack + ﬁ ( )

Since this distribution satisfies the condition (4.2), distortion-compensated QIM can achieve
capacity against these attacks. Eq. (7.1) gives the optimal distortion-compensation param-

eter.

Moulin and O’Sullivan have also considered the case of host signals that are not neces-
sarily Gaussian but that have zero mean, finite variance, and bounded and continuous pdfs.
In the limit of small Ds and ¢2, a limit of interest in high-fidelity applications, the capacity
approaches

1
C1high—ﬁdelity — 5 108;2 (1 + DNRattack) ;

and the capacity-achieving distribution approaches

U = e + Ohigh—fidelityX,

where, again, e ~ N (0, Dy) is statistically independent of x [30]. Again, since this distribu-
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tion satisfies the condition (4.2), distortion-compensated QIM can achieve capacity in this

high-fidelity limit. The capacity-achieving distortion-compensation parameter is [30]

DNRattack

ahigh—ﬁdelity = m
attac

7.2 Attacks on No-key Systems

In this section, we examine worst case in-the-clear attacks, attacks that arise when the
attacker has full knowledge of the embedding and decoding processes including any keys.
We consider two models for such attackers from Sec. 2.3: (1) the bounded perturbation
channel model in which the squared error distortion between the channel input and channel
output is bounded and (2) the bounded host-distortion channel model in which the squared

error distortion between the host signal and channel output is bounded.

7.2.1 Bounded perturbation channel

In this section we characterize the achievable performance of binary dither modulation with
uniform scalar quantization, spread spectrum, and low-bit(s) modulation when one wants

guaranteed error-free decoding against all bounded perturbation attacks.

Binary dither modulation with uniform scalar quantization

One can combine the guaranteed error-free decoding condition (3.5) for a minimum distance
decoder (3.8) with the distortion-normalized minimum distance (5.4) of binary dither mod-

ulation with uniform scalar quantization to compactly express its achievable performance

as
(d2 ./ Ds) Ds 3/4 Dg
min =, s , 7.2
ANo? T NRyo? (72)
or, equivalently, its achievable rate! as
3ve Ds
Ry < IN o2 (7.3)

!One can view these achievable rates (7.3) as the deterministic counterpart to the more conventional
notions of achievable rates and capacities of random channels discussed in Chaps. 4 and 6.
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Thus, for example, at a fixed rate R, to tolerate more perturbation energy o2 requires
that we accept more expected distortion Ds. Eq. (7.2) conveniently relates design speci-
fications to design parameters for dither modulation methods. For example, if the design
specifications require an embedding rate of at least R, and robustness to perturbations of at
least 2 in energy per sample, then (7.2) gives the minimum embedding-induced distortion
that must be introduced into the host signal, or equivalently via (5.3) the minimum average
squared quantization step size % S, A% to achieve these specifications. Finally, we see that
~. is the improvement or gain in the achievable rate-distortion-robustness trade-offs due to

the error correction code.

Spread spectrum

The nonzero minimum distance of QIM methods offers quantifiable robustness to perturba-
tions, even when the host signal is not known at the decoder. In contrast, spread-spectrum
methods offer relatively little robustness if the host signal is not known at the decoder. As

discussed in Sec. 2.4, these methods have linear embedding functions of the form
s(x,m) =x+ w(m), (7.4)
where w(m) is a pseudo-noise vector. From the definition of minimum distance (3.2),

dpmin = min min ||x; + w(i) —x; — w(J
(min (X“XJ)H (1) =x; —w(G)l

= min [+ w(i) = i w(i) - w(i) - wi)|

(i
= 0.

This zero minimum distance property of spread spectrum methods is illustrated in Fig. 7-1.

Thus, although these methods may be effective when the host signal is known at the
decoder, when the host signal is not known, they offer no guaranteed robustness to per-
turbations, i.e., no achievable rate expression analogous to (7.3) exists for additive spread
spectrum. As is evident from (7.4), in a spread-spectrum system, x is an additive interfer-
ence, which is often much larger than w due to the distortion constraint. In contrast, the

quantization that occurs with quantization index modulation, provides immunity against
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Figure 7-1: Zero minimum distance of spread spectrum embedding methods. The composite
signal vector s lies in both signal sets, and thus, even with no perturbations (y = s) one
cannot distinguish between (x, m) = (xq, 1) and (x, m) = (xg,2).

this host signal interference, as discussed in Chap. 3.2

Low-bit modulation

As shown in App. C, the distortion-normalized minimum distance of LBM is about 2.43 dB
worse (Eq. (C.3)) than that of dither modulation. Therefore, its achievable rate-distortion-

robustness performance is also about 2.43 dB worse than (7.2).

7.2.2 Bounded host-distortion channel

As mentioned in Sec. 2.3, the bounded host-distortion channel model arises when the at-
tacker’s distortion is measured between the host signal and channel output. Unlike in the
case of the bounded perturbation channel, considering performance against the worst pos-
sible channel output y satisfying the attacker’s host-distortion constraint does not provide
much insight. The channel output y = x results in Dy = 0, and this channel output contains
no information about the embedded information m. Thus, this channel output is the worst
case output, but it is not clear that an attacker can produce this output without knowledge
of x. The attacker can, however, exploit partial knowledge of the host signal, where such
partial knowledge may be described, for example, by the conditional probability density
Px|s(x|s) of the host signal given observation of the channel input (composite signal).
Thus, in this section we measure robustness to attacks by the minimum expected dis-
tortion Dy for a successful attack, where the expectation is taken with respect to pys(x|[s).

The ratio between Dy and the expected embedding-induced distortion Ds is the distortion

2 Another way to understand this host-signal interference rejection is to consider, for example, that a
quantized random variable has finite entropy while a continuous random variable has infinite entropy.
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Table 7.1: Attacker’s distortion penalties. The distortion penalty is the additional distortion
that an attacker must incur to successfully remove a watermark. A distortion penalty less
than 0 dB indicates that the attacker can actually improve the signal quality and remove
the watermark simultaneously.

Embedding Distortion Penalty
Method (Dy /D)
d2
Regul M 1+ 22 >0dB
egular Q + AN >
Binary Dith. Mod. 3/4
. >
w/uni. scalar quant. 243dB = L+ %NRm > 0dB
DC-QIM —oo dB
Spread Spectrum —oo dB
LBM <0dB
Binary LBM 943 dB

w/uni. scalar quant.

penalty that the attacker must pay to remove the watermark and, hence, is a figure of merit
measuring the robustness-distortion trade-off at a given rate. Distortion penalties for regular
QIM, binary dither modulation with uniform scalar quantization, distortion-compensated
QIM, spread-spectrum, LBM, and binary LBM with uniform scalar quantization are de-
rived below and are shown in Table 7.1. We see that of the methods considered, only
QIM methods (including binary dither modulation with uniform scalar quantization) are
robust enough such that the attacker must degrade the host signal quality to remove the

watermark.

Regular QIM

We first consider the robustness of regular quantization index modulation. For any distor-
tion measure, as long as each reconstruction point s lies at the minimum distortion point
of its respective quantization cell, the QIM distortion penalty is greater than or equal to 1
since any output y that an attacker generates must necessarily lie away from this minimum
distortion point. Equality occurs only if each quantization cell has at least two minimum
distortion points, one of which lies in the incorrect decoder decision region. For expected
squared-error distortion, the minimum distortion point of each quantization cell is its cen-

troid, and one can express this distortion penalty in terms of the distortion-normalized
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minimum distance and the signal length N, as we show below.

We use R to denote the quantization cell containing x and px(x|R) to denote the con-
ditional probability density function of x given that x € R. Again, for sufficiently small
quantization cells, this probability density function can often be approximated as uniform

over R, for example. Since s is the centroid of R,

/ (s —x)px(x|R) dx = 0. (7.5)
R

Also, the expected squared-error per letter embedding-induced distortion given x € R is

1
Dyg = ﬁ/ s — x||2px(x[R) dx. (7.6)
R

The most general attack can always be represented as y = s + n, where n may be a

function of s. The resulting distortion is

1
Dy = 5 [ Iy = xIPpx(xIR) dx
1
=+ Ll = %)+ nlPe(xIR) dx
R

1 1 9
- W/RHS_XHQPX(XWQ) dx"’ﬁHnHQ/Rpx(sz) dx + ﬁnT/R(s—x)px(xUQ) dx

[

= Dgr+ N

where we have used (7.6), the fact that py(x|R) is a probability density function and, thus,

integrates to one, and (7.5) to obtain the last line. For a successful attack, ||n|| > dmin/2 so

2

dmin
Dy|R > DS|R + W

Averaging both sides of this expression over all quantization cells R yields

d?..
Dy > Dy + 52

so that our figure of merit for quantization index modulation methods is

Dy 2. /Dg 2
ZY > 4 Imin/™s 4, Pnorm ‘
Dy — + AN + AN (77)

MIT, June 2000 104



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

Thus, for any QIM method of nonzero distortion-normalized minimum distance dyorm, the
attacker’s distortion penalty is always greater than 1 (0 dB), indicating that to remove the
watermark, the attacker must degrade the host signal quality beyond the initial distortion

caused by the embedding of the watermark.

Binary dither modulation with uniform, scalar quantization

In the special case of coded binary dither modulation with uniform, scalar quantization,
Eq. (5.4) gives d?_,,,. Due to the uniformity of the quantizers, the bound (7.7) is met

with equality so that the attacker’s distortion penalty (7.7) that must be paid to defeat the

watermark in this case is

D 3/4
_y:1‘|‘7c / .
Dy NRn,

(7.8)

Because the Hamming distance dj of a block code cannot exceed the number of coded bits

NRpm(ke/ky),
Ve dH
= <1
NRy  NRp(ke k) — 7

where the first equality follows from the definition (5.2) of ~.. Thus, an upper bound for

the distortion penalty (7.8) in this case is

14

3/4 < ! ~ 2.43 dB.
NRy, — 4

Although this penalty may seem modest, it is larger than that obtainable by either spread
spectrum or low-bit(s) modulation, as we show below. The difficulty in obtaining large
distortion penalties arises from the fact that an in-the-clear attacker can concentrate all of

his or her distortion in the minimum distance direction in N-dimensional space.

As a final note, (7.8) implies that binary dither modulation with uniform, scalar quan-

tization can defeat any attacker as long as

3/4 ) D,

— > 1,
NRny

i
(” D,

an expression that is analogous to (7.2), which applied for the bounded perturbation chan-

nel, rather than the bounded host-distortion channel. In each case some multiple of the
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ratio between the embedding-induced distortion and the attacker’s distortion, a “distortion-

to-noise ratio”, must be greater than 1.

Distortion-compensated QIM

An in-the-clear attacker of a DC-QIM system knows the quantizers and can determine the
watermark m after observing the composite signal s. If the quantization cells are contiguous
so that the distortion-compensation term in (3.10) does not move s out of the cell containing

x, then an attacker can recover the original host signal with the following attack:

s — aq(s;m, A/a)

l1—«
s —aq(x;m,A/a)

l—-«

The final line follows simply by inverting (3.10). Thus, the attacker’s distortion penalty
Dy/Dsis —oo dB. We see that although DC-QIM is optimal against additive Gaussian noise
attacks and against squared error distortion-constrained attacks in private-key scenarios,
it is in some sense “maximally suboptimal” against in-the-clear (no-key) attacks. Regular
QIM, on the other hand, is almost as good as DC-QIM against additive Gaussian noise
attacks (Chap. 6) and also resistant to in-the-clear attacks as discussed above. Thus, regular
QIM methods may offer an attractive compromise when one requires resistance to both

intentional attacks and unintentional attacks and one cannot employ a private key.

Spread-spectrum modulation

The embedding function of a spread-spectrum system is

s =x+w(m),

so the resulting distortion is

Ds = ||w|*/N > 0.

An attacker with full knowledge of the embedding and decoding processes can decode the
message m, and hence, reproduce the corresponding pseudo-noise vector w. Therefore, the

attacker can completely remove the watermark by subtracting w from s to obtain the
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original host signal,

y=s—-w(m)=x

Hence, the resulting distortion penalty is

Because the spread-spectrum embedding function combines the host signal x and wa-
termark w(m) in a simple linear way, anyone that can extract the watermark, can easily
remove it. Thus, these methods are not very attractive for universally-accessible digital
watermarking applications. In contrast, the quantization that occurs in quantization in-
dex modulation methods effectively hides the exact value of the host signal even when the
embedded information m is known, thus allowing universal access with a positive (in dB)

attacker’s distortion penalty.

Low-bit(s) modulation

The embedding function of a LBM system can be written as

s = q(x) +d(m),

where q(-) represents the coarse quantizer that determines the most significant bits and d
represents the effect of the (modulated) least significant bits. Because the embedding never

alters the most significant bits of the host signal,

Without loss of generality, we assume that the reconstruction points of q(-) are at the
centroids of the quantization cells. One attack that completely removes information about

m is to output these reconstruction points,
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Since y is at a minimum distortion point of the quantization cell,

<1=0dB,

D&

with equality only if both s and y are minimum distortion points. Thus, an attacker can
remove the watermark without causing additional distortion to the host signal. This result
applies regardless of whether error correction coding is used. Thus, in contrast to dither
modulation (See Table 7.1.), error correction coding does not improve low-bit(s) modulation

in this context.

Binary low-bit modulation with uniform, scalar quantization

When the least significant bit of a uniform, scalar quantizer is modulated, the results in

App. C imply that

_ 7 2
s = =7 )
481 -
while
_ 1 2
YT 121 k
Thus,
Dy, 4
—2 = _a~ —-243dB
Dy 7
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Chapter 8

Simulation Results

In Chap. 4 we argued that QIM, with the right preprocessing and postprocessing to move
into and out of the correct domain, is a capacity-achieving information embedding struc-
ture. As discussed in Chap. 6, the “right” postprocessing in the Gaussian case is distortion
compensation and no preprocessing is required. Furthermore, even with no distortion com-

pensation, QIM methods can achieve performance within a few dB of capacity.

In general, though, one can achieve capacity only asymptotically with long signal lengths
N, and hence, with large complexity and delay. In Chap. 5, therefore, we introduced low-
complexity realizations of QIM methods that, of course, can be combined with distortion
compensation, and in this chapter we present several simulation results to demonstrate the

practically achievable performance of such realizations.

8.1 Uncoded Methods

In this section we present results for uncoded dither modulation with uniform, scalar quan-
tization. These methods have extremely low computational complexity as discussed in
Chap. 5. In the section following this one, we demonstrate the additional gains that one

can achieve with practical error correction codes and distortion compensation.
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8.1.1 Gaussian channels

As discussed in Chap. 6, the bit-error probability of uncoded spread-transform dither mod-

ulation (STDM) with uniform, scalar quantization is (6.23)

Fy=20 (\/%DNRHOM)

for additive white Gaussian noise (AWGN) channels, where again

DNR
DNRyorm = ST (8.1)

For example, one can achieve a bit-error probability of about 107% at a DNRomm of 15 dB.
Thus, no matter how noisy the AWGN channel, one can reliably embed using uncoded

STDM by choosing sufficiently low rates. In particular, one needs to choose a rate satisfying

DNR

R —
RITI - In\lf{norm7

where DNRyorm is the minimum DNRyopm necessary in (6.23) for a given P, and where
DNR is determined by channel conditions and the embedding-induced distortion.

This case is illustrated in Fig. 8-1, where despite the fact that the channel has degraded
the composite image by over 12 dB, all 512 embedded bits are recovered without any errors

from the 512-by-512 image. The actual bit-error probability is about 1076,

8.1.2 JPEG channels

The robustness of digital watermarking algorithms to common lossy compression algorithms
such as JPEG is of considerable interest. A natural measure of robustness is the worst
tolerable JPEG quality factor! for a given bit-error rate at a given distortion level and
embedding rate. We experimentally determined achievable rate-distortion-robustness oper-
ating points for particular uncoded implementations of both STDM and “unspread dither
modulation (UDM)”, where we use UDM to refer to the case where there is no projection
onto a spreading vector v and all host signal components are quantized with the same step

size (A1 = Ay =---= Ap in Sec. 5.1).

'The JPEG quality factor is a number between 0 and 100, 0 representing the most compression and
lowest quality, and 100 representing the least compression and highest quality.
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Figure 8-1: Composite (top) and AWGN channel output (bottom) images. The composite
and channel output images have peak signal-to-distortion ratios of 34.9 dB and 22.6 dB,
respectively. DNR = —12.1 dB, yet all bits were extracted without error. R, = 1/512 and
DNRuyorm = 15.0 dB so the actual bit-error probability is 1076,
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Figure 8-2: Achievable robustness-distortion trade-offs of uncoded dither modulation on
the JPEG channel. R,, = 1/320. The bit-error rate is less than 5 x 107°.

These achievable distortion-robustness trade-offs at an embedding rate of Rp, = 1/320
bits per grayscale pixel are shown in Fig. 8-2 at various JPEG quality factors (Qprg). The
peak signal-to-distortion ratio (SDR) is defined as the ratio between the square of the max-
imum possible pixel value and the average embedding-induced distortion per pixel. Sample
host and composite signals, both 512-by-512 images, are shown in Fig. 8-3. The actual em-
bedding is performed in the DCT domain using 8-by-8 blocks (f1, f € {0,1/16,...,7/16})
and low frequencies (\/f% + f2 < 1/4)7 with 1 bit embedded across 5 DCT blocks. STDM
is better than unspread dither modulation by about 5 dB at (100 — Qjprg) of 50 and 75. As
discussed in Sec. 5.2, one explanation for this performance advantage is the lower number
of “nearest neighbors”, the number of directions in which large perturbation vectors can

cause decoding errors, of STDM relative to UDM.

Although no bit errors occurred during the simulations used to generate Fig. 8-2, we
estimate the bit-error rate to be at most 5 x 107%. At an embedding rate of 1/320, one can
only embed 819 bits in the host signal image, which is not enough to measure bit-error rates
this low. However, one can estimate an upper bound on the bit-error rate by measuring
the bit-error rate € at an embedding rate five times higher (R, = 1/64) and calculating the
coded bit-error probability of a rate-1/5 repetition code when the uncoded error probability

is € assuming independent errors, which can approximately be obtained by embedding the
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Figure 8-3: Host (top) and composite (bottom) images. After 25%-quality JPEG compres-
sion of the composite image, all bits were extracted without error. R, = 1/320. Peak SDR
of composite image is 36.5 dB.
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Rate (Rconv) | Generators (octal) | dpee
1/2 561, 753 12
1/4 463, 535, 733, TA5 | 24

Table 8.1: Convolutional code parameters. Each code has a memory of 8 (constraint length

of 9).

repeated bits in spatially separated places in the image. This coded bit-error probability is

5
Pp=Y_ &1 — )Pk (8.2)
If € < 32/4096, then (8.2) implies Pep < 4.7 x 1076, Thus, to obtain Fig. 8-2, we first
embedded at a rate of 1/64 adjusting the SDR until € < 32/4096. Then, we embedded at

a rate of 1/320 using a rate-1/5 repetition code to verify that no bit errors occurred.

8.2 Gains from Error Correction Coding and Distortion Com-

pensation

As mentioned in Chap. 6, the gap between uncoded STDM (with uniform, scalar quantiza-
tion and without distortion compensation) and the Gaussian capacity is about 13.6 dB in
terms of DNRyorm at a bit-error rate of 1075, In this section we investigate how much of
this gap can be closed with practical error correction codes and distortion compensation.
From the definition of DNRorm (8.1), we see that a gain factor g in the minimum DNRyopm

required for a given bit-error rate translates into

1. a factor of ¢ increase in rate for fixed levels of embedding-induced distortion and

channel noise (robustness),
2. a factor of ¢ reduction in distortion for a fixed rate and robustness, or

3. a factor of g increase in robustness for a fixed rate and distortion.

Thus, the minimum DNR,omm required for a given bit-error rate is the fundamental pa-
rameter of interest, and in the Gaussian case the DNRom also completely determines the
bit-error probability (6.23) for uncoded STDM for R, < 1.

In our experiment we embedded 107 bits in a pseudorandom white Gaussian host using

memory-8, rate-1/2 and rate-1/4, convolutional codes with maximal free distance. Table 8.1
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Figure 8-4: Error-correction coding and distortion-compensation gains. With common,
memory-8 convolutional codes one can obtain gains of about 5 dB over uncoded STDM.
Distortion compensation (DC) yields about 1 dB additional gain. Generalized LBM curves
for non-distortion-compensated cases lie 2.43 dB to the right of the corresponding STDM
curves.

contains the generators and free distances of these codes [27, Thl. 11.1]. One coded bit was
embedded in each spread-transformed host signal component using uniform, scalar quantiz-
ers as described in Chap. 5. We used the squared Euclidean distances between the channel
output samples y and the nearest reconstruction point from each of the two quantizers to
calculate branch metrics for Viterbi decoding [26] of the convolutionally encoded data, as
illustrated in Fig. 5-2. Experimentally measured bit-error rate (BER) curves are plotted
in Fig. 8-4. We observe an error correction coding gain of about 5 dB at a BER of 107°.
Distortion compensation provides an additional 1-dB gain.

From analysis in App. C, we know that the corresponding BER curves for generalized
LBM with uniform, scalar quantization lie 2.43 dB to the right of their STDM counterparts
in cases where no distortion compensation is performed. In distortion compensated cases,
however, the distortion-compensation interference in the LBM case has a different proba-
bility distribution than in the STDM case because the quantizer reconstruction points are
not in the centroids of their respective embedding intervals. Thus, it is unclear where the
BER curves for distortion-compensated LBM lie.

Another set of experiments was performed to illustrate to advantages of distortion-

compensated STDM over regular STDM against JPEG compression attacks. A rate-1/5
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Figure 8-5: Bit-error rate for various distortion compensation parameters for JPEG com-
pression channel of 25%-quality. R, = 1/320. The peak SDR, between 43.3-43.4 dB, is
chosen high enough to obtain a measurable bit-error rate.

repetition code was used to embed 1 bit in the low frequencies of five 8-by-8 DCT blocks
for an overall embedding rate of 1/320. Using Fig. 8-2, we chose a low enough embedding-
induced distortion level (SDR = 43 dB) such that we would be able to observe errors in
the 819 decoded bits after 25-percent quality JPEG compression. Then, we measured the
decoded bit-error rate with different distortion compensation parameters « in (3.10). The
results are shown in Fig. 8-5.

We see that distortion compensation is helpful, provided that one chooses « to ob-
tain an efficient trade-off between minimum distance and distortion-compensation interfer-
ence, both of which are increased by decreasing «, as discussed in Sec. 3.3. The measured
distortion-to-noise ratios in the projections of the received signals onto the STDM pseudo-
random vectors were between 3.2 dB and 3.6 dB. For DNRs in this range, the « given by
(3.11), which maximizes “SNR at the decision device” and is optimal for AWGN channels,
is between 0.67 and 0.69. Although the measured bit-rate error in Fig. 8-5 is lower for
a = 0.8 than for o = 0.7 (21/819 vs. 24/819), these measurements are within statistical

uncertainty.

MIT, June 2000 116



B. Chen [ELECTRONIC DISTRIBUTION COPY] Ph.D. Thesis

Chapter 9

Concluding Remarks

We conclude this thesis by briefly summarizing many of the main results and commenting

on several promising directions for future research.

9.1 Concluding Summary

Digital watermarking, information embedding, and data hiding systems play a key role in
addressing at least three major challenges that have arisen from the widespread distribution
of multimedia content over digital communication networks. In particular, these systems
are enabling technologies for (1) enforcing and protecting copyrights, (2) authenticating and
detecting tampering of multimedia signals, and (3) backwards-compatibly upgrading exist-
ing legacy communication networks. We have introduced a framework in which to design
and analyze these digital watermarking, information embedding, and data hiding systems,
characterizing the goodness of such systems by their rate-distortion-robustness performance.
A class of embedding methods that we call quantization index modulation (QIM) emerges
quite naturally from this framework, and such QIM methods possess a number of attrac-
tive features from both a practical engineering perspective and an information-theoretic
perspective.

From an engineering perspective, the structure of QIM systems reduces the problem of
engineering information embedding systems to one of simultaneously designing good source
codes and good channel codes, and the system designer can exploit such structure to con-
veniently trade-off rate, distortion, and robustness by tuning system parameters such as

quantization step size. At the same time, the structure is sufficiently general that one can
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achieve capacity, the information-theoretically best possible rate-distortion-robustness per-
formance, against any type of fixed attack with QIM in the proper domain. For example,
for (even possibly colored) Gaussian host signals distortion-compensated QIM (DC-QIM),
which we have also introduced in this thesis, can achieve capacity against additive Gaus-
sian noise attacks, which may be good models for unintentional attacks. Even for arbitrary
(non-fixed) attacks, capacity-achieving DC-QIM systems exist for squared error distortion-
constrained attacks, if the host signal is Gaussian and the embedder and decoder share a
private key. For non-Gaussian host signals DC-QIM systems can achieve capacity asymp-
totically in the limit of small embedding-induced and attacker’s distortions, which is the

limit of interest in high-fidelity applications.

We have also presented practical, low complexity implementations of QIM called dither
modulation with uniform scalar quantization. These methods achieve quantifiably better
rate-distortion-robustness performance than previously proposed classes of methods such
as amplitude-modulation spread spectrum and quantization-and-perturbation [43], which
one may view as a generalized form of low-bit(s) modulation. One can quantify this perfor-
mance gain in terms of SNR at the decoder decision device and in terms of achievable rate-
distortion-robustness performance against worst-case squared error distortion-constrained
intentional attacks, where the attacker knows everything about the encoding and decod-
ing processes, including any keys. Furthermore, one can conveniently convert previously
developed amplitude-modulation spread spectrum systems to spread-transform dither mod-

ulation systems by replacing addition with quantization.

Information-embedding capacities in the case of Gaussian host signals and additive
Gaussian noise with arbitrary statistics have also been presented in this thesis. The ca-
pacities in these cases are the same for both the host-blind and known-host cases and are
independent of host signal statistics, indicating that an infinite-energy host signal interferer
causes absolutely no performance degradation. When applied to multimedia applications
such as bandwidth-conserving hybrid transmission, these results imply a capacity of about
1/3 b/s for every Hertz of host signal bandwidth and dB drop in received host signal quality.
When quantization occurs in the composite signal domain, QIM methods exist that achieve
performance within 1.6 dB of these capacities, and one can eliminate even this small gap

with distortion compensation.

We have also presented a number of empirical simulation results that complement our
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mathematical analyses. These simulation results demonstrate practically achievable perfor-
mance of dither modulation against additive Gaussian noise and JPEG compression attacks
and demonstrate practically achievable gains from error correction coding and distortion

compensation.

9.2 Future Work and Extensions

In this section we comment on several directions for extending the results of this thesis and

discuss possible approaches to tackling some remaining open problems.

9.2.1 General attack models

In many applications, particularly in those involving intentional attacks, one may encounter
attacks that cause a large amount of squared error distortion but that do not cause an
unacceptably large degradation in perceptible signal quality. Such attacks may not be well
captured by the models discussed in this paper. Although Sec. 3.1 contains some general
comments about dealing with general deterministic and probabilistic channels, application
of these deterministic and probabilistic models and their corresponding decoding structures
to the myriad number of exotic attacks such as scaling, rotation, cropping, and column

replacement remains as an interesting direction for future work.

9.2.2 Incorporation of other aspects of digital communication theory

As discussed in Chap. 3, one may view the quantizer reconstruction points in a QIM ensem-
ble as signal constellation points for communication of the embedded information m. Thus,
one can incorporate a number of well-known digital communication techniques into QIM
information embedding techniques for scenarios that have not explicitly been considered
in this thesis. In many cases, one may also be able to further analyze QIM methods by
applying results from classical (non-watermarking) digital communications theory. We give

several examples below.

Amplitude-scaling invariant QIM

In some applications such as the digital audio broadcasting (DAB) application mentioned

in Chap. 1, the channel may scale the amplitude of the channel input. In these cases one
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Figure 9-1: Signal constellation and quantizer reconstruction points for phase quantization
and dither modulation with analog FM host signal. x;[k] and xg[k] are the in-phase and
quadrature signal components, respectively. The quantizer step size A is 7/10. The x-
quantizer dither value is A/3. The o-quantizer dither value is —A/6.

may want to embed information only in the phase! of the host signal so that the decoder
will not need to estimate changes in amplitude.

In the case of FM DAB, the analog FM host signal has constant amplitude, and thus,
an example of a resulting signal constellation and/or ensemble of quantizer reconstruction
points is shown in Fig. 9-1. As one can see, the resulting constellation is a phase-shift keying
(PSK) [26] constellation. Thus, a natural starting point for future work in analyzing the
performance of this type of “phase quantization index modulation” in detail might be the

wide body of PSK analyses that has already been developed for classical communication.

Multirate QIM

Since digital watermarking involves communicating a digital message, digital watermarking
methods suffer from the well-known threshold effect or “cliff” effect that is typical of digital
communication in general. If the interference at the decoder is smaller than some threshold,
then the decoder can successfully decode the message. However, if the interference is larger

than the threshold, then the decoder fails. This inherent property of digital communication

If the host signal is real valued, one can group host signal samples into pairs, and treat each pair as the
real and imaginary part of a complex number to obtain phase samples.
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Figure 9-2: Broadcast or multirate digital watermarking with spread-transform dither mod-
ulation. In high-noise scenarios the decoder determines if m is even or odd to extract one
bit. In low-noise scenarios the decoder determines the precise value of m to extract two bits
and, hence, double the rate.

systems creates some challenges if either the amount of channel interference is not known
when designing the system or if there are multiple decoders, each facing a different amount
of interference.

One solution, of course, is to choose the information embedding rate low enough so that
the worst case interference is below the failure threshold. However, if the interference turns
out to be smaller than the worst case amount, then one might desire that the decoder have
the capability to extract more than this minimum rate of embedded information. To accom-
modate such “graceful degradation” (or “graceful improvement”, depending on one’s per-
spective) in rate, one can replace individual quantizer reconstruction points with “clouds” of
points, as described in [12, 35] for broadcast communication in non-watermarking contexts.

An example of such a “broadcast” or multirate STDM quantizer ensemble for digital
watermarking is shown in Fig. 9-2. The reconstruction points of four quantizers are labeled
1, 2, 3, and 4, respectively. The minimum distance between an even and an odd point is
larger than the minimum distance between any two points and is set large enough such
that the decoder can determine if an even or an odd quantizer was used, and hence extract
one bit, even under worst-case channel noise conditions. However, if the channel noise is
smaller, then the decoder can determine the precise quantizer used, and hence, extract two

bits. Again, we leave detailed analysis and performance optimization of such a multirate

QIM method for future work.

Closing the gap to the Gaussian capacity

Simulation results (Fig. 8-4) in Chap. 8 demonstrated about a 6-dB gain from distor-
tion compensation and reasonable-complexity error correction coding compared to uncoded

STDM with uniform scalar quantization. As shown in Fig. 6-4 of Chap. 6, the total gap
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between uncoded STDM and capacity is about 13.6 dB in the Gaussian case. Thus, about

a 7.6-dB gap to capacity remains.

As discussed in Chap. 6, distortion-compensated QIM systems exist that achieve the
Gaussian capacity. Thus, the remaining 7.6-dB gap must be due to the remaining structure
of the systems that we implemented in our simulations, structure that inherently places
limiting constraints on the systems. These constraints are: (1) using convolutional codes of

memory 8 and (2) using dithered, uniform, scalar quantizers.

Therefore, possible directions for future work include using more powerful error correc-
tion codes such as low-density parity check codes [18, 29, 38] and using high dimensional
vector quantizers [23], perhaps based on lattices [10]. Potentially fruitful directions for fu-
ture work in this area include not only applying these coding and quantization methods
to obtain enhanced performance but also drawing from related analyses to gain insights
into understanding the achievable performance. For example, one can separate the achiev-
able gains of lattice codes into a coding gain and a shaping gain [26]. Perhaps, one can
develop similar analyses to determine separately achievable gains from channel coding and
vector quantization. Similarly, determining the achievable performance of LBM with vector

quantization also remains as an open area of future research.

9.2.3 System level treatments

Also, while the focus of this thesis has been on information embedding methods, “sys-
tem level” issues such as how to best employ information embedding methods for, say,
authentication remain largely unresolved. For example, given an information embedding
method that is robust to all anticipated attacks and can embed imperceptibly at a given
rate, what authentication signal should be embedded? More generally, a treatment of both
watermarking-based and non-watermarking-based authentication methods, focusing on au-
thentication performance rather than on information-embedding (rate-distortion-robustness)
performance, would complement very well the analyses in this thesis. Similar statements
apply for copyright protection mechanisms and for paradigms for backwards-compatible

upgrading of communication networks.
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9.2.4 Duality with Wyner-Ziv source coding

One final area for future exploration is the information-theoretic duality [3, 8] between infor-
mation embedding and so-called Wyner-Ziv source coding [48], which is lossy source coding
with side information that is known at the decoder but not at the encoder. For example,
the information-embedding capacity expression (4.1) has a rate-distortion counterpart in
the Wyner-Ziv problem [48, Eq. (15a)]. Similarly, the lossless version of Wyner-Ziv source
coding, called Slepian-Wolf source coding [36], is the dual of noise-free information em-
bedding, and the noise-free information-embedding capacity (4.7) is the dual result to the
Slepian-Wolf source coding theorem [36, Eq. (5)]. Also, the conditions (4.12) and (4.13)
under which having the host signal only at the encoder, and not the decoder, leads to no
loss in achievable performance (relative to the known-host case) have Wyner-Ziv counter-
parts under which having side information only at the decoder, and not the encoder, leads
to no loss in performance (relative to having the side information at both the encoder and
decoder).

As a result of this duality, one can leverage work on the design and analysis of infor-
mation embedding systems to better design and analyze Wyner-Ziv source coding systems,
and vice versa. Thus, future research in this area may indeed prove to be quite fruitful.

More detailed comments can be found in [3].
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Appendix A

Notational Conventions

This appendix explains some notational conventions used in this thesis. Exceptions to these
conventions are noted in the thesis, where appropriate. In general, scalar values are written
in regular font, while vector values are written in boldface font. Random variables (scalar
or vector) are written in sans serif font, while deterministic variables and sample values are
written in regular Roman font. Matrices are denoted by capital letters, although not all

variables denoted by capital letters are matrices. Here are some examples:

x: Scalar, random variable
x:  Scalar, deterministic variable or sample value
x: Vector, random variable
x: Vector, deterministic variable or sample value

A: Deterministic matrix. Exceptions: D(x,s), N, and L.

The notation py(x) represents the probability density function (pdf) of random variable x
evaluated at sample value z, although occasionally we use the shortened notation p(x) when

there is no risk of confusion between random variables and sample values.
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Appendix B

Ideal Lossy Compression

The additive Gaussian noise channel model may be a good model for lossy compression, if
the compression algorithm was designed ideally for Gaussian source signals, as we show in
this appendix. Specifically, our goal is to develop a channel model for the case when the
composite signal s is lossily compressed to produce the channel output. We emphasize in
advance that our results here do not imply that every good compression algorithm can be
modeled as adding Gaussian noise to the source. Instead, we simply derive an equivalent
additive Gaussian noise model corresponding to the rate-distortion achieving distribution
— the probability distribution from which one can choose random source codebooks, at
least one of which achieves the best possible compression rate for a given distortion [13] —

for Gaussian sources and squared error distortion.

We consider the case of a zero-mean, white, Gaussian source signal, which is the com-
posite signal in this case, and a lossy compression algorithm that has maximum allowable
squared error distortion of ¢2. The rate-distortion achieving distribution for this source

coding problem is represented by the test channel [13, Chap. 13]

s=y +z (B.1)

2

2) is the cor-

where s ~ N (0,02) is a Gaussian source signal sample, y' ~ N (0,062 - 0o
responding sample from a source codeword, and z ~ A (0,02) is the source coding error
(quantization error) and is statistically independent of y’. The notation x ~ A/(0, 0%) means

that x is a Gaussian random variable with mean 0 and variance o2. We assume, as is usu-
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2

2 is smaller than the source signal variance ¢2.! Thus, s

ally the case, that the distortion o
and y’ are jointly Gaussian [46] and the conditional probability density function (pdf) of y’

given s is also a Gaussian density with?

2 _ 2
/ _ Os — 0,
Ely'|s] = TZS
o2
var[y’|s] = (O‘Z — O'z) U—;. (B.2)

Thus, an equivalent model for the test channel (B.1) is
y' =as+ 2, z! ~ N(0, var[y'|s]),
where

a=-—"—= = B (B.3)
and z’ is statistically independent of as. Hence, an equivalent model for this type of lossy
compression is (1) multiplication by a scalar factor a followed by (2) addition of Gaussian
noise z’ that is independent of the scaled signal. Furthermore, from (B.3) we see that
the scalar multiplication factor a is known if the amount of allowable compression-induced
distortion o2 is known. (We assume that o is known since this composite signal variance
depends only on the embedding function and not on the compression algorithm.) If we know
a at the (watermarking) decoder, we can preprocess the source codeword y’ by multiplying
it by 1/a to get

1 /
y=—y =s+n,
where n = z'/a is zero-mean, additive, Gaussian noise, independent of the composite signal

s. In this sense, we can model lossy compression (followed by front-end multiplication by a

scalar at the decoder) as an additive Gaussian noise channel.

If the allowable distortion is greater than o2, then one could simply use y' = 0 as the source codeword.
Clearly, no information embedding system can be robust to such compression.

2Qne simple way to derive the mean and variance of this pdf is to find, respectively, the linear least
squares estimate of y’ given s and the error variance of this estimate [46].
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Finally, from (B.2) and (B.3), the noise variance is

2 2/52"
a 1—02/0?

' 2
0721 B var[y’|s] lops

This noise variance approaches the compression-induced distortion ¢2 in the limit of large

composite signal to compression-distortion ratio o2/a2.
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Appendix C

LBM Distortion-normalized

Minimum Distance

In this appendix we calculate the distortion-normalized minimum distance of binary low-
bit(s) modulation (LBM) with uniform, scalar quantization. We assume that the host signal

and embedded signal are statistically independent.

The embedding function of any LBM method can be written as
s =q(x) +d(m),

where q(-) is a coarse quantizer that determines the most significant bits in the quantization
of x, and d is determined by the modulated least significant bits. The quantization cells of
q(+) are the coarse quantization cells illustrated in Fig. 3-3, and we define q(-) such that its

reconstruction points lie at the centroids of these quantization cells. Thus,

E[q(x) — x] = 0. (C.1)
Then, the expected distortion is
SEls=x?] = 7 [labx) - x+ d(m)|]
= %E lla®) = x| +2(a(x) —x)"d(m) + [|d(m)]||]
= < [lab) — <] + - [Id(m) 7] (€.2)
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Figure C-1: Low-bit modulation with a uniform, scalar quantizer. The quantizer has a
step size of Ay /2, and the least significant bit (Isb) is modulated. All reconstruction points
marked with a x have a Isb of 0. Points marked with a o have a Isb of 1. This process is
equivalent to first quantizing using a quantizer with a step size of Ay, whose reconstruction
points are marked with a e, and adding +Ay /4.

where we have used (C.1) and the independence of x and m to obtain the final line. Thus,
the overall distortion is the distortion of the coarse quantizer plus the expected magnitude-
squared per sample of the least significant bits adjustment vector d(m).

We consider the uniform, scalar quantization case that is most directly comparable to
the binary dither modulation case of Chap. 5, where we have a sequence of coded bits,
each of which is repeated I times and embedded in a length-L block with a sequence of
uniform, scalar quantizers. Instead of modulating the dither, however, we modulate the
least significant bit of each quantizer. The k-th uniform, scalar quantizer is illustrated in
Fig. C-1. The coarse quantizer g(-) has a step size of Ay, and the k-th least significant bit
adjustment element dj equals +A/4. Consequently, the system has the same minimum
distance (5.1) as the dither modulation systems of Chap. 5,

2 1 2

Aimin = VIR Zk:Ak'

If we make the same assumption as in Chap. 5 that x can be modeled as uniformly dis-

tributed within each cell of q(+), then the first term in (C.2) is

—ZE[um—xM S AL

the same as the expected distortion (5.3) of the dither modulation system. The second term
is

2
_Z 16L ZA’“
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Thus, the overall expected distortion is
1 1 7
Di=|—+ — A= N A2
: (12L + 16L) Zk: YD Zk: m
and the distortion-normalized squared minimum distance is

9 _ 127,
norm 7Rm *

By comparing with (5.4), we see that LBM is worse than the corresponding dither modu-

lation system by

~ 2.43 dB. (C.3)

A =1

12/7
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Appendix D

Gaussian Capacity Proof:

Colored Host, White Noise

In this appendix we formally complete the derivation of capacity (6.8) that is sketched
in Sec. 6.1.2 for the case of a colored Gaussian host signal and white Gaussian noise. As
described in that section, our goal is to find a probability density function (pdf) py zx (@, €|7)

that maximizes the transform-domain version of (4.1),

C= max [I(uy)— I(0;x), (D.1)

Pu,elz (4,€]F)

subject to the constraint
EleTe] < LD,. (D.2)

Our strategy is to hypothesize a pdf pj za(@, €|Z) and show that with this choice of pdf
I(t;y) — I(g;x) in (D.1) equals the expression in (6.7). Since this expression is also the
capacity in the case when the host signal is known at the decoder (Sec. 6.1.4.), we cannot

hope to achieve a higher rate, and hence, this pdf must indeed maximize (D.1).

We consider the pdf corresponding to the case where
u=e+ ax, é ~ N(0, DsI), (D.3)

é and x are statistically independent, and « is given by (3.11). The notation v ~ N (u, K)
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means that v is a Gaussian random vector with mean p and covariance matrix K. Clearly,
this choice of pdf satisfies the distortion constraint (D.2). Also, as explained in Sec. 6.1.2,
x ~ N(0,Ay) so o~ N(0, DI + a?Ay). The differential entropy h(v) of an L-dimensional

Gaussian random vector v ~ N (u, K) is [13]

1
5 log, (2me) | K],

which for diagonal covariance matrices K = diag(ky, ..., kr) reduces to
L1
Z 3 log, (2wek;) (D.4)
Therefore,
Loy A N s
I(i;x) = h(u) - h(d]x)
= h(u) —h(e)
1 L1
= Z §log2 {27‘1’6 (D )} Z 3 log, (2meDs)
L
1 Ds+ oA, ;

where A, ; denotes the i-th diagonal entry of Ay. The second line follows from (D.3) and the
statistical independence of € and x, and the third line follows since & and é have diagonal
covariance matrices and, hence, have entropies of the form (D.4). Thus, all that remains is

to compute [ (;y) in (D.1).

The transform-domain channel output y = é + x + n has a diagonal covariance matrix

Ky = DoI + Ay + 021 and via (D.3) can be written in the form
y=u+(1—a)x+n. (D.6)

Thus, the differential entropy of y is given by (D.4),

1 log, {27‘1’6 (Ds + i+ O'Z)} . (D.7)

||£1h

One can similarly determine h(y|u) after determining Kyz. Since y and u are jointly Gaus-
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sian vectors, the conditional density of y given u is Gaussian with conditional covariance

matrix [46, (Eq. 1.150)]
Kjja =Ky — Kya K7 ' K. (D.8)

From (D.6), the statistical independence of x and n, and the statistical independence of u

and n, one can infer that
I(y = Kz + (1 — 04)2[(;( + K7+ (1 — Oé) (I(;([, + I(gﬁ)
and

Ky KK}, = [Ko+ (1- o) Kxg] K3 [K;, + (1 - a)[('ga}

= Ki+(1-a) (Kﬁ, + I&'ga) + (1 - ) KzaK ;' KL
Inserting these expressions into (D.8), we obtain
Kyg = K+ (1—a)? [K} — I(ﬁ,l(gll(ga ,

which is a diagonal matrix since Ky, K, Kz, and Ky are all diagonal. The ¢-th diagonal
entry is
X2
- _ 2 N2 o @
{K””} g = ot (=a) [/\W Ds + 042/\95,2']

o2 (Ds + 042/\1,72') +(1- 04)2/\1,72'Ds
Ds + 042/\1’,2' ‘

Thus, the conditional entropy of this conditionally Gaussian random vector is (D.4)

. 1 0721 (Ds + 042/\1,72') +(1- 04)2/\1,72'Ds
h(y|u) = ; 3 log, [27‘1’6 Dot afh,, , (D.9)
and taking the difference between (D.7) and (D.9), one obtains
L
-~ 1 <D5+sz‘|’0-2> (Ds‘|’042Axi>
1 = =1 : & . . D1
9= Lo B S (0
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Taking the difference between (D.10) and (D.5) yields

L ; + o2

o - Ds (Ds + Aoi + 07)

Hg) — (%) = S =1 T a
(u7y) (U, X) Z 2 082 lo‘% (Ds + 042Als72') + (1 - 04)2A9572'D5‘|

L
) 1+ DNR + SNR,,;
= Y Slog, |DN |
2308 [ “DNR T a?SNR,., + (1 - a)2DNR SNRM] 7

where SNR,, ; = /\9572'/(7721 is the host signal-to-noise ratio in the ¢-th channel. Finally, substi-

tuting (3.11) into this expression yields

(i y) — (i3 %)
L
1 14+ DNR + SNR,.
=) -1 1+ DNR)?DNR ,
; 5 082 [( + ) DNR(1+ DNR)2 + DNR?SNR,.; + DNRSNR,;
L
1 14+ DNR + SNR,.
=) >l 1+ DNR)? 2l
; g 082 l( + ONR) A DNR)? + SNR,., (1 + DNR)
L g
=> 5 logs (1 + DNR),
=1

which equals the desired expression (6.7). O
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